
Cardiac Gab1 deletion leads to dilated cardiomyopathy
associated with mitochondrial damage and
cardiomyocyte apoptosis
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A vital step in the development of heart failure is the transition from compensatory cardiac hypertrophy to decompensated dilated
cardiomyopathy (DCM) during cardiac remodeling under mechanical or pathological stress. However, the molecular mechanisms
underlying the development of DCM and heart failure remain incompletely understood. In the present study, we investigate whether
Gab1, a scaffolding adaptor protein, protects against hemodynamic stress-induced DCM and heat failure. We first observed that
the protein levels of Gab1 were markedly reduced in hearts from human patients with DCM and from mice with experimental viral
myocarditis in which DCM developed. Next, we generated cardiac-specific Gab1 knockout mice (Gab1-cKO) and found that Gab-
cKO mice developed DCM in hemodynamic stress-dependent and age-dependent manners. Under transverse aorta constriction
(TAC), Gab1-cKO mice rapidly developed decompensated DCM and heart failure, whereas Gab1 wild-type littermates exhibited
adaptive left ventricular hypertrophy without changes in cardiac function. Mechanistically, we showed that Gab1-cKO mouse
hearts displayed severe mitochondrial damages and increased cardiomyocyte apoptosis. Loss of cardiac Gab1 in mice impaired
Gab1 downstream MAPK signaling pathways in the heart under TAC. Gene profiles further revealed that ablation of Gab1 in heart
disrupts the balance of anti- and pro-apoptotic genes in cardiomyocytes. These results demonstrate that cardiomyocyte Gab1 is a
critical regulator of the compensatory cardiac response to aging and hemodynamic stress. These findings may provide new
mechanistic insights and potential therapeutic target for DCM and heart failure.
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The progression of heart failure is associated with cardiac
remodeling, the changes of cardiac structure and function in
response to various stress conditions such as pressure
overload-generated hemodynamic stress and aging-
associated oxidative stress.1 Under hemodynamic stress,
the heart undergoes a stage of compensated hypertrophy and
then progresses into decompensated dilated cardiomyopathy
(DCM) and heart failure.2 Cardiac hypertrophy is an adaptive,
regulatory process, in which activation of cardiomyocyte
survival pathways maintains cardiac homeostasis against
external stress. During the transition from compensatory
hypertrophy to DCM, cardiomyocyte death plays a critical role
in development of heart failure.3–6 However, the molecular
mechanisms for controlling the balance of cell survival and cell
death during cardiac remodeling remain poorly understood.
The Grb2-associated binder 1 (Gab1) is a member of the

insulin receptor substrate-like multi-substrate docking protein

family and expressed in various types of cells, including
cardiomyocytes.7–9 It is a central mediator of growth factor
receptor signaling.10,11 Gab1 is phosphorylated by tyrosine
kinases, and then phosphorylated Gab1 recruits and activates
phosphatidylinositol 3-kinase (PI3K)/Akt and protein tyrosine
phosphatase SHP2 (PTPN11)/mitogen-activated protein
kinase (MAPK) pathways,10,12,13 both of which pathways are
implicated in the transduction of signals governing cell
proliferation, growth, survival and differentiation. Global
Gab1 knockout (Gab1− /−) mice die between embryonic day
e12.5 and e18.5, with multiple defects in the placenta, heart,
liver, skin and muscular development. 14,15 The abnormal
placental development in Gab1− /− mice may cause the death
of the Gab1− /− embryos and the resultant complex pheno-
types. Recent studies with the generation of tissue-specific
knockout mice provide more definitive clues regarding Gab1
functions in vivo. Our group and others have demonstrated
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that endothelial-specific Gab1 deficiency in mice impairs
ischemia-induced angiogenesis.16–18 Moreover, in contrast
to the defects in cardiac development observed in Gab1− /−

mice, cardiomyocyte-specific Gab1 conditional knockout
(Gab1-cKO) mice generated with the Cre-LoxP system are
viable and display normal cardiac morphology at birth.19 Gab
protein family has three members, Gab1, Gab2 and Gab3.7 It
was reported that cardiomyocyte-specific Gab1/Gab2 double
knockout mice displayed high mortality after birth with
abnormal cardiac function. 19 However, the physiological and
pathological functions of cardiac Gab1 in hemodynamic
stress-induced cardiac remodeling in adult animals remain
incompletely understood.
In the present study, we first observed that lower levels of

cardiacGab1 protein were associated with DCM in human and
mouse hearts, and we further revealed that cardiac-specific
Gab1 knockout (Gab1-cKO) mice developed age-dependent
progressive DCM and aortic banding-induced heart failure
without the phase of compensated cardiac hypertrophy
associated with cardiomyocyte mitochondrial damages and
apoptosis.

Results

The levels of Gab1 protein in both human and mouse
heart with DCM were decreased. To determine whether the
protein levels of Gab1 are changed in diseased heart,
we performed western blot analysis on the samples of
explanted human hearts from patients diagnosed with DCM
undergoing cardiac transplantation (Supplementary Table S1).

Donor hearts without cardiomyopathy were used as controls.
As shown in Figure 1a, the levels of Gab1 protein were
significantly diminished in DCM hearts than those in control
hearts (Figure 1a).
Viral myocarditis is a common cause of DCM.20 We further

examined the expression levels of Gab1 in themousemodel of
coxsackievirus infection-induced myocarditis and DCM.21 We
found that the levels of Gab1 protein were dramatically
reduced in mouse hearts infected with coxsackievirus
(Figure 1b). Collectively, these results suggest a possible role
of Gab1 in the regulation of cardiac function and remodeling.

Characterization of cardiac-specific Gab1-cKO mice. To
explore the role of cardiac Gab1 in vivo, we generated
Gab1-cKO mice by crossing Gab1 flox mice22 with
transgenic mice expressing mouse cardiac-specific α-myosin
heavy chain (α-MHC) promoter-driven Cre recombinase
(Supplementary Figure S1). Gab1-cKO (α-MHC-Cre;
Gab1flox/flox) mice were viable and born at the expected
Mendelian ratio (Supplementary Table S2). As expected, we
observed the genetic Gab1 deletion specifically in the heart
but not other tissues of Gab1-cKO mice. Consistent with the
previous report,19 we detected two isoforms of Gab1 protein
in mouse hearts, of which the high-molecular-weight Gab1
isoform is cardiac specific, whereas lower-molecular-weight
Gab1 isoform is present in all tissues tested including heart,
liver and lung (Supplementary Figure S2). Both isoforms of
Gab1 were knocked down in cardiac Gab1 knockout mice
(Supplementary Figure S2). To ask whether ablation of
Gab1 in cardiomyocytes affects expression of downstream
signaling molecule SHP2, we examined the level of SHP2
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Figure 1 Reduced protein levels of Gab1 in both human and mouse heart with dilated cardiomyopathy. (a and b) Western blot analysis of protein levels of Gab1 and GAPDH
(loading control) in human heart samples collected from control donor heart (n= 5) and explanted dilated cardiomyopathy heart; n= 5. **Po0.01. (b) Myocarditis-susceptible
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protein. There were no significant changes in cardiac SHP2
expression between Gab1-cKO and Gab1-wild type (Gab1-
WT, Gab1flox/flox) mice (Supplementary Figure S2B). At the
age of 6–8 weeks, phenotypically there were no obvious
differences in body weight, the ratio of whole heart or left
ventricular (LV) weight to body weight or tibia length between
Gab1-cKOmice and Gab1-WTmice (Supplementary Table S3).
The echocardiographic parameters such as end-diastolic/
systolic LV internal dimension (LVIDd/LVIDs), ejection fraction
(EF) or fractional shortening (FS), interventricular septal (IVS)
thickness and LV posterior wall (LVPW) thickness were
also not significantly different between two groups of mice.
Moreover, hemodynamic data showed no significant
differences in LV systolic pressure (LVSP), end-diastolic
pressure (LVEDP), heart rate, the derivatives of LV

pressure, contractility (LV dP/dt max) and relaxation (LV
dP/dt min) between Gab1-cKO mice and Gab1-WT mice
(Supplementary Table S3). Together, these results indicate
that there were no significant differences in overall cardiac
structure and function between Gab1-cKO and Gab1-WT
mice at the age of 6–8 weeks.

Cardiac Gab1-deficient mice developed DCM and heart
failure in response to pressure overload. We next
examined the functional role of Gab1 in the heart under
hemodynamic stress. Gab-cKO mice were subjected to
transverse aorta constriction (TAC). Echocardiograph analy-
sis was performed before and after TAC (Supplementary
Table S4). Under 2 weeks of TAC, Gab1-WT mice developed
compensatory hypertrophy (Figure 2a) with increased ratio of
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Figure 2 Gab1-cKO mice developed severe ventricular dilation and heart failure in response to pressure overload. (a) Representative images of hearts from Gab1-WT and
Gab1-cKO mice subjected to either sham operation (n= 8) or transverse aortic constriction (TAC) for 2 weeks (n= 12) (top panel). Histological sections stained with H&E (middle
panel) and Masson’s trichrome for detection of fibrosis (bottom panel). Scale bars: top and middle, 2 mm; bottom, 50 μm. (b) Left ventricle weight/tibia length ratios (mean±S.E.
M.) of Gab1-WT and Gab1-cKO mice were determined at 2 weeks after TAC or sham operation. (c) The α-skeletal actin (α-SK) mRNA expression after 2 weeks of TAC or sham
operation. (d) Representative images of M-mode echocardiographic tracings from Gab1-WT and Gab1-cKO mice after 2 weeks of TAC or sham operation. (e–h) End-diastolic left
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LV weight/tibia length (LVW/TL) (Figure 2b), LVPW thickening
(Figure 2h), augmented cardiac fibrosis (Figure 2a lower
panel, and Supplementary Figure S3 for the quantified results
of cardiac fibrosis) and elevated expression of fetal response
gene α-skeletal muscle actin (αSK) (Figure 2c), but still
maintained normal cardiac structure and function without
significant alterations in EF (Figures 2d and g). In contrast,
Gab1-cKO mice developed severe ventricular dilation and
heart failure after 2 weeks of TAC (Figure 2 and
Supplementary Table S4). There were no significant differ-
ences of cardiac fibrosis between WT+TAC and Gab1-cKO
+TAC groups (Figure 2a and Supplementary Figure S3).
Echocardiography revealed a significant increase in LVW/TL,
LVIDd and LVIDs and a significant decrease in EF and LVPW
thickness in Gab1-cKO mice under TAC (Figures 2e–h,
and Supplementary Table S4). Interestingly, αSK was
downregulated in Gab1-cKO+TAC group compared with
that in WT+TAC group, suggesting possible abnormal
cardiac remodeling and decompensation in Gab1-cKO
mice under hemodynamic stress (Figure 2c). In addition,
because it has been reported that there might be cardiac
toxicity because of Cre expression in heart, we used
α-MHC-Cre mice as a Cre control as well. We found that
there was no significant difference of cardiac function
between mice expression Gab1-flox/flox (WT control)
and mice expressing α-MHC-Cre (Cre control) alone
(Supplementary Table S4). Echocardiography-derived LV
mass (Supplementary Figure S4) was also significantly
increased in Gab1-cKO+TAC group compared with that in
WT+TAC group or Cre +TAC group, consistent with the
results of LVW/TL.

Loss of cardiac Gab1 resulted in decreased ERK1/2
phosphorylation but increased p38 MAPK phosphoryla-
tion in the heart in response to pressure overload. It has
been well established that Gab1 mediates growth factor-
induced ERK1/2 activation through interacting with
SHP2.23–25 It has also been reported that Gab1 attenuates
proapoptotic cytokine tumor necrosis factor-triggered
signaling via associating with and inhibiting Mekk3,26 an
upstream protein kinase of p38 MAPK.27 Thus, we
hypothesized that these MAPK signaling molecules are
dysregulated in Gab1-cKO mice under TAC. We assessed
the effects of cardiac Gab1 deletion on Gab1 downstream
signaling in hearts of Gab1-cKO and Gab1-WT control mice
after 2 weeks of TAC or sham operation. In agreement
with previous studies,28–30 TAC increased ERK1/2 phos-
phorylation in Gab1-WT mice compared with sham control,
but this response was impaired in Gab1-cKO mice
(Figures 3a and b). TAC also induced p38MAPK phosphor-
ylation in Gab1-WT mice, and this TAC-induced phosphor-
ylation of p38MAPK was further enhanced in Gab1-cKO
mice. However, there were no significant differences in
Akt phosphorylation between Gab1-WT and Gab1-cKO
mice subjected to either TAC or sham operation
(Figures 3a and b). These findings indicate that cardiac-
specific Gab1 deficiency leads to decreased ERK1/2
phosphorylation and increased p38MAPK phosphorylation
in response to hemodynamic stress.

Cardiac-specific Gab1 deletion led to compromised
mitochondrial structure and function and enhanced
cardiomyocyte apoptosis in response to pressure
overload. Because ERK1/2 activation generally promotes
cell survival and p38MAPK activation is associated with cell
apoptosis, we next asked whether Gab1 deficiency-induced
downregulation of ERK1/2 activation and upgregulation
of p38MAPK activation would lead to cardiomyocyte apop-
tosis. Terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) assays to detect apoptosis cells and wheat
germ agglutinin (WGA) staining indicating cardiomyocyte
membrane were performed for apoptosis detection. We found
that the number of apoptotic cardiomyocytes was dramati-
cally increased in response to TAC in Gab1-cKO mice
compared with Gab1-WT mice (Figures 4a and b).
To further understand the molecular mechanisms under-

lying cardiac dysfunction in Gab1-cKO mice, we performed
gene microarray analysis. Among several hundreds of genes
that were altered in the heart of Gab1-cKO under TAC
conditions, we found that many pro-apoptotic genes, such as
Bax (Bcl-2-associated X protein) and Bnip3 (Bcl-2 and
adenovirus E1B-19 kDa-interacting protein 3, an apoptotic
inducer),31,32 were upregulated (Supplementary Table S5),
whereas several anti-apoptotic genes, including Bcl-2 (B-cell
CLL/lymphoma 2) and Egr1 (early growth response 1),
were down-regulated (Supplementary Table S6). A major
checkpoint in cell death pathway is the ratio of pro-apoptotic
(Bax) to anti-apoptotic (Bcl-2) members. Thus, we further
examined the mRNA levels of Bcl-2 and Bax in heart
tissues by reverse-transcript PCR analysis. The ratio of the
mitochondrial anti-apoptotic protein Bcl-2 to pro-apoptotic
protein Bax was increased in Gab1-WT mice subjected to
TAC, but this pro-survival mechanism was impaired
in Gab1-cKO mice (Figures 4c and d). These results revealed
that ablation of Gab1 in heart disrupted the balance
of anti- and pro-apoptotic genes in cardiomyocytes,
resulting in cell apoptosis. Consistent with the results of the
Masson’s trichrome staining for fibrosis, the data from
our gene microarray showed that there was no
obvious changes of cardiac collagen genes in heart from
Gab1-cKO mice+TAC compared with WT mice+TAC groups
(Supplementary Table S7).
Mitochondrial dysfunction and caspase activation are two

major execution programs downstream of Bcl-2/Bax in cell
death pathway.33 Mitochondrial dysfunction includes a change
in the mitochondrial membrane potential, production of
reactive oxygen species, opening of the permeability transition
pore and the release of cytochrome c. Released cytochrome c
activates Apaf-1 that in turn activates a downstream caspase
program. Thus, we examined mitochondria in cardiac muscle
by the transmission electron microscope (TEM) studies. We
observed normal Z-bands in cardiac muscle but damaged
mitochondria associated with cristae lysis and abnormal
internal membrane whorls in the hearts of Gab1-cKO mice
after 2 weeks of TAC (Figure 5a and Supplementary Figures
S5 and S6 showing high-resolution TEM images). The level of
cleaved caspase-3, an enzymatic active form of caspase-3,
was increased in Gab1-WT mice in response to TAC, and
further enhanced in Gab1-cKO mice (Figures 5b and c).
Together, these results suggest that mitochondrial function is
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compromised under hemodynamic stress conditions and
exacerbated by the deletion of cardiac Gab1 that could trigger
caspase activation and consequent apoptosis of cardiomyo-
cytes and heart failure.34,35

Mice with cardiac Gab1 deficiency developed sponta-
neous DCM and heart failure by 3–6 months of age.
Mitochondrial dysfunction and mitochondria oxidative stress
have linked to age‐related heart diseases.36–39 To examine
the effects of age on heart function of Gab1-cKO mice, we
continued to monitor cardiac function of Gab1-WT and Gab1-
cKO mice via echocardiography as they aged from 4 weeks
to 6 months. We found that at 3 months of age, Gab1-cKO
mice exhibited a decreased EF and increased LVIDd,
without obvious morphological changes and no apparent
differences in LVPW compared with Gab1-WT mice. By
6 months of age, a severe DCM was observed in Gab1-cKO
mice, with increased LVIDd and thinner LVPW compared
with Gab1-WT mice (Figures 6a, b, d–f, and Supplementary
Table S8). There were no apparent alterations in cardiac
fibrosis between Gab1-cKO and Gab1-WT counterparts

(see Figure 6c and Supplementary Figure S7 for the
quantified results of cardiac fibrosis). Echocardiography-
derived LV mass was significantly increased in Gab1-cKO
mice at the age of 12 weeks and 6 months compared with
those in WT mice (Supplementary Figure S8). At 6 months of
age, caspase-3 cleavage was markedly increased in Gab1-
cKO mice (Figures 7a and b), but there was no significant
difference in both ERK and Akt phosphorylation between
Gab1-cKO and Gab1-WT mice over time (Supplementary
Figure S9). The TEM study also revealed the damaged
mitochondria in Gab1-cKO mice at 6 months (Figure 7c),
although not as severe as observed in young Gab1-cKO mice
that underwent TAC.

Cardiac-specific Gab1 deletion in adulthood led to DCM
and heart failure. To exclude the possibility of develop-
mental abnormalities that may lead to adult phenotype
manifestation, we crossed Gab1 floxed mice with αMHC-
MerCreMer transgenic mice to generate an inducible,
cardiac-specific Gab1-knockout (Gab1-icKO) mouse model.
These mice were allowed to develop till 6–8 weeks at which
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time both Gab1-icKO mice and Gab1-WT mice were
administered 35mg/kg/day tamoxifen for 5 days to ablate
Gab1 in the heart.40 We showed 70% knockdown of Gab1
protein expression in the heart from Gab1-icKO mice after
tamoxifen treatment (Figures 8b and c). Gab1-icKO mice
developed DCM in 2 weeks after tamoxifen treatment
(Figure 8a). The ratio of LVW/TL in Gab1-icKO mice was
significantly increased compared with that of Gab1-WT mice
(Figure 8d). We also observed a 23% decrease of EF in
Gab1-WT mice versus a 75% reduction of EF in Gab1-icKO
mice at 2 weeks after tamoxifen treatment (Figure 8e). These
results suggest that Gab1 deficiency in adult mice impairs
cardiac function and potentially increased sensitivity to mild
tamoxifen toxicity.41,42

Discussion

The major findings of the current study include: (1) Gab1 is
downregulated in DCM heart; (2) loss of Gab1 in adult heart
causes DCM under various pathological conditions, including
pressure overload, aging and tamoxifen toxicity; (3) Gab1 is
critical to maintain mitochondria integrity and function
in cardiomyocytes; and (4) Gab1 deficiency impairs MAPK
signaling pathways and disrupts the balance of anti-apoptotic

and pro-apoptotic genes in adult heart, resulting in increased
apoptosis. Beyond the previous report that Gab1 and Gab2
play an important role in the regulation of cardiac function in
embryonic development and neonatal mice,8,9,19 our results
demonstrate a novel signaling mechanism underlying patho-
logical stress-induced DCM, in which Gab1 has emerged as a
central regulator of adult cardiac function through maintaining
mitochondrial integrity and cell survival to protect heart against
DCM and heart failure (Figure 8f).
Gab1 plays a crucial role in the normal growth, differentia-

tion and developmental programs,43 but the physiological and
pathological functions of Gab1 in adult animals remain poorly
understood. Global Gab1 knockout mice are embryonic lethal
and die between e12.5 and e18.5 because of developmental
defects in the heart, placenta and integument.15 In contrast,
cardiac-specific Gab1 knockout mice are viable and have no
obvious morphological and functional abnormality before 10
weeks.19 This is consistent with the phenotype of our Gab1-
cKOmice at 6–8 weeks of age. Our results further showed that
Gab1 is crucial for maintaining cardiac function under
hemodynamic stress in adulthood. Specifically, Gab1-cKO
mice at age 6–8weeks exhibited DCMand heart failure shortly
after TAC, whereas Gab1-WT mice displayed compensatory
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hypertrophy to maintain the normal function. Furthermore,
we observed that Gab1-cKO mice developed age-related
cardiomyopathy. In the absence of cardiac Gab1, mice at
6 months displayed a severe DCM with impaired systolic
function and increased cardiac dilatation. In addition,
ablation of cardiac Gab1 in adult Gab1-icKO mice also
developed DCM in 2 weeks after tamoxifen treatment.
Notably, the heart failure phenotype in Gab1-icKO mice
developed much faster than Gab1-cKO mice. We used
moderate amounts of tamoxifen (35 mg/kg/day) as many
other laboratories described previously.44–46 In this
dose of tamoxifen, its cardiac toxicity was minimal as
reported by Bersell et al.42 Indeed, we observed a small
but significant adverse effect of tamoxifen injection on
cardiac ejection fraction of WT mice (Figure 8e). However,
compared with Gab1-WT mice treated with tamoxifen, we
found that Gab1-icKO mice treated with tamoxifen had much
greater reduction of cardiac function (Figure 8e), and this
could be because of intrinsic defects of cardiac function in
Gab1-icKO mice or the intolerance of Gab1-icKO mice to mild
tamoxifen cardiac toxicity. Collectively, our findings suggest
that loss of cardiac Gab1 in adult causes DCM and heart
failure under the pathological conditions such as abnormal
hemodynamic stress.

Recent studies have demonstrated that signaling through
MAPKs has crucial roles in cardiac biology. It was reported
that gain-of-function mutations in PTPN11 (encoded
SHP2)47,48 and RAF149,50 cause Noonan syndrome with
hypertrophic cardiomyopathy, a genetic disorder in which the
heart muscle becomes thick. In contrast, loss-of-function
mutations of RAF1 in humans51 or genetic deletion of
SHP228,52 and Raf153 in mice cause DCM. As Gab1 is
associated with SHP2 and regulates MAPK signaling, it is
conceivable that loss of Gab1 could alter MAPK signaling,
resulting in DCM. Indeed, our findings suggest that Gab1 is an
essential component of the signaling pathways important for
cardiomyocyte survival. In this study, we found that ERK1/2
phosphorylation significantly decreased but p38MAPK phos-
phorylation increased in Gab1-cKO mice compared with
Gab1-WT mice under pressure overload. ERK1/2 phosphor-
ylation is associated with concentric LV hypertrophy without
signs of progression toward heart failure,54 and is thought to
be a component of an consequential adaptive mechanism in
the myocardium.55 The blunting of the ERK1/2 signaling using
a dominant-negative Raf1 blocks adaptive cardiac hypertro-
phy, accompanied by an increase in apoptosis, and LV
dysfunction, concluding with an enhancement in mortality
rate when subjected to pressure overload.56 Genetic inhibition
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of cardiac ERK1/2 promotes stress-induced apoptosis and
heart failure.57 Thus, the reduction of ERK1/2 activity could be
part of the mechanisms by which cardiac Gab1 deficiency led
to an increase in apoptosis and loss of hypertrophic growth in
Gab1-cKO mice under TAC. On the other hand, p38 MAPK
acts as an enhancer of myocyte apoptosis and cardiac
pathologies and is believed to play a causative role in DCM
in the cardiac stress responses.58,59 It has been shown that
gain of function of p38 MAPK in transgenic mice causes LV
chamber dilation associated with reduced wall thickness, but
no significant hypertrophy at the organ level,60,61 consistent
with the phenotype observed in Gab1-cKO mice under
pressure overload. Taken together, our results suggest that
dysregulation of the MAPK pathway could be the signaling

mechanisms responsible for increased cardiomyocyte
apoptosis and subsequent DCM observed in Gab1-cKO
mice. Future studies are warranted to screen possible
genome-wide association of Gab1 mutations with DCM in
humans.
Mitochondrial integrity in cardiomyocytes is critical to

maintain normal cardiac function, and abnormality of mito-
chondrial morphology and function is associated with LV
dysfunction and heart failure.62 In this study, TEM analysis
showed damagedmitochondriawith cristae lysis and apparent
abnormal internal membrane whorls, but normal Z-bands in
the heart of Gab1-cKOmice after 2 weeks of TAC or at the age
of 6 months. Furthermore, Gab1-cKO mice subjected
to TAC also increased mitochondrial membrane potential.
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These findings indicate that cardiac-specific Gab1 deletion
compromises mitochondrial integrity in response to pressure
overload and during aging process. Mechanistically, DNA
microarray showed a dramatically decreased level of Bcl-2 but
no significant differences in the level of Bax in Gab1-cKOmice
under TAC. The ratio of Bcl-2 to Bax determines survival or
death after an apoptotic stimulus.63 We found that the Bcl-2/
Bax ratio in Gab1-cKOmicewas significantly lower than that in
Gab1-WT mice. Furthermore, the activation of caspase-3 and
the number of TUNEL-positive cells were significantly
increased in the heart of Gab1-cKOmice under TAC. Together,
our findings suggest that Gab1 is involved in the regulation of
the function and structure of cardiac mitochondria that not only
produce energy to maintain cardiac function but also tightly
regulate cell survival and death.
The exact mechanism of the downregulation of Gab1 in

human and mouse heart with DCM remains unclear. It was
previously reported that long-term treatment with insulin-like
growth factor-1 (IGF-1) results in decreased Gab1 protein
expression.26 High levels of IGF-1 have been associated with
heart failure and increased cardiac mortality.64,65 Thus, it is
postulated that downregulation of Gab1 is a result of increased

IGF-1. Alternatively, the loss of Gab1 may be due to increased
degradation through the ubiquitin–proteasome system.
Recent studies have shown that in response to the treatment
of hepatocyte growth factor Gab1 is ubiquitinated by the E3
ligase Cbl, and subsequently degraded by the 26S
proteasome.66 Future investigation is required to precisely
delineate the mechanism of the downregulation of Gab1 in the
hearts with DCM. It would also be interesting to determine
whether a decrease of Gab1 function in heart may contribute
to the development of DCM in humans.
In conclusion, our results demonstrate that Gab1 protects

the heart against DCM and heart failure, likely through
maintaining mitochondrial integrity and cell survival. These
findings may provide new mechanistic insights and potential
therapeutic target for DCM and heart failure.

Materials and Methods
A detailed description of the methods used in the present study can be found in
Supplementary Data.

Human heart tissues. Human frozen tissues from the LV free wall of
explanted DCM hearts and donor hearts were obtained from the Cardiovascular
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Registry at the Centre for Heart Lung Innovation following approval by the University
of British Columbia Research Ethics Board. Patient characteristics are summarized
in Supplementary Table S1.
Animals and models: All experimental procedures involving animals were
approved by the local animal care and use committees according to the Guide for
the Care and Use of Laboratory Animals prepared by the US National Academy of
Sciences (National Institutes of Health publication No. 85–23, revised 1996).
Generation and characterization of Gab1-cKO mouse models are described in
Results. Hypertrophy and DCM were induced by transverse aortic constriction in
Gab1 WT and KO mice under C57BL/6 background.

Coxsackievirus infection in mice. A/J mice were purchased from the
Jackson Laboratory (Bar Harbor, ME, USA). Male mice at age 4–5 weeks were
either infected intraperitoneally (i.p.) with 105 plaque-forming units of coxsackievirus
B3 (n= 6) or mock (the same volume of PBS without coxsackievirus B3) vehicle
treatment (n= 3). On day 9 after virus infection, mice were killed and infected
hearts were harvested. All procedures were approved by the Animal Care
Committee at the University of British Columbia.

Echocardiography. Echocardiography was performed on unconscious mice
lightly anesthetized by 1.5% isoflurane. Imaging was captured with a Visual Sonics
Vevo 2100 High-Resolution Imaging System (Toronto, ON, Canada)67 along with
recording of temperature, breathing rate and ECG. The echocardiographer was
blinded to mouse genotypes.

Data analysis. All data are expressed as mean±S.E.M. Comparisons
between experimental groups were performed with Student’s t-test for two groups

or ANOVA for multiple groups followed by Bonferroni post hoc test. Statistical
significance was set at P-value ˂0.05.
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