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Inducing senescence in cancer cells is an effective approach to suppress cancer growth, and it contributes significantly to the
efficacy of therapeutic drugs. Previous studies indicated that transcription factors NF-κB (nuclear factor κ-light-chain-enhancer of
activated B cells) and C/EBPβ (CCAAT/enhancer-binding protein-β) play a critical role in the establishment of senescence by
upregulating proinflammatory cytokines, notably interleukin-6 (IL-6) and interleukin-8 (IL-8). However, it is not clear how these two
factors are activated in response to senescence-inducing stimuli and subsequently regulate gene transcription. Here, we reveal
Bcl-2-associated transcription factor 1 (Bclaf1) as a novel player in the therapeutic drug doxorubicin-induced senescence (TIS) in
multiple cancer cells. Bclaf1 is upregulated through the ATM/Nemo/NF-κB pathway during TIS and is a direct target of p65 and
c-Rel. The induction of Bclaf1 by NF-κB is essential for C/EBPβ upregulation and IL-6/IL-8 transcription during TIS. Bclaf1 can
interact with the leucine zipper region of C/EBPβ and cooperate with C/EBPβ to upregulate IL-8. Furthermore, we show that Bclaf1
is required for the effectiveness of doxorubicin (Dox) treatment-induced tumor suppression in a xenograft tumor model. These
finding suggest that Bclaf1 plays a crucial role in transducing the senescence-inducing signal from NF-κB to C/EBPβ during TIS,
thus amplifying the signals for the establishment of senescence. Given the recent revelation that Bclaf1 is involved in
tumorigenesis, our data indicate that the responsiveness of Bclaf1 to NF-κB may determine the effectiveness of therapeutic drugs.
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Cellular senescence is a protective cellular response to a
variety of external and internal stresses and serves to prevent
damaged cells from proliferating.1 The types of stresses
include but are not limited to telomere attrition,2 excessive
mitogenic stimulation3 and DNA damage.4 Accumulative
evidence supports the notion that cellular senescence
physiologically functions as an essential tumor suppression
mechanism especially at the premalignant stage.5,6 Numer-
ous chemotherapeutic agents, including the commonly used
chemotherapeutic agent doxorubicin (Dox), induce senes-
cence in cancer cells,7 significantly contributing to their
effectiveness. We refer to therapeutic drug doxorubicin-
induced senescence as TIS.
A key feature of cellular senescence is stable cell cycle

arrest that is often executed by the p53 and Rb tumor
suppressor pathways.3,8 Senescent cells also display other
features such as an increased senescence-associated
galactosidase (SA-β-gal) activity9 and the secretion of various
factors including chemokines and cytokines.10,11 The latter
phenomenon is referred to as senescence-associated secre-
tory phenotype (SASP), and this processmay contribute to the
elimination of senescent cells by immune cells in vivo.6

Although SASP was initially considered a hallmark of
senescence, it has become clear that numerous SASP

components, such as interleukin-6 (IL-6) and interleukin-8
(IL-8), are produced at the early stage of the senescent
process and actively promote the initiation and reinforcement
of senescence.12–14 In addition, during the course of cellular
senescence, cells undergo massive changes in gene expres-
sion profiles, collectively leading to the establishment of the
senescence program that includes SASP.11,15

Recent studies suggest that the transcriptional factors NF-κB
(nuclear factor κ-light-chain-enhancer of activated B cells) and
C/EBPβ (CCAAT/enhancer-binding protein-β), which are
critically involved in cytokine production in immune response,
play a prominent role in gene regulation associated with
the induction of SASP and senescence.12,15,16 However, the
mechanism by which these two factors are activated in
response to senescence-inducing stimuli and subsequently
induce transcriptional changes in senescence remains unclear.
A persistent DNA damage response (DDR) appears to be a

pivotal trigger for cellular senescence.4 It is also the key
mechanism of many cancer therapeutic drugs. DNA damage
foci and activation of the key components of DDR are often
observed in cells undergoing senescence induced by
various stresses.4,10 DDR induces cell cycle arrest through
the p53/p21 and Rb/p16 pathways17,18 and is essential for
SASP induction typically with the involvement of DDR
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components, such as ataxia telangiectasia mutated protein
(ATM), checkpoint kinase 2 (CHK2) and NBS.4,16 However,
the critical players and exact pathways linking DDR to NF-κB
and C/EBPβ as well as SASP have not been well defined.
Bclaf1 (Bcl-2-associated transcription factor1) was first

identified in a yeast two-hybrid screen as a binding protein
for the adenoviral Bcl2 homolog E1B19K.19 Bclaf1 knockout
mice are embryonic lethal because of defects in lung
development.20 Ectopical Bclaf1 expression induces apopto-
sis in various cell types or autophagic cell death in myeloma
cells.19,21 However, thymocytes and splenocytes isolated from
Bclaf1 knockout mice exhibit normal responsiveness to
various apoptotic stimulations, thus arguing its role in
apoptosis at physiological levels.20 The Bclaf1 protein
contains homologies to the basic zipper (bZIP) and Myb
DNA-binding domain and can bind to DNA.19 Several studies
suggested a role of Bclaf1 in DDR. Bclaf1 promotes TP53
gene transcription through interaction with PKCδ in response
to DNA damage22,23 and interacts with γ-H2AX in response
to ionizing radiation.24 Although most of studies suggest
that Bclaf1 is a tumor suppressor, a recent report indicated that
Bclaf1 was oncogenic in colorectal cancers.25 Thus, the
function of Bclaf1 in carcinogenesis is controversial.
Here, we report that Bclaf1 is an important player in TIS

in multiple cancer cells. We provide evidence to suggest that
NF-κB is activated by the ATM/NF-κB essential modulator
(Nemo) axis and that Bclaf1 is a downstream gene of NF-κB
that is required for C/EBPβ upregulation and cooperates with
C/EBPβ to regulate transcription of SASP components.

Results

Bclaf1 is involved in TIS in multiple cancer cells.
Senescence is an important mechanism contributing to the
effectiveness of DNA damage-based chemotherapies.26,27 In
an effort to understand the underlying molecular mechanism,
we chronically treated MCF-7 breast cancer cells as well as
HCT116 and HT-29 colon carcinoma cells with low concen-
trations of Dox that induces DNA double-strand breaks.28 As
reported previously,7 extensive cellular senescence was
observed in three types of cells on day 7. Western blot
analysis and immunostaining demonstrated that Bclaf1, a
protein recently implicated in DDR, was upregulated during
TIS (Figures 1a and b and Supplementary Figures S1A–C).
This upregulation was not evident during the first 2 days of
Dox treatment (Supplementary Figure S1B). Bclaf1 knock-
down with two individual small interfering RNAs (siRNAs;
Figures 1g–i) significantly reduced senescence in three types
of cells (Figures 1d–f), indicating that Bclaf1 is involved in the
regulation of senescence. In addition, both Ki67 staining
(Supplementary Figure S1D) and cell proliferation assay by
MTT (Supplementary Figures S1E and F) showed that Bclaf1
knockdown slightly retarded cell growth in unstressed
conditions, but markedly decreased Dox-induced cell growth
inhibition in HCT116 and HT-29 cells (Figures 1j and k and
Supplementary Figure S1D), supporting the role of Bclaf1 in
TIS. However, these data also suggest that Bclaf1 may play a
different role in unstressed cells.

DNA damage-mediated Bclaf1 upregulation is dependent
on ATM/ATR and Nemo. To delineate the pathways involved
in Bclaf1 upregulation, we first individually knocked down ATM
and ATR (ataxia telangiectasia and rad3 related) using their
respective siRNAs. ATM and ATR are central kinases in the
signaling cascade of DDR.29 As expected, on day 3 of
treatment, DNA damage-induced phosphorylation of the
effector kinases checkpoint kinase 1 (Chk1) and Chk2 was
diminished upon knockdown of either ATM or ATR (Figure 2a).
Not surprisingly, Bclaf1 upregulation was also abolished at
both protein and mRNA levels (Figure 2a and Supplementary
Figure S2A), suggesting that Bclaf1 is upregulated in response
to DDR. Accordingly, the reduction in senescence resulting
from ATM or ATR knockdown was not further enhanced upon
simultaneous knockdown of Bclaf1 (Figure 2b), confirming that
the action of Bclaf1 is downstream of ATM/ATR. Although p53
is a downstream effector in DDR and critically involved in
senescence, Bclaf1 was upregulated by Dox in p53-deficient
HCT116 cells but to a lesser extent (Supplementary Figures
S2B and C). Although this result cannot exclude the
involvement of p53, it suggests that other transcription factors
play a role in this process.
Given that NF-κB is a master regulator of gene transcription

associated with SASPand senescence, we hypothesize that it
may upregulate Bclaf1. To examine this hypothesis, we
knocked down Nemo using a specific siRNA given that Nemo
is the critical link between ATM and NF-κB activation in other
scenarios of DDR.30 Nemo depletion inhibited Dox-induced
nuclear translocation of p65 and c-Rel (Figure 2e), a critical
event in NF-κB activation. Bclaf1 upregulation was also
abrogated (Figure 2c and Supplementary Figure S2D).
Moreover, compared with the control siRNA-transfected cells,
fewer senescent and more proliferative cells, which were
measured by Ki67 staining, were observed in Nemo or Bclaf1
siRNA-transfected cells after Dox treatment. However no
additive effects were observed when Bclaf1 and Nemo were
simultaneously knocked down (Figure 2d and Supplementary
Figure S3). These results indicate that Bclaf1 upregulation
occurs downstream of the ATM/Nemo axis.

Bclaf1 is a direct target of NF-κB. To directly investigate
whether Bclaf1 is regulated by NF-κB, we transfected each
individual member of NF-κB into 293T cells and found that
p65 and c-Rel increased the endogenous expression of
Bclaf1 (Figure 3a). To confirm this finding, we transfected
siRNAs against p65 and c-Rel either alone or together into
HCT116 cells before Dox treatment. As expected, induction
of Bclaf1 expression by DNA damage was partially inhibited
by downregulation of either p65 or c-Rel, and a more
complete inhibition was observed when both proteins were
downregulated (Figure 3b and Supplementary Figure S2E).
In addition, similar phenotype was also observed in HCT116
p53− /− cells, despite that depletion of both p65 and c-Rel did
not further enhance this impact (Supplementary Figure S2F)
To investigate whether Bclaf1 was directly regulated by
NF-κB, we analyzed the promoter region of human Bclaf1
and identified a potential NF-κB-binding consensus sequence
as indicated (Figure 3c). We fused this region upstream of a
luciferase reporter gene. Co-transfection of p65 with the
reporter stimulated the luciferase activity (Figure 3d),
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indicating that Bclaf1 is a target of NF-κB. To further confirm
this finding, we performed chromatin immunoprecipitation
(ChIP) assays using p65- or c-Rel-specific antibodies in both
untreated and Dox-treated cells. The results suggested that
the binding of p65 to the potential NF-κB-binding region within
the Bclaf1 promoter is induced by Dox treatment, whereas the
binding of c-Rel is constitutive (Figure 3e). Taken together,
these data demonstrated that p65 and c-Rel are bound to the
Bclaf1 promoter and transcriptionally activate Bclaf1 during TIS.

Bclaf1 is required for C/EBPβ upregulation during TIS.
C/EBPβ is another important transcription factor for the
establishment of the SASP. C/EBPβ works synergistically
with NF-κB to induce transcription of various cytokines
including IL-6 and IL-8.12,13 C/EBPβ is upregulated in a
NF-κB-dependent manner during TIS given that knockdown
of Nemo or p65 and c-Rel abrogated C/EBPβ upregulation
(Figure 4a and Supplementary Figure S5A). Strikingly, siRNA-
or short hairpin RNA (shRNA)-mediated depletion of Bclaf1
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Figure 1 Bclaf1 is involved in cellular senescence. (a and b) Bclaf1 is upregulated upon Dox treatment. MCF-7 (a) or HCT116 (b) cells either untreated or treated with Dox
(50 ng/ml) for the indicated days were subject to western blot analysis using the indicated antibodies. (c–f) Knockdown of Bclaf1 reduces the Dox-induced senescence. MCF7
(c and d), HCT116 (e) or HT-29 (f) cells transfected with the control (siCtrl) or two independent siRNAs against Bclaf1 were treated with Dox (50 ng/ml) for 7 days, and then
stained for SA-β-gal. Representative images of stained MCF-7 cells of each treatment are shown in (c). The percentages of cells positive for SA-β-gal were calculated
and graphed as shown in (e) and (f). At least 200 cells from four random chosen areas were counted for each group. Error bars represent mean+S.D. (n= 4). The knockdown
efficiency is presented in (g–i). (j and k) Bclaf1 knockdown decreased Dox-induced inhibition of cancer cell growth. 7.5 × 103 of HCT116 (j) or HT-29 (k) cells expressing
the indicated shRNAs were seeded in 96-well plates and treated with 50 ng/ml doxorubicin. Cells were then analyzed using the MTT assay. Values of each point are means
of triplicate. ***Po0.001
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also profoundly impaired the induction of C/EBPβ by Dox in
both HCT116 and HT-29 cells (Figure 4b and Supplementary
Figure S5B), but p65 nuclear translocation was not affected in
HCT116 cells (Supplementary Figures S4A and B). The
induction of p15, a downstream target of C/EBPβ and inhibitor
of cell cycle,13 by Dox treatment was also reduced upon Bclaf1
knockdown, whereas inductions of other cell cycle inhibitors
p21 and p27 as well as p53 and p53 downstream genes were
not affected (Figure 4b and Supplementary Figure S5B).
However, p16 was not detected in HCT116 and HT-29
cells (Figure 4b and Supplementary Figure S5B), probably
because of epigenetic silencing by methylation that occurs in
the promoter region of p16 as previously reported.31 These
results suggest that Bclaf1 may mediate C/EBPβ upregulation
by NF-κB.
To prove this hypothesis, we co-transfected the Bclaf1

expression plasmid with Nemo siRNA into HCT116 cells and
treated these cells with Dox. Nemo knockdown suppressed
C/EBPβ and Bclaf1 upregulation (Figure 4a). However, forced
expression of Bclaf1 restored C/EBPβ upregulation, whereas the
Myb deletion mutant did not (Figure 4c). These results indicate

that Bclaf1 is required for C/EBPβ upregulation during TIS and its
Myb domain may play a role in this process.
We next examined the effect of Bclaf1 overexpression on

C/EBPβ. Despite causing mild cell death, Bclaf1 overexpres-
sion in HCT116 increased C/EBPβ mRNA and protein
expression at 72 h, confirming that Bclaf1 upregulation
induces C/EBPβ expression (Figures 4d and e). To explore
the mechanisms by which Bclaf1 upregulates C/EBPβ,
we performed a ChIP assay to examine whether Bclaf1 binds
to the promoter region of the transcriptionally active isoform of
C/EBPβ-LAP (liver-enriched transcriptional activator protein).
We designed three sets of primers that spanned –15 to –543 bp
(Figure 4f, +1 indicates the first bp of exon 1) of the C/EBPβ
promoter and demonstrated that Bclaf1 was specifically
recruited to the p3 region (Figure 4f) and the amount was
increased after Dox treatment (Supplementary Figure S5D).
To further examine the functional relationship between

Bclaf1 and C/EBPβ in TIS, we knocked down these two
proteins individually or in combination and demonstrated that
senescence was inhibited by depleting either protein. In
addition, no additive effect was observed when both proteins
were simultaneously depleted, indicating these two proteins
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function in the same pathway (Figure 4g). Taken together, our
results suggest that Bclaf1-induced C/EBPβ upregulation is a
key event in TIS.

Bclaf1 interacts with C/EBPβ. C/EBPβ is subject to
autoregulation driven by homo- or hetero-dimerization with
other members of the C/EBPβ family.32,33 We therefore
examined whether Bclaf1 interacts with C/EBPβ. We
untreated or treated HCT116 cells with Dox for 3 days and
extracted chromatin-binding proteins for immunoprecipitation.
We found C/EBPβ was present in the Bclaf1 immunocomplex
in both treated and untreated cells (Figure 5a). We further
determined the regions in both proteins that mediated their
interaction via immunoprecipitation of Flag-tagged either
Bclaf1 or C/EBPβ and their deletion mutants followed by
western blot analysis of the presence of HA-C/EBPβ or
endogenous Bclaf1. The results indicated that the leucine
zipper region of C/EBPβ (Figure 5c) and the Myb domain of
Bclaf1 (Figure 5b) are involved in the interaction. In addition,
other regions of Bclaf1 also made contributions.

Bclaf1 cooperates with C/EBPβ to upregulate IL-8. Similar
to its effect on C/EBPβ, shRNA-mediated Bclaf1 depletion
dramatically reduced IL-6 and IL-8 induction by DNA damage
at both protein and mRNA levels (Figures 6a–c). Moreover,
Bclaf1 overexpression increased IL-8 transcription in
293T cells (Figure 6d). We failed to detect IL-6 mRNA
probably because IL-6 is not transcribed in 293T cells.
To examine whether C/EBPβ plays a role in Bclaf1-mediated
IL-8 upregulation, we depleted C/EBPβ before Bclaf1 transfec-
tion and demonstrated that IL-8 upregulation is abolished upon
C/EBPβ knockdown (Figure 6d). These results suggest that
Bclaf1-induced transcription of some of the NF-κB downstream
genes, such as IL-8, is mediated by C/EBPβ. To confirm this
finding, we cloned the −764 to +1 region of the IL-8 promoter
(Figure 6e) and fused it with a luciferase reporter. Consistent
with the mRNA data, Bclaf1 overexpression increased IL-8
reporter activity in a C/EBPβ-dependent manner (Figure 6g).
We next examined whether C/EBPβ recruited Bclaf1 to the

IL-6 and IL-8 promoters. ChIP assays indicated Dox treatment
increased amounts of Bclaf1 bound to the promoter regions of
IL-6 and IL-8 that harbor C/EBPβ-binding motifs (Figure 6f and
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Supplementary Figure S5D). This binding is indeed mediated
by C/EBPβ given that C/EBPβ depletion greatly reduced
promoter occupancy by Bclaf1 (Figure 6h). Examination of
whether the recruitment of Bclaf1 to the p3 region of C/EBPβ is
dependent on C/EBPβ (Figure 6h) showed that in contrast
to the IL-6 and IL-8 promoters, Bclaf1 binding to the
C/EBPβ promoter was not affected by C/EBPβ knockdown.

Bclaf1 knockdown reduces the efficiency of Dox-induced
inhibition of tumor growth in a HT-29 colon cancer
xenograft model in vivo. To determine whether Bclaf1

contributes to drug efficiency in vivo, we used an HT-29 colon
cancer xenograft model. HT-29 cells expressing the control or
shBclaf1 were subcutaneously inoculated into athymic nude
mice. Mice were randomly divided into two groups 7 days
after inoculation. One group was treated with Dox (3mg/kg)
intraperitoneally every 2 days for 2 weeks and the other group
with the carrier PBS. After 4 weeks, the mice were killed and
the tumors were harvested and analyzed.
Evaluation of tumor sizes and weights indicated that Bclaf1

knockdown did not affect tumor growth, but dramatically
reduced the responsiveness of the tumors to Dox treatment
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PCR analysis. The position is relative to the start of the first exon. ChIP analysis of the C/EBPβ promoter in HCT116 cells transfected with siCtrl or siC/EBPβ followed by 3 days of
treatment with Dox. Immunoprecipitation was performed using anti-Bclaf1 and control IgG antibodies followed by PCR analysis. (g) SA-β-gal analysis of HCT116 cells transfected
with the indicated siRNAs and treated with Dox for 7 days. The cells positive for SA-β-gal were counted and graphed. **Po0.01 and ***Po0.001
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(Figures 7a and b). Similar results were obtained using Ki67
staining, showing that shBclaf1 xenografts contained more
proliferative cells than the controls in the Dox-treated group,
but had similar number of Ki67-positive cells to the controls in the
PBS-treated group (Figure 7c). Western blot analysis of the
excised tumor samples demonstrated that Dox treatment
dramatically induced upregulations of Bclaf1, C/EBPβ, p15 and
IL-6 in the control tumors, but this effect was diminished in the
Bclaf1 knockdown tumors (Figure 7d). All these in vivo results
are consistent with our in vitro data, confirming the important role
of Bclaf1 in mediating Dox treatment-induced upregulation of
C/EBPβ, p15 and IL-6 and tumor growth inhibition.

Discussion

Persistent DDR is a hallmark of senescence that continuously
fires the upstream signals characterized by activation of
ATM/ATR and other proteins and eventually induces cellular
senescence;4 however, the signaling pathways and critical
players connecting DDR signaling to senescence are not well
characterized. In this study, we identified Bclaf1 as a critical
player in DNA damage-induced senescence by stimulating
C/EBPβ upregulation and activities downstream of NF-κB.
Bclaf1 depletion impaired the upregulation of IL-6 and IL-8 as
well as p15 and senescence likely through C/EBPβ (Figure 7e).
Thus, Bclaf1 is an important regulator for the development of the

SASP. It may also contribute to Dox-induced cell cycle arrest
via p15.
NF-κB and C/EBPβ are important transcription factors for

the upregulation of various nonsecreted and secreted factors
required for the development of SASP and senescence.11,12

These two proteins are often upregulated and activated
and cooperatively induce the transcriptions of the SASP
components during senescence.15,34 C/EBPβ upregulation is
observed following NF-κB activation (Supplementary
Figure S5A). However, the mechanism by which NF-κB
activation leads to C/EBPβ upregulation is unclear. We
demonstrated that Bclaf1 is the critical mediator between
NF-κB and C/EBPβ upregulation. Bclaf1 knockdown severely
impaired C/EBPβ upregulation without affecting NF-κB activa-
tion (Figure 4b and Supplementary Figures S4 and S5B), and
forced expression of exogenous Bclaf1 restored C/EBPβ
upregulation in Nemo knockdown cells (Figure 4c). Our data
indicate that Bclaf1 is required andNF-κBactivation alone is not
sufficient for C/EBPβ upregulation. ChIP assays revealed that
Bclaf1 bound to a region of the C/EBPβ promoter (Figure 4f and
Supplementary Figure S5D) that does not contain any defined
transcription factor-binding elements. A previous study demon-
strated that Bclaf1 interacts with the p53 promoter region and
promotes its transcription.22 Thus, Bclaf1 may function as a
transcriptional activator to promote C/EBPβ upregulation.
IL-6 and IL-8 play pivotal roles in the development of SASP

and senescence that are co-regulated by NF-κB and
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C/EBPβ.12,13 We demonstrated that Bclaf1 was recruited to
the IL-6 and IL-8 promoters (Figure 6f and Supplementary
Figure S5D) in a C/EBPβ-dependent manner (Figure 6h) and
cooperates with C/EBPβ to enhance IL-8 transcription
(Figures 6d and g). Thus, Bclaf1 may not only mediate
C/EBPβ upregulation but also influence its ability to transacti-
vate IL-6 and IL-8.
Bclaf1 may also play a role in Dox-induced cell cycle arrest

through upregulation of p15. Bclaf1 depletion dramatically
decreased Dox-induced inhibition of tumor cell growth both
in vitro (Figures 1j and k) and in vivo (Figures 7a and b). Among

the cell cycle inhibitors examined, only the upregulation of p15
is suppressed by Bclaf1 knockdown (Figures 4b and 7d and
Supplementary Figure S5B). It has been demonstrated that
C/EBPβ is a key transcription factor regulating p15.13 Thus,
Bclaf1 likely regulates p15 through C/EBPβ.
The role of Bclaf1 in transcriptional regulation is poorly

understood. Bclaf1 may participate in the epigenetic regula-
tion of chromatin structure as it was found to be associated
with L3MBTL3, a member of the malignant brain tumor (MBT)
family of chromatin-interacting transcriptional repressors.35

Recently, Bclaf1 was identified as a component of the RNA
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splicing complex and regulates the stability of cyclin D and
BRCA1 mRNA.36,37 Whether this function of Bclaf1 is related
to C/EBPβ upregulation requires further investigation.
Bclaf1 responds to NF-κB activation by upregulation. Bclaf1

contains a putative NF-κB-binding element within its promoter.
Both ChIP and reporter assays indicate that NF-κB binds to this
region and activates Bclaf1 transcription (Figures 3d and e).
Kong et al.38 have also demonstrated that RelA (p65)
binds to the Bclaf1 promoter. However, Bclaf1 upregulation by
NF-κB may require its activity to reach a certain threshold.
Compared with severe and acute DNA damage treatment,
mild DNA damage induces senescence. NF-κB activation
is low on day 3 of drug treatment, and a relatively full NF-κB
activation was achieved on day 7 as indicated by efficient
p65 nuclear translocation and dramatic p65 upregulation
(Supplementary Figure S4A). Thus, NF-κB signaling during

DNA damage-induced senescence appears to be a gradual
process and subject to further amplification through upregulation.
As reported, Nemo can transmit DDR to NF-κB activation;30

however, it did not mediate NF-κB upregulation (Figure 2e).
Recent studies have linked Bclaf1 to DDR. Lee et al.24

reported that Bclaf1 interacted with γH2AX and may regulate
the Ku70/DNA-PKcs complex in response to DNA damage.
Savage et al.37 demonstrated that Bclaf1 complexes with
BRCA1 and influences the radiosensitivity of cells. We have
demonstrated that Bclaf1 is involved in persistent and mild
DNA damage-induced senescence downstream of NF-κB
activation. Depending on the extent of DNA damage, Bclaf1
probably reacts differently. In the acute DNA damage
response, Bclaf1 may be recruited to DNA damage foci and
facilitates DNA repair. However, under chronic DNA damage
conditions, Bclaf1 expression is upregulated in response to
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NF-κB activation and subsequently amplifies NF-κB down-
stream signaling to induce cellular senescence.

Materials and Methods
Plasmids, antibodies and reagents. Full-length Bclaf1 was kindly provided
by Dr Tokuko Haraguchi39 and subcloned into the pRK5 vector with an N-terminal
FLAG tag. Bclaf1 and control shRNAs were inserted into the pLKO.1-puro vector. To
assess putative NF-κB-binding sites, the following oligo pairs containing four copies of
binding sites were used: 5′-CGGGGCTTGCCGGGGCTTGCCGGGGCTTGCCGGGG
CTTGCCG-3′ and 5′-AATTCGGCAAGCCCCGGCAAGCCCCGGCAAGCCCCGGCA
AGCCCCGGTAC-3′. The annealed oligonucleotide pairs were cloned into the KpnI
and EcoRI sites of pBVLuc.40 The IL-8 promoter sequence flanking the 5′ region from
− 764 to +26 was cloned into the pGL3-Basic vector (Promega, Madison, WI, USA).
The following primary antibodies were used for analysis: anti-Bclaf1, anti-p53, anti-

p65, anti-cRel, anti-C/EBPβ and anti-p15INK4B (Santa Cruz Biotechnology, Santa
Cruz, CA, USA); anti-phospho-CHK1, anti-phospho-CHK2, anti-Nemo and anti-Ki67
(Cell Signaling Technology, Danvers, MA, USA); and anti-p21 (BD Biosciences, San Jose,
CA, USA). Doxorubicin (Sigma, St. Louis, MO, USA) was dissolved in sterile water.

Cells and transfections. Human colon cancer cells HCT116 and human
breast adenocarcinoma cells MCF7 were cultured in medium supplemented with 10%
(v/v) FBS. HCT116 cells stably expressing Bclaf1 shRNA were generated by lentiviral
infection followed by 2 μg/ml of puromycin selection for 4 days. HCT116 cells were
transiently transfected with plasmid DNA using X-tremeGENE HP (Roche, Mannheim,
Germany) according to the manufacturer’s protocols. SiRNA was transfected into cells
using Lipofectamine RNAiMax (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s protocols. Control siRNA and Bclaf1 siRNA target sequences were
designed and synthesized from Genechem (Shanghai, China) as follows: siCtrl,
5′-UUCUCCGAACGUGUCACGU-3′; siBclaf1#1, 5′-GGTTCACTTCGTATCAGAA-3′;
siBclaf1#2, 5′-TTCTCAGAATAGTCCAATT-3′. The siRNA target sequences of Atm,
Atr, p53, Nemo, p65, c-Rel, and C/EBPβ have been previously reported.41–47

Real-time PCR. Total RNA was extracted using TRIzol (Invitrogen) following
the manufacturer’s protocol. Briefly, 0.8 μg of total RNA from different treatments
was reverse transcribed using M-MLV reverse transcriptase (Promega) with an oligo
(dT) 18 primer. Real-time PCR was performed using UltraSYBR Mixture (Beijing
CoWin Biotech, Beijing, China) and a ViiA 7 real-time PCR system (Applied
Biosystems, Foster City, CA, USA). The following primers for Bclaf1 were used:
Bclaf1 forward, 5′-CCGCGATTCGGCGTGTCAGG-3′; Bclaf1 reverse, 5′-GACCCAT
TTCTTTTCTCCTTGGTT-3′. The primers for IL-6, IL-8 and C/EBPβ have been
previously reported.13

ChIP assay. The ChIP assay was performed using a ChIP-IT Express enzymatic
system (Active Motif, Carlsbad, CA, USA) following the manufacturer’s instructions.
Briefly, HCT116 cells were crosslinked with 1% formaldehyde and neutralized with
0.125 M glycine. Purified chromatin was digested to ~ 500 bp by enzymatic shearing.
Anti-Bclaf1, anti-C/EBPβ or control IgG (Santa Cruz) antibodies were used for
immunoprecipitation. After reverse crosslinking, DNA samples were analyzed by PCR
followed by 2% agarose gel electrophoresis. The PCR primers designed for fragments
of the Bclaf1 promoters are as follows: NF-κB forward, 5′-TCACATCTTCCCG
CGAGAC-3′ and NF-κB reverse, 5′-CGCTAAATATGCGGGCAAG-3′; NS forward,
5′-ACCAAGCAAAACCAGTCAGGT-3′ and NS reverse, 5′-CGTCTCTTCTAAAAATA
CAA-3′. The primers for fragments of the C/EBPβ promoters are as follows: p1
forward, 5′-CCTCTCGCTCCCAATCCC-3′ and p1 reverse, 5′-TCTCCTGAGCCCG
GTTATTT-3′; p2 forward, 5′-CTGAAACCTCCGCCTCCTC-3′ and p2 reverse, 5′-GAT
TGGGAGCGAGAGGGG-3′; p3 forward, 5′-GTGGGAGTTTACGGGAGGAA-3′ and p3
reverse, 5′-GAGGAGGCGGAGGTTTCAG-3′. Primers for the amplification of C/EBPβ
binding sites in the IL-6 and IL-8 promoters have been previously described.13

Immunoprecipitation and western blot. In total, 5 × 106 cells treated
with 50 ng/ml doxorubicin for 3 days were lysed in lysis buffer (50 mM Tris-Cl at
pH 8.0, 150 mM NaCl, 1% Triton X-100, 1 mM DTT, 1 complete protease inhibitor
cocktail tablet and 10% glycerol). Cell lysates were centrifuged at 12 000 r.p.m. for
20 min. The resulting pellets were extracted with lysis buffer containing 500 mM
NaCl. After reducing the salt concentration to normal levels (150 mM NaCl) by
adding lysis buffer without NaCl, the cell extracts were subjected to
immunoprecipitation with 1 μg of Bclaf1 antibody or control IgG plus protein G
Sepharose at 4 °C overnight. Cell fractionation was performed using Nuclear and
Cytoplasmic Protein Extraction Kit (Beyotime Biotechnology, Shanghai, China).

For western blots, cells were either directly lysed in 2 × sodium dodecyl sulfate
(SDS) sample buffer or subjected to cytoplasmic/nuclear fractionation.48 The sliced
tumors were minced and lysed in RIPA buffer (0.1% SDS). Subsequent procedures
were performed as previously described.43

SA-β-gal and growth curves. HCT116 or MCF-7 cells were transfected with
indicated siRNAs and cultured for 24 h. Subsequently, each group of cells were
reseeded in 12-well plates and subjected to different treatments. For SA-β-gal
staining, cells at 50 to 60% confluency were treated with Dox (50 ng/ml) for
the indicated durations and then washed with ice-cold PBS and fixed for 10 min with
3% formaldehyde at room temperature. SA-β-gal staining solution (Beyotime) was
prepared before use and incubated with the cells overnight at 37 °C. For growth
curves, 0.75 × 104 of either HCT116 or HT-29 cells from each group were plated in
96-well plates in triplicate and treated with 50 ng/ml doxorubicin. The cells were
cultured for another 1 to 5 days and monitored by MTT assay.49 The growth curves
were generated accordingly.

Luciferase assay. For these experiments, 293T cells either untransfected or
transfected with the indicated siRNAs were seeded in 24-well plates and then
transfected with 100 ng of luciferase reporter plasmids plus 20 ng of pRL-TK
plasmids as an internal control. Luciferase activity was measured using a dual-
luciferase reporter assay kit (Promega) 24 h after transfection and then normalized.

Immunofluorescence and immunohistochemistry. Immunofluorescence
was performed as previously described.43 For immunohistochemistry, xenografts were
fixed in formalin, embedded in paraffin and then sliced. Antigens were retrieved using
citric acid and steam and then stained with a Ki67 antibody (1 : 400, Cell Signaling
Technology) and hematoxylin.

Enzyme-linked immunosorbent assay (ELISA). HCT116 cells expres-
sing control shRNA or shBclaf1 treated with Dox for 7 days were reseeded into
6-well plates at a density of 3 × 106 cells per well and cultured with 1 ml fresh
median for 24 h. The supernatants were then collected to measure the levels of IL-6
and IL-8 using ELISA kits purchased from Boster (Wuhan, China).

Xenografts. Animal care and protocols were approved by Animal Welfare
Committee of China Agricultural University. 3 × 106 HT-29 cells in 100 μl PBS
stably expressing either the control shRNA or shBclaf1#1 were injected
subcutaneously into the left and right flanks of 6-week-old female athymic
BALB/c nu/nu mice (HFK Bioscience, Beijing, China), respectively. When tumors
were formed (~7 days), the mice were grouped randomly and given either PBS or
3 mg/kg Dox in PBS intraperitoneally once every 2 days for 6 times. After the
treatment was stopped, the mice were allowed to grow for another 10 days before
being killed under ether anesthesia by cervical dislocation. The tumors were
harvested and weighed, and then were sliced for either Ki67 staining or western
blot analysis.

Statistical analysis. Microsoft Excel and GraphPad Prism (La Jolla, CA, USA)
were used for statistical analyses. Statistical significance was analyzed by Student’s
t-test and expressed as a P-value. P-values of o0.05 were considered statistically
significant: *Po0.05; **Po0.01; ***Po0.001.
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