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The transcriptional repressor B lymphocyte-induced maturation protein-1 (Blimp-1) has crucial roles in the control of plasma cell
differentiation and in maintaining survival of plasma cells. However, how Blimp-1 ensures the survival of plasma cell malignancy,
multiple myeloma (MM), has remained elusive. Here we identified Aiolos, an anti-apoptotic transcription factor of MM cells, as a
Blimp-1-interacting protein by mass spectrometry. ChIP coupled with DNA microarray was used to profile the global binding of
Aiolos and Blimp-1 to endogenous targets in MM cells, which revealed their co-binding to a large number of genes, including
apoptosis-related genes. Accordingly, Blimp-1 and Aiolos regulate similar transcriptomes in MM cells. Analysis of the binding
motifs for Blimp-1 and Aiolos uncovered a partial motif that was similar across sites for both proteins. Aiolos promotes the binding
of Blimp-1 to target genes and thereby enhances Blimp-1-dependent transcriptional repression. Furthermore, treatment with an
anti-MM agent, lenalidomide, caused ubiquitination and proteasomal degradation of Blimp-1, leading to the de-repression of a new
Blimp-1 direct target, CULLIN 4A (CUL4A), and reduced Aiolos levels. Accordingly, lenalidomide-induced cell death was partially
rescued by reintroduction of Blimp-1 or knockdown of CUL4A. Thus, we demonstrated the functional impacts and underlying
mechanisms of the interaction between Aiolos and Blimp-1 in maintaining MM cell survival. We also showed that interruption of
Blimp-1/Aiolos regulatory pathways contributes to lenalidomide-mediated anti-MM activity.
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The differentiation of plasma cells is controlled by a transcrip-
tional repressor, B lymphocyte-induced maturation protein-1
(Blimp-1).1 Blimp-1 suppresses mature B-cell gene expres-
sion including genes responsible for B-cell identity or activa-
tion, thereby allowing the activation of the plasma cell gene
expression program.1 Blimp-1 is not only essential for the
generation of plasma cells but also important for ensuring their
survival.2,3 Accordingly, antigen-specific long-lived plasma
cells in the bone marrow cannot be maintained when Prdm1,
the Blimp-1 gene, is ablated in immunized mice.4

The action of Blimp-1 in regulating gene repression has
been revealed by the identification of several histone-
modifying enzymes or co-repressors that physically interact
with Blimp-1. For example, histone methyltransferase G9a
associates with Blimp-1 and participates in Blimp-1-mediated
suppression of IFN-β by adding methyl groups to lysine 9 of
histone 3 (H3K9) of the IFN-β promoter.5 The proline-rich
domain of Blimp-1 is a major contributor to its transcriptional
repression activity via interactions with several co-repressors,
including Groucho family proteins,6 histone deacetylase 2,7

and lysine-specific demethylase 1.8 Blimp-1 also interacts with
PRMT5, an arginine-specific histone methyltransferase, in
primordial germ cells.9

Here we sought to identify additional Blimp-1-interacting
proteins via mass spectrometric analysis of Blimp-1-contain-
ing immunoprecipitates from a plasma cell line to acquire
further insights into the molecular actions of Blimp-1. The
transcription factor Aiolos was identified using this approach.
Aiolos, an Ikaros family protein, contains four N-terminal zinc
fingers in the DNA-binding domain and two C-terminal zinc
fingers for protein–protein dimerization.10 Aiolos interacts with
Ikaros family proteins, including Ikaros, in lymphoid cells.1

Downregulation of Aiolos contributes to the cytotoxic effects of
an effective anti-malignant plasma cell (multiple myeloma,
MM) agent, lenalidomide.12,13 Lenalidomide targets Cereblon
(CRBN), a component of the CULLIN 4 (CUL4)-containing E3
ligase complex (CRL4) that mediates the turnover of
proteins,14 thereby resulting in the proteolysis of Ikaros family
proteins and apoptosis of MM cells.12,13 The target genes of
Aiolos responsible for maintaining MM cell survival have yet to
be characterized. Interactions between two or more transcrip-
tion factors often provide the combinatorial control of gene
expression that is needed for regulating a complex biological
response. Thus, we hypothesized that the mode of action of
Blimp-1 in maintaining the survival of MM cells may involve
interaction with Aiolos. We show here that Aiolos assists
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Blimp-1 binding to target genes to jointly control the survival of
MM cells and that the Blimp-1/Aiolos regulatory axis controls
the responsiveness to lenalidomide treatment in MM cells.

Results

Identification of the Blimp-1-interacting protein Aiolos.
We sought to identify the interacting partners of Blimp-1 that
may contribute to the maintenance of the survival of MM cells,
where Blimp-1 is expressed.3 Nuclear extracts from the
human MM line H929 were used to immunoprecipitate Blimp-
1-interacting complexes using polyclonal anti-Blimp-1. Mass
spectrometric analysis of differentially expressed proteins
derived from Blimp-1 immunoprecipitates relative to immuno-
precipitates from a control antibody revealed 10 peptide
sequences that corresponded to Aiolos (Supplementary
Figure 1). The interaction of Blimp-1 and Aiolos was confirmed
by co-immunoprecipitation (co-IP) with H929 nuclear extracts
and anti-Blimp-1. Indeed, Aiolos in H929 cells was present in
the anti-Blimp-1 immunoprecipitates (Figure 1a, upper panel).
In a reciprocal experiment, Blimp-1 in H929 cells was co-IP with
anti-Aiolos (Figure 1a, lower panel). Blimp-1 and Aiolos were
also co-IP in another MM line, U266 (Figure 1b). More
importantly, their interaction was further validated in primary
MM cells isolated from bone marrow aspirate of patients
(Figure 1c).
We next determined the regions in Blimp-1 and Aiolos

that are required for their interaction. Several constructs
encoding various forms of FLAG-tagged Blimp-1 with
deletions (Figure 1d), along with HA-tagged Aiolos, were
co-transfected into HEK293T cells. Lysates from transiently
transfected cells were subjected to co-IP with anti-FLAG. Of
note, Blimp-1 lacking the first two zinc fingers (constructs b, e
and g) failed to interact with Aiolos (Figure 1e). Similarly,
several HA-tagged Aiolos deletion constructs (Figure 1f) were
co-transfected individually with a construct encoding FLAG-
tagged Blimp-1. Aiolos lacking the N-terminal 119 amino-acid
residues (constructs d, e and f) had reduced ability to pull
down Blimp-1 (Figure 1g). The importance of these regions for
the interaction was confirmed with glutathione S-transferase
(GST) pull down assays in which several forms of bacterially
expressed GST-fused Aiolos fragments (Figure 1h) were used
to pull down His-tagged C-terminal Blimp-1 that contains the
two essential zinc fingers for interaction with Aiolos. Results in
Figure 1i confirmed that the N-terminal 119 residues of Aiolos
(constructs a, b and c) are sufficient for the direct interaction
with Blimp-1.

Blimp-1 and Aiolos associate with each other and bind to
genes expressed in MM cells. To further study the
mechanistic insights into the interaction between Blimp-1
and Aiolos, we performed chromatin IP coupled with
promoter DNA microarray (ChIP–chip) to assess the direct
binding of both transcription factors to genes in H929 cells
(Supplementary Table 1). The genes occupied by Aiolos or
Blimp-1 were obtained from the analysis with stringent criteria
from two independent ChIP–chip experiments. We found that
a set of genes was occupied by both Blimp-1 and Aiolos in
H929 cells. Two hundred thirty-four (234/636=36.79%)

Blimp-1-binding regions were also bound by Aiolos
(Figure 2a). Of note, the differences in the proportion of 10
selected gene ontology (GO) terms of genes bound by
Blimp-1 alone, Aiolos alone, or both, as compared with the
remaining sites (which neither Blimp-1 nor Aiolos occupied),
indicated that apoptosis-related genes were enriched in
Aiolos-binding sites and Aiolos/Blimp-1 common targets
(Figure 2b), suggesting that Aiolos and Blimp-1 may regulate
apoptosis in cooperation. In particular, apoptosis-related
genes such as apoptosis signal-regulating kinase 1 (ASK1)
and CASP8 were bound by Aiolos and Blimp-1 in H929 cells.
Moreover, the proportion of genes falling into the category of
‘intracellular signaling’ and ‘transcription’ is significantly
enriched in only Aiolos- and Blimp-1-bound sites, respec-
tively, as compared with non-target sites (Figure 2b).
We next examined the probabilities of probe binding (pXbar)

of Blimp-1 or Aiolos across the 5′ region of certain genes,
which were calculated based on the average P-value of the
central probe and its two neighboring probes according to
Whitehead NeighbourhoodModel.15 pXbar plots revealed that
Blimp-1 and Aiolos both occupied near the promoter regions
of target genes including class II, major histocompatibility
complex, transactivator (CIITA), ASK1, IFIT3 and REL
(Figures 2c–f). We also found some genes that were bound
by either Blimp-1 (e.g., PRMT6) or Aiolos (e.g., HDAC7)
(Figure 2g and h).

Two distinct motifs are recognized by Aiolos. As Aiolos
shares a portion of its target genes with Blimp-1, we next
deciphered the consensus binding motif of Blimp-1 and
Aiolos to further elucidate the detailed mode of action
resulting from their interactions. We used our ChIP–chip
data to analyze Blimp-1- and Aiolos-binding motifs in H929
cells. (N)(N)(T/A)GAAAGT was found as a Blimp-1-binding
motif (Figure 3a). Two motifs that appeared most frequently
as the consensus binding sites for Aiolos were A(N)AGGAA
(site 1) and TGAAACT (site 2) (Figure 3a). Interestingly, site 1
is similar to the Ikaros/Aiolos heterodimer-binding motif, (A/G)
CAGGAA(G/A), identified in mouse T cells.16 To our surprise,
site 2 for Aiolos binding shares a ‘GAAA’ motif with the partial
Blimp-1 consensus binding motif (Figure 3a). As site 1 of
Aiolos can be bound by Ikaros, we wondered if Ikaros is part
of the Blimp-1/Aiolos complex. Results from co-IP showed
that Blimp-1 associated only with Aiolos, but not Ikaros, in
H929 cells (Figure 3b). Therefore, we propose that site 1 of
the Aiolos consensus binding motif is likely occupied by
Aiolos/Ikaros and that Blimp-1 binds with Aiolos on site 2 in
MM cells.
To further test if Blimp-1 and Aiolos both bind to site 2 but not

site 1 of the Aiolos-binding motif, we performed a sequential
chromatin IP assay (ChIP and re-ChIP) using either anti-
Blimp-1, anti-Ikaros, or control rabbit IgG in the first ChIP,
followed by either anti-Aiolos or rabbit IgG in the re-ChIP.
Indeed, Blimp-1 and Aiolos co-bound only to the promoter
regions of CIITA and ASK1, which contain site 2, but not to
HDAC7, IRF2 or FBXL11, which contain site 1 (Figure 3c).
Conversely, HDAC7, IRF2 and FBXL11, but not CIITA and
ASK1, were bound by the Ikaros/Aiolos complex (Figure 3d).
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Aiolos facilitates the binding of Blimp-1 to target genes
and its transcriptional repression. We next used ChIP to
determine whether Blimp-1 and Aiolos influence each other
to bind target genes containing TGAAACT (site 2). As
expected, Blimp-1 binding to its target genes was diminished
after knockdown of Blimp-1 in H929 cells (Figure 4a).
However, the binding of Aiolos to these sites was not
affected when Blimp-1 was depleted (Figure 4b). We note
that the binding of Blimp-1 was significantly reduced once
Aiolos was depleted (Figure 4a). An in vitro DNA pull down
assay validated that Aiolos per se increased the binding of
Blimp-1 to the oligonucleotides containing site 2. As shown in
Figure 4c, in the presence of recombinant Aiolos,
recombinant tBlimp-1, a truncated form of Blimp-1 that
retains the five zinc-finger motifs for DNA binding,17 could
be pulled down more efficiently by oligonucleotides derived
from the CIITA and c-Myc promoters, whereas a mutant

Aiolos lacking the first 119 amino acids required for the
interaction with Blimp-1 did not enhance the binding of Blimp-
1 to CIITA and c-Myc sites. Oligonucleotides that contained
mutated sites for Blimp-1 binding failed to pull down tBlimp-1
or Aiolos.

We further compared the transcriptional repression activity
of Blimp-1 in suppressing a luciferase reporter driven by the
CIITA promoter III (CIITA-pIII-Luc) in the presence or absence
of Aiolos. We found that Aiolos alone did not significantly affect
CIITA pIII activity. However, Aiolos, but not mutant Aiolos
lacking the N-terminal 119 amino acids, promoted the
transcriptional repression activity of Blimp-1 (Figures 4d and
e). This effect depended on Blimp-1 binding because a mutant
reporter carrying mutated Blimp-1-binding sequences failed to
show the Blimp-1-dependent and Blimp-1-Aiolos-dependent
repression (Figure 4d).
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Aiolos cooperates with Blimp-1 to mediate gene
repression that ensures the survival of MM cells. We
next assessed whether occupancy by both Blimp-1 and
Aiolos at target genes contributes to the regulation of
expression of these genes. To obtain a global picture of the
gene expression that is repressed by Blimp-1 and Aiolos, we
performed a cDNA microarray to dissect the changes in
mRNA after depletion of either Aiolos or Blimp-1. Genes
whose expression changed by 44-fold after depletion of
Aiolos or Blimp-1 (Supplementary Table 2) compared with
control shRNA-transduced cells were identified with heatmap
analysis (Figure 5a). Of note, most genes were up- or
downregulated with a similar trend regardless of whether
Aiolos or Blimp-1 was depleted in H929 cells (Figure 5a),
showing that knockdown of Aiolos affects a similar transcrip-
tome as knockdown of Blimp-1. In addition, GO analysis
illustrated that Aiolos or Blimp-1 knockdown affected genes
with a similar distribution among the functional categories
(Figure 5b). Several pro-apoptosis genes in MM cells that
were bound by Blimp-1 and Aiolos, including ASK1, TRAIL,
NOXA, and KLF10,18–21 were validated to be up-regulated
after Aiolos or Blimp-1 knockdown (Figure 5c) and bound by
both as shown by ChIP assay (Figure 5d). Consistently,

knockdown of Aiolos or Blimp-1 in three MM cell lines,
H929, U266 and IM9 (Figure 5e), promoted apoptosis, as
determined by annexin V staining (Figure 5f).

Blimp-1 directly suppresses CUL4A and is downregu-
lated after lenalidomide treatment in MM cells. CRBN, a
member of the CRL4 complex, was recently identified as the
target of the anti-myeloma drug lenalidomide, which is a
derivative of thalidomide.22–24 In search of the target genes of
Blimp-1 or Aiolos in MM cells from our ChIP–chip data, we
found that CUL4A, encoding a scaffold protein of the
CRL complex, is directly bound by Blimp-1 at two potential
binding sites (Figure 6a). A ChIP assay further confirmed that
Blimp-1 binds to both sites in CUL4A intron 3 in MM cells
(Figure 6b, upper panel). Aiolos may not bind to CUL4A,
although a slight enrichment of Aiolos binding at these sites
was found (Figure 6b, lower panel). Accordingly, knockdown
of Blimp-1 in three MM cell lines led to increased levels of
CUL4A mRNA, whereas Aiolos mRNA levels were not
changed in any of the three MM lines (Figure 6c). CUL4A
levels were also upregulated when Blimp-1 was depleted in
all three MM lines (Figure 6d). It is noted that knockdown of
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Blimp-1 did not alter the levels of CRBN protein, but the levels
of Aiolos and Ikaros were slightly reduced (Figure 6d).
Treatment of MM cells with lenalidomide causes ubiquitina-

tion and proteolysis of Aiolos and Ikaros via altering substrate
selectivity of CRBN in the CLR4 complex.12,13 On the basis of
our findings that Blimp-1 transcriptionally suppresses one
component of the CLR4 complex, CUL4A, we proposed that
Blimp-1 may participate in the lenalidomide-mediated anti-MM
activity. We examined whether lenalidomide treatment
altered the expression of Blimp-1. Indeed, as shown in
Supplementary Figure 2a, lenalidomide treatment not only
reduced the amounts of Aiolos and Ikaros proteins in a
dose-dependent manner but also downregulated Blimp-1
levels in MM cells. Similarly, lenalidomide treatment
diminished Blimp-1, Aiolos and Ikaros protein levels but
induced CUL4A in three MM cell lines in a time-dependent
manner (Figure 7a). However, Blimp-1 mRNA levels were not
altered (Supplementary Figure 2b). The downregulation of
Blimp-1 in lenalidomide-treated MM cells is mediated
through the ubiquitin/proteasome pathway, because more
poly-ubiquitinated Blimp-1 was immunoprecipitated by anti-Ub
in the presence of the proteasome inhibitor MG132
(Figure 7b).
Given that depletion of Blimp-1 leads to apoptosis of MM

cells,3,18 we next examined whether the anti-MM effects of
lenalidomide could result from degradation of Blimp-1 and
de-repression of the Blimp-1 direct target CUL4A.
Overexpression of Blimp-1–EGFP by lentiviral transduction

led to partial rescue of lenalidomide-induced apoptosis in
three MM cell lines and slightly reduced the basal level of
apoptosis in U266 and H929 cells treated with the solvent
control DMSO (Figure 7c), which was associated with the
reduced CUL4AmRNA and protein (Supplementary Figure 2c
and Supplementary Figure 2d). The protein levels, but not
mRNA levels, of Aiolos and Ikaros were concomitantly
increased in MM cells that expressed Blimp-1–EGFP and
were treated with lenalidomide (Supplementary Figures 2c
and 2d). Furthermore, the elevated levels of CUL4A may
contribute to the anti-MM effects of lenalidomide, because
knocking down CUL4A partly reduced lenalidomide-induced
apoptosis as compared with cells expressing the control
shRNA shCtrl (Figure 7d), whereas depletion of CUL4Awith a
specific shRNA did not affect apoptosis in the cells treated with
the solvent control DMSO. We note that Aiolos and Ikaros
levels were not downregulated when CUL4A was depleted in
lenalidomide-treated MM cells, but depletion of CUL4A barely
affected Blimp-1 (Supplementary Figure 2e). Together, these
results indicate that the Blimp-1/CUL4A regulatory axis
controls the expression of Aiolos and Ikaros as well as
lenalidomide-induced apoptosis in MM cells.

Discussion

Using ChIP–chip analysis, we were able to discover direct
target genes of Blimp-1 andAiolos inMMcells. Specifically, we
identified several genes relevant to apoptosis, which are
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important for understanding the functional roles of Blimp-1 and
Aiolos in maintaining MM cell survival. Furthermore, the
sequences of the chromatin fragments occupied by Blimp-1 or
Aiolos in the ChIP–chip analysis also allowed us to predict
their consensus binding sites. As expected, the predicted
Blimp-1-binding motif, (N)(N)(T/A)GAAAGT, is similar to the
previously identified sites from two independent studies,
(A/C)AG(T/C)GAAAG(T/C)(G/T) 25 and GTGAAAGTand G(N)
GAAAGT.26 In addition, we found that, in MM cells, a large
proportion of the genes that Aiolos bound directly had the
consensus binding sequence TGAAACT (site 2), which is
similar to the Blimp-1 consensus site. Another consensus
binding sequence, A(N)AGGAA (site 1), was also found and is
similar to that reported for Aiolos, ACAGGAAGT, in T cells.16 In
MM cells, we detected an association between Aiolos and
Ikaros in a complex without a requirement for Blimp-1,
indicating that in addition to aiding Blimp-1, the Aiolos/Ikaros
complex may regulate different sets of genes.
Blimp-1 and Aiolos may modulate similar cellular properties

of plasma cells, although most of their targets are not in
common. This could result from independent interactions with
other transcription factors, such as Ikaros for Aiolos, and the
regulation of genes that may not be identical but may possess
similar biological functions. This finding is in agreement with
studies of Blimp-1 and Aiolos gene knockout mice. Mice
lacking Blimp-1 in B cells show severe defects in plasma cell
formation and in the production of all subtypes of antibodies,
but the generation of antigen-specific memory B cells is not
affected.2 In addition, Blimp-1 maintains long-lived plasma
cells in mice, likely because of its role in suppressing
apoptosis of plasma cells.3,4 Similarly, Aiolos knockout mice

display diminished generation of long-lived plasma cells, but
the generation of memory B cells is not altered.27 These
studies further support our notion that Blimp-1 and Aiolos
co-regulatemany genes, particularly apoptosis-related genes.
In contrast, some phenotypic discrepancies are present in
plasma cell differentiation between Blimp-1- and Aiolos-
deficient mice. For instance, somatic hypermutation and
generation of short-lived plasma cells are not affected in
Aiolos knockout mice. The expression of homing-related
genes is also comparable between Aiolos knockout and
control mice,27 which differs from a previous finding that
Blimp-1 regulates chemokine-mediated homing genes,
including CXCR5, to direct the exit of plasma cells from
secondary lymphoid organs.1 These phenotypic discrepan-
cies are supported by our ChIP–chip results showing that
many genes were occupied by only Aiolos or Blimp-1, but not
by both proteins. Our GO analysis also revealed the unique
function of Aiolos and Blimp-1 when they did not target to the
same sites.
Among those pro-apoptosis genes bound by Aiolos and

Blimp-1 in MM cells, we previously showed that ASK1 blocks
the formation of long-lived plasma cells in bone marrow
because long-lived plasma cells generated by immunization
accumulate in Ask1 knockout mice.18 We thus speculate that
cooperative suppression of ASK1 by Blimp-1 and Aiolos may
be one of the mechanisms contributing to the survival of MM
cells. We here also identified several other apoptosis-related
genes that are co-regulated by Blimp-1 and Aiolos, including
TRAIL, NOXA and KLF10. TRAIL triggers apoptosis in
MM cells.28 NOXA is a BH3-only BCL-2 family protein
that mediates apoptosis.29 KLF10 induces apoptosis via

Figure 4 Aiolos enhances the binding of Blimp-1 to DNA. (a and b) H929 cells, transduced with shCtrl, shAiolos, or shBlimp-1 for 4 days, were subjected to the ChIP assay
using anti-Blimp-1 (a) or anti-Aiolos (b). All data represent the mean±S.E.M. (n= 3). (c) Immunoblot of Blimp-1 or Aiolos captured in DNA pull down assays with biotinylated
CIITA (upper panel) or c-Myc (lower panel) probes containing the Blimp-1-binding site and recombinant His6-tBlimp-1 (506−825) and/or His6-Aiolos (1− 509 or 120− 509).
(d) Luciferase reporter assay using lysates from 293T cells transfected with plasmids encoding Blimp-1 and/or Aiolos (1− 509 or 120− 509) or empty vector alone (mock)
together with wild-type (WT) or Blimp-1 binding site-mutated (Mutant) CIITA-pIII-Luc and RL-tk. (e) Immunoblots show the expression of the indicated proteins from corresponding
transfectants described in d. Results represent the mean± S.D. (n= 3). *Po0.05; ***Po0.005
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transcriptionally suppressing BAX inhibitor-1.30 We thus
uncovered several apoptosis-related genes that are
suppressed by Blimp-1 and Aiolos and that maintain MM cell
survival; however, it requires further experiments to validate if
these identified genes indeed contribute to the anti-apoptosis
effects of Blimp-1 and Aiolos in MM cells. In addition to MM
cells, Blimp-1 and Aiolos may also regulate the survival of
normal plasma cells. We found that knockdown of Blimp-1 or
Aiolos consistently promoted apoptosis of CD138+ plasma
cells derived from lipopolysaccharide-stimulated mouse
splenic B cells (Supplementary Figure 3).
Lenalidomide binds to CRBN, and the abundance of CRBN

proteins in MM cells is associated with the responsiveness of
these cells to lenalidomide treatment.22 Lenalidomide-bound
CRBN gains the ability to target Aiolos and Ikaros to
proteasomal degradation.12,13 We revealed here
another action of lenalidomide, which triggers the proteolysis
of Blimp-1 through the ubiquitin/proteasome pathway.

Proteolysis of Blimp-1 is most likely to be regulated by a
protein other than CUL4A, because knockdown of CUL4A
in MM cells did not markedly change Blimp-1 levels
after lenalidomide treatment (Supplementary Figure 2e). In
agreement, knockdown of CUL4A did not change the ratio of
ubiquitinatedBlimp-1 to total Blimp-1 (Supplementary Figure 2f).
Recently, Blimp-1 was shown to be ubiquitinated by a ubiquitin
ligase, Hrd1, in dendritic cells.31 The precise ubiquitination
sites on Blimp-1 and whether Hrd1 is also involved in Blimp-1
ubiquitination and degradation in MM cells await further
studies. Although we here show that downregulation of Aiolos
and Ikaros by CUL4A is important for the anti-MM effects of
lenalidomide, we could not exclude the possibility that other
targets of CUL4 may also have a role in this context. For
instance, suppression of CRL4 stabilizes Myc protein.32 Thus,
upregulation of CUL4A after lenalidomide treatment may
result in the downregulation of Myc and apoptosis because
inhibition of Myc activity causes MM cell death.33 In addition to

Figure 5 Aiolos and Blimp-1 collaboratively regulate gene expression and maintain the survival of MM cells. (a) Heatmap of microarray data from the H929 line transduced
with shCtrl, shAiolos or shBlimp-1 for 4 days. The changes in expression for each gene were calculated as the ratio of expression in shAiolos- or shBlimp-1-transduced cells
versus shCtrl-transduced cells. Microarray experiments were performed in duplicate. Each row represents a significantly induced (red) or repressed (green) gene following
knockdown of Aiolos or Blimp-1. (b) Pie charts show the results of GO analysis of Blimp-1-dependent genes (left panel) or Aiolos-dependent genes (right panel) in H929 cells.
(c) RT-QPCR analysis with samples from (a) validated the expression of apoptosis-related genes in shRNA-expressing cells. (d) Chromatin from H929 cells was subjected to the
ChIP assay using anti-Blimp-1 or anti-Aiolos, followed by QPCR to quantify the binding of Blimp-1 or Aiolos to the indicated genes. (e) Immunoblots show the knockdown
efficiency of shBlimp-1 and shAiolos in three MM cell lines expressing indicated shRNA for 3 days. (f) Flow cytometric analysis of annexin V staining shows the increased
apoptosis in MM cells expressing shAiolos or shBlimp-1 for 3 days. Data in c and d represent the mean± S.E.M. (n= 3). *Po0.05; **Po0.01; ***Po0.005
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regulating the turnover of proteins, CUL4A also controls
transcription. CUL4 binds to the promoter of a tumor-
suppressor gene, CDK inhibitor p16INK4a, thereby activating
p16INK4a.34 Upregulation of p16INK4a is associated with
apoptosis in MM cells.35 Nevertheless, our results showing
the direct transcriptional repression of CUL4A by Blimp-1
extend the current understandings of the mode of action of
anti-myeloma drugs.We hypothesized that Blimp-1 and Aiolos
cooperatively suppress apoptosis genes in MM cells, which
ensures the survival of those cells. Blimp-1 suppresses the
transcription of CUL4A, resulting in the maintenance of the
expression of Aiolos and Ikaros. In lenalidomide-treated MM
cells, de-repression of CUL4A resulting from proteasomal
degradation of Blimp-1 cooperates with CRBN to down-
regulate Aiolos and Ikaros, leading to apoptosis of MM cells
(Figure 7e).

Materials and Methods
Cells and reagents. NCI-H929, U266 and IM9 human MM cells were cultured
in RPMI medium supplemented with 10% fetal bovine serum. 293T and 3T3 cells
were maintained in DMEM medium supplemented with 10% fetal bovine serum.
Bone marrow aspirates from MM patients were obtained at the National Taiwan
University Hospital whose consent procedure was approved by the National Taiwan
University Hospital Research Ethics Committee (NTUHREC: 201505162RINC), and
written informed consent was obtained from study participants in accordance with
the Declaration of Helsinki and kept in their medical records. All reagents for
cell culture studies were purchased from Invitrogen (Carlsbad, CA, USA) unless

otherwise indicated. Lenalidomide and MG132 were purchased from Selleckchem
(Houston, TX, USA) and EMD Millipore (Billerica, MA, USA), respectively.

Plasmids. Detailed information on plasmid constructions, including pFLAG-
CMV5-Blimp-1 and its deletion constructs (△527− 825, △1− 526, △1− 574,
△1− 630, △527− 574 and △579− 622 fragments), HA-Aiolos and its deletion
constructs (△241− 509, △1− 239, △120− 509, △1− 119 and 120–240
fragments), pGEX4T3-GST-Aiolos and its deletion constructs (△241− 509,
△1− 239, △120− 509, △1− 119 and 120− 240 fragments), pRSET-His-
Aiolos and its deletion constructs (△120− 509 and △1− 119) were available on
request.

ChIP coupled with promoter DNA microarray. The ChIP on chip
assays were performed essentially according to the Agilent-supported protocol.
Briefly, 2 × 108 H929 cells were used per Blimp-1 or Aiolos ChIP. DNA in the IP was
amplified using the GenomePlex Whole Genome Amplification (WGA) kits (Sigma,
St Louis, MO, USA). The amplified DNA was labeled and hybridized to microarray
chips (Agilent Technologies, Santa Clara, CA, USA), with subsequent analysis by
the WELGENE Company (Taipei, Taiwan). The Agilent human promoter array chips
contain ~ 17 000 of the best-defined transcripts covering − 6-kb upstream to +3-kb
downstream of the transcriptional start sites. The probe length of the array is 45–60
nucleotides, and the probe spacing is ~ 200 bp. The results from the Agilent
microarray were further analyzed with DNA Analytics software (Agilent
Technologies). GO analysis was done using BiNGO software.36 To assess whether
the change of the proportion in a specific GO term is significant or not,
hypergeometric test was adopted by using 'phyper' function of 'stats' package in
R version 3.0.2 (https://www.r-project.org/). For example, the proportion of genes
bound by Aiolos alone falling in the group ‘Apoptosis’ is compared with the
proportion of non-target genes (neither Aiolos nor Blimp-1 was occupied) in the
same group. A P-value o0.05 is considered significant.
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Figure 6 Blimp-1 directly suppresses CUL4A. (a) Schematic representation of two potential Blimp-1-binding sites on CUL4A. The transcriptional start site (+1) is indicated.
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De novo identification of the transcription factor binding motif.
The Blimp-1 and Aiolos motifs were identified using methods described previously.37

Briefly, a probe showed 44-fold binding on human promoter was obtained. Two
probes were considered successive probes if the distance between them was
o250 bp. Next, a potential binding region was identified by looking for a series of at
least three successive probes. Afterward, a sequence of 1000 bp centered at the
probe locations belonging to a potential binding region was retrieved. Using this
method, we collected sequence data to feed into the motif discovery web server
eTFBS (http://biominer.bime.ntu.edu.tw/etfbs/). P-values are calculated by randomly
generating 100 000 sets of sequences for constructing the background distribution
of motif appearances.

Flow cytometry. Flow cytometric analysis was performed essentially according
to a previous report,8 by using APC-conjugated annexin V (BD PharMingen, San Diego,
CA, USA). Cells were then analyzed by FACSCanto (Becton Dickinson, Franklin
Lakes, NJ, USA) and FCS Express 3.0 software (Glendale, CA, USA).

RNA isolation and RT-QPCR analysis. Total RNA isolation, cDNA
synthesis and subsequent reverse transcription (RT)-QPCR analysis in an ABI
Prism 7300 sequence detection system were essentially performed according to a
published protocol.38
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