
Heparan sulfation is essential for the prevention of
cellular senescence
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Cellular senescence is considered as an important tumor-suppressive mechanism. Here, we demonstrated that heparan sulfate
(HS) prevents cellular senescence by fine-tuning of the fibroblast growth factor receptor (FGFR) signaling pathway. We found that
depletion of 3′-phosphoadenosine 5′-phosphosulfate synthetase 2 (PAPSS2), a synthetic enzyme of the sulfur donor PAPS, led to
premature cell senescence in various cancer cells and in a xenograft tumor mouse model. Sodium chlorate, a metabolic inhibitor of
HS sulfation also induced a cellular senescence phenotype. p53 and p21 accumulation was essential for PAPSS2-mediated cellular
senescence. Such senescence phenotypes were closely correlated with cell surface HS levels in both cancer cells and human
diploid fibroblasts. The determination of the activation of receptors such as FGFR1, Met, and insulin growth factor 1 receptor β
indicated that the augmented FGFR1/AKT signaling was specifically involved in premature senescence in a HS-dependent manner.
Thus, blockade of either FGFR1 or AKT prohibited p53 and p21 accumulation and cell fate switched from cellular senescence to
apoptosis. In particular, desulfation at the 2-O position in the HS chain contributed to the premature senescence via the augmented
FGFR1 signaling. Taken together, we reveal, for the first time, that the proper status of HS is essential for the prevention of cellular
senescence. These observations allowed us to hypothesize that the FGF/FGFR signaling system could initiate novel tumor
defenses through regulating premature senescence.
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Cellular senescence, which refers to irreversible growth arrest,
has recently been considered as an important tumor-
suppressive mechanism by which the proliferative potential
of cancer cells is prevented.1,2 Support for a role of cellular
senescence as a barrier to tumorigenesis comes from tumor
studies in mice and humans.3 Cellular senescence can be
prematurely triggered by diverse forms of cellular damage,
such as oncogenic mutations, strong mitotic signals, genomic
instability, and oxidative stress.4–7 Senescent cells are
characterized by a variety of phenotypes, including enlarged
and flattened morphology, senescence-associated β-galacto-
sidase (SA-β-Gal) activity, formation of senescence-
associated heterochromatin foci, and altered gene expression
and protein processing.8–10 Senescent cells remain metabo-
lically active and secrete a myriad of factors for cross-talk
between senescent cells and their microenvironment,
which is called senescence-associated secretory phenotype
(SASP).11,12 Some of the secreted factors are anti-
tumorigenic due to the induction and maintenance of
senescence, and others are pro-tumorigenic through stimula-
tion of cell growth, migration, and invasion.11,13,14 In addition,
SASP facilitates tissue repair and remodeling, and elicits
immune surveillance to eliminate senescent cells.11,13,15

Thus, cellular senescence displays multiple effects on the
tumor microenvironment of their neighboring tumor and
normal cells. Recent findings suggest that cellular senes-
cence is also involved in embryonic development.16,17

Although great progress has been made in cellular senes-
cence during the last decade, further elucidation of
senescence-associated regulatory genes and mechanisms
will improve our understanding regarding the physiological
significance and potential therapeutic applications of cellular
senescence.
The sulfation of proteoglycans (PGs) is an important post-

translational modification that has a regulatory role in cell
growth, motility, and metabolism.18–20 PGs, consisting of a
core protein and heavily sulfated glycosaminoglycan chains,
are ubiquitous on all animal cell surfaces.18,21 Major families of
membrane-bound PGs bear heparan sulfate (HS), a highly
sulfated chain of disaccharide repeating units, as a constant
feature18,22 and are thus called HS proteoglycans (HSPGs).
The universal sulfate donor 3′-phosphoadenosine 5′-phos-
phosulfate (PAPS) is synthesized by PAPS synthetase
(3ʹ-phosphoadenosine 5ʹ-phosphosulfate synthetase (PAPSS))
in the cytoplasm.23 In humans, two isoforms of PAPSS show a
77% overlap in amino acid sequence identity,24 but the
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isoforms display distinct subcellular localization. PAPSS1 is
located predominantly in the nucleus, whereas PAPSS2 is
mainly located in the cytoplasm.25,26 The process of sulfation
is strictly governed by various enzymes, such as glycosyl-
transferases, sulfotransferases, and an epimerase.27,28

Owing to its high negative charge, HS interacts with
hundreds of proteins and regulates multiple signaling path-
ways, including fibroblast growth factor (FGF), hepatocyte
growth factor (HGF), vascular endothelial growth factor, Wnt,
and BMP signaling pathways.18,20,21,29 The most well-studied
functions of HS include its effect on protein conformation,
enhancement of protein–protein interactions, role as a co-
receptor for growth factors, protection of proteins from
degradation, sequestration of protein ligands, and mediation
of protein internalization.22 Many of the key paradigms in HS
actions have been derived from the protein–protein interac-
tions required for FGF signaling.30–32 However, the exact role
of HS in FGF signaling is still a matter of considerable
debate.33 In addition, how FGF signaling is tumor promoting in
some contexts, but tumor-suppressive in others remains
unclear.34

In this study, we investigate the role of HS sulfation status
and FGF signaling in cellular senescence. We show that the
HS undersulfation induces augmentation of fibroblast growth
factor receptor 1 (FGFR1) activation, ultimately resulting in
premature senescence through the p53-p21 signaling
pathway.

Results

PAPSS2 depletion induces premature senescence. As
PAPSS2, a cytoplasmic synthetase of the universal sulfate
donor PAPS, was found to be increased in gene expression
profile of prematurely senescent cancer cells (Supplementary
Table 1), we first investigated the influence of siRNA against
PAPSS2 (PAPSS2 Si) on cell proliferation and senescence.
MCF7 human breast cancer cells treated with PAPSS2 Si
were fewer in number and showed poor colony-forming ability
compared with control siRNA (Con Si)-transfected cells
(Figure 1a). PAPSS2-depleted cells accumulated in the G1
phase with no increase in the proportion of cells either in the
subG1 phase or that were positive for propidium iodide
staining (Figure 1b). PAPSS2-depleted cells displayed hall-
marks of senescent cells such as enlarged and flattened
morphology and SA-β-Gal staining (Figure 1c). As PAPSS2
was depleted, the cells showed a loss of phosphorylated pRb
with changes of cell cycle regulatory protein levels and
accumulation of p53 and p21 (Figure 1d). To know whether
such PAPSS2-mediated premature senescence phenotype
could be induced in normal cells, we treated primary human
diploid fibroblasts (HDFs) with PAPSS2 Si. PAPSS2 depletion
also resulted in fewer cell numbers with no increase of
apoptotic cell death (Figures 1e and f), and senescence
phenotypes in HDFs (Figure 1g). PAPSS2-depleted HDFs
also showed pRb hypophosphorylation, alteration of cell
cycle regulatory protein levels, and accumulation of p53 and
p21 (Figure 1h). We observed no off-target effect of PAPSS
Si on p53 and p21 accumulation or the induction of
premature senescence (Supplementary Figure S1). In

addition, PAPSS2 depletion contributes to premature senes-
cence in other cell types such as A549 human lung
carcinoma cells and MCF10A human mammary epithelial
cells (Supplementary Figure S2). However, PAPSS1 deple-
tion did not affect the cellular senescence phenotype
(Supplementary Figure S3), most likely due to its localization
in the nucleus. Moreover, PAPSS2 overexpression did not
affect the rate of cellular proliferation, the amount of cell
death, and p53 and p21 levels (Supplementary Figure S4).

HS sulfation status is tightly linked to premature and
replicative senescence through the p53-p21 signaling
pathway. As we observed p53 and p21 accumulation in both
cancer and normal cells (Figure 1 and Supplementary Figure
S2), we investigated the involvement of p53 and p21 in
premature senescence induced by PAPSS2 depletion. In the
absence of p53, PAPSS2 depletion failed to induce p21
accumulation or pRb hypophosphorylation (Figure 2a) and
had no effect on cell number (Figure 2b) or SA-β-Gal
positivity (Figure 2c). The absence of p21 abrogated PAPSS2
depletion-induced premature senescence regardless of the
p53 phenotype (Figures 2a and c). Furthermore, PAPSS2-
mediated premature senescence, including a loss of phos-
phorylated pRb, a decrease in cell number, and an increase
in SA-β-Gal positivity, was blocked in both p53− /− and p21− /−

HCT116 human colon cancer cells (Figures 2d and f). These
results demonstrate that the p53-p21 signaling pathway is
critical for the induction of premature senescence by PAPSS2
depletion.
Because PAPSS2 is a major enzyme involved in the

sulfation of HS,23 we examined the role of HS sulfation status
in PAPSS2-mediated premature senescence. Using an anti-
HS antibody, we detected a gradual decline in sulfated HS on
the cell surface (Figure 3a) and in cell lysates following
PAPSS2 depletion (Figure 3b). These changes were asso-
ciated with gradual increases in p53 and p21 levels
(Figure 3b). To confirm the effect of undersulfation on
premature senescence, we treated MCF7 cells with sodium
chlorate, a metabolic inhibitor of HS sulfation.35 We found that
sodium chlorate treatment induced premature senescence
(Figure 3e) with gradual decline in sulfated HS on the cell
surface and in cell lysates (Figures 3c and d) as well as p53
and p21 accumulation (Figure 3d). We observed no significant
increase in cell death (Figure 3f). We next examined the HS
sulfation status in replicative senescence. In association with
an increase in SA-β-Gal positivity (Figure 3g), we also
detected a decrease in sulfated HS on the cell surface and
in cell lysates during the replicative senescence of HDFs
(Figures 3h and i). It was closely correlated with reduced
PAPSS2 protein level during the replicative senescence
(Figure 3i). We found a decrease in PAPSS2 protein levels
due to proteosomal degradation during the development of
replicative senescence (Supplementary Figure S5). Our
results reveal that HS sulfation level is decreased in replicative
senescence and decreased level of HS sulfation due to
PAPSS depletion induces premature senescence.

PAPSS2-mediated premature senescence is linked to
augmented FGFR signaling. HS has been reported to
regulate receptor signaling through the modulation of binding
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between growth factors (FGF, HGF, and IGF) and their
receptors (FGFR and Met) or growth factor binding
proteins.30–32,36–39 Thus, we examined the effect of
PAPSS2 depletion on receptor signaling pathways such
as FGFR1, Met, and beta subunit of IGF-1 receptor
(IGF1Rβ). In PAPSS2-depleted MCF7 cells, we observed
augmented FGFR phosphorylation. Moreover, we detected
augmented AKT phosphorylation in close correlation
with sustained p53 and p21 accumulation (Figure 4a).
In contrast to FGFR1 phosphorylation, we detected no

phosphorylation of either Met or IGF1Rβ in PAPSS2-
depleted MCF7 cells (Figure 4a). Similarly, neither IGF1Rβ
nor Met phosphorylation was observed after PAPSS2-
depletion in A549 or HDF cells (Figures 4b and c). However,
we confirmed that PAPSS2 depletion induced augmented
FGFR/AKT activation and p53/p21 accumulation in both
A549 and HDF cells (Figures 4b and c). These results
indicate that FGFR1 signaling pathway is specifically
involved in PAPSS2-mediated premature senescence
through the regulation of HS sulfation.
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Figure 1 PAPSS2 depletion suppresses cell growth due to premature senescence in MCF7 cells and HDFs. (a–d) MCF7 cells were transfected with Con Si or PAPSS2 Si.
(a) The numbers of viable cells are shown as relative values. Total protein was extracted from cells 3 days after siRNA transfection and was subjected to WB analysis. (b) Cell
cycle distributions (left graph) and dead cell populations (right graph) were analyzed by FACS 3 days after siRNA transfection and at the indicated times after siRNA transfection,
respectively. Doxorubicin-treated (10 μg/ml) MCF7 cells were used as a positive control (P.C.). A colony-forming assay (CFA) was also performed (left panel) 7 days after siRNA
transfection. (c) Cellular morphology and SA-β-Gal positivity were assessed at the indicated times after siRNA transfection (upper panel), and the percentage of senescent cells
was quantified (lower graph). (d) Cells were harvested at the indicated times after siRNA transfection and were subjected to WB analysis. (e–h) HDFs were transfected with either
Con Si or PAPSS2 Si. (e) Cell viability, (f) the percentage of dead cells, (g) morphological changes and SA-β-Gal positivity, and (h) WB analysis were performed as described in
a–d. Error bars indicate the S.D. of three independent experiments. ***Po0.001, **Po0.01, and *Po0.05
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As PAPSS2 depletion evidently affects FGFR1 and AKT
phosphorylation status (Figures 4a and c), we further
examined the roles of FGFR1 and its downstream signaling
molecule AKT. Double-knockdown cells transfected with
PAPSS2 Si and either FGFR1 Si or AKT Si exhibited an
apoptotic phenotype rather than premature senescence
(Figures 5a and d). Specifically, SA-β-Gal positivity was barely
detectable and the number of dead cells increased after
depletion of either FGFR1 or AKT in PAPSS2-depleted cells
(Figures 5a and b). Moreover, in both types of double-
knockdown cells, p53/p21 accumulation was disrupted, and
poly ADP ribose polymerase (PARP) cleavage was induced
(Figures 5c and d). Whereas AKT phosphorylation was
decreased by PAPSS2 and FGFR1 depletion, FGFR1
phosphorylation was not affected by PAPSS2 and AKT

depletion (Figures 5c and d). Furthermore, the overexpression
of a kinase-inactive (KI) mutant of FGFR1 (FGFR1-KI)
attenuated AKT phosphorylation and p53/p21 accumulation
in PAPSS2-depleted cells (Figure 5e). Altogether, these
results demonstrate that PAPSS2 depletion induces prema-
ture senescence by increasing the FGFR1-AKT-p53-p21
signal transduction cascade.

FGFs are required for augmented FGFR-AKT-p53-p21
signaling in PAPSS2-depleted cells. In contrast to pre-
vious reports,30–32 we observed that lack of heparan sulfation
augments FGFR signaling, indicating that HS may not be
required for FGFR activation. Thus, we wondered whether
FGFs are directly involved in the augmentation of FGFR1-
AKT-p53-p21 signaling in PAPSS2-depleted cells. We firstly
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examined the changes in signaling induced by PAPSS2
depletion in the presence or absence of FGF2. When
we incubated PAPSS2 Si-transfected cells in serum-
free medium, FGFR1-AKT-p53-p21 signaling was blocked
(Figure 6a). When we incubated PAPSS2 Si-transfected cells
in FGF2-depleted medium using a neutralizing antibody
against FGF2 (Neut anti-FGF2), FGFR1-AKT-p53-p21
signaling was diminished in a dose-dependent manner
(Figure 6b). The presence of Neut anti-FGF2 also diminished
SA-β-Gal positivity (Figure 6c) and restored cell numbers
(Figure 6d). In addition, we tested the effect of Neut anti-
FGF1, -FGF3, and -FGF4 on PAPSS2-mediated premature
senescence and found that FGF1 was also involved in
FGFR1-AKT-p53-p21 signaling and senescence phenotypes

(Supplementary Figure S6). We observed that PAPSS2
depletion-induced FGFR activation is associated with increased
receptor dimerization from a co-immunoprecipitation (IP)
assay with two different epitope-tagged FGFR1 constructs
(HA-tagged and green fluorescent protein (GFP)-tagged
FGFR1) (Figure 6e). These results demonstrate that the
absence of HS results in excess binding of the FGF1
subfamily members FGF1/2 to FGFR and consequently
excess FGFR dimerization, ultimately leading to premature
senescence in PAPSS2-depleted cells.

Sulfation at the 2-O position in HS is critical to prevent
cellular senescence via modulation of FGFR1 signaling.
To determine which the sulfation position in HS is directly
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involved in the induction of cellular senescence through the
augmentation of FGFR1 signaling, we transfected MCF7
cells with siRNAs against HS 2-O-sulfotransferase 1
(HS2ST1) and HS6ST1 as both positions are known to be
required for FGFR1 activation. Although HS sulfation levels
were reduced in both HS2ST1 Si- and HS6ST1 Si-
transfected cells (Figure 7a), only HS2ST1-depleted cells
exhibited SA-β-Gal positivity with no increase in cell death
(Figure 7b), indicating that desulfation at the 2-O position in
HS specifically contributes to the induction of cellular
senescence. Next, we investigated whether sulfation at the
2-O position is critical for the proper regulation of FGFR
signaling. We found that HS2ST1 depletion gradually induced
FGFR1 and AKT phosphorylation and increased p53/p21
levels (Figure 7c). In HS2ST1-depleted cells, the blockade of
either FGFR1 or AKT prevented a premature senescence
phenotype (Figure 7d). We found that the difference in
SA-β-gal positivity between PAPSS2- and HS2ST1-depleted
cells (Figure 7b) could be partially attributed to other
sulfotransferases such as chondroitin 6-O-sulfotransferase 1
(C6ST1) and dermatan 4-O-sulfotransferase 1 (D4ST1)
(Supplementary Figure S7). However, there was no direct
links among HS3ST1, N-deacetylase/N-sulfotrasferase 1
(NDST1), C6ST1, C4ST1, D4ST1, and FGFR-AKT-p53-p21
signaling. As HS oligosaccharides have the capacity to inhibit
FGF signaling via competition with endogenous HS,40 we
further examined the competitive effect of octasaccharides
on FGFR and AKT phosphorylation in PAPSS2-mediated
premature senescence. In contrast to sulfated and
6-O-desulfated octasaccharides, fully desulfated and
2-O-desulfated octasaccharides failed to prevent the activa-
tion of the FGFR signaling pathway (Figure 7e). In addition,
when we overexpressed SULF1 and SULF2 endosulfatases
having restricted substrate specificity toward 6-O sulfate
of HS,41,42 we did not observe senescence phenotypes
(Supplementary Figure S8). These results indicate that
sulfation at the 2-O position in HS is essential for the

prevention of augmented FGFR signaling, which finally
prevents premature senescence.

PAPSS2 involves in premature senescence in a xenograft
tumor mouse model through p53-p21 signaling pathway.
To explore the biological significance of our findings that
PAPSS2 is critical to prevent cellular senescence in vivo,
we examined the effects of PAPSS2 depletion in a
xenograft tumor mouse model. We found that mice
administered PAPSS2 Si showed attenuated tumor growth
(Figures 8a and b). A western blot (WB) analysis of tumor
tissue revealed accumulations of p53 and p21 at 8 and
14 days after PAPSS2 Si administration, with no detectable
PARP cleavage (Figure 8c). Next, we evaluated the prog-
nostic value of PAPSS2 expression using microarray data
from patients with breast cancer (http://kmplot.com/analysis/).
Patients with low PAPSS2 levels showed longer relapse-free
survival periods than patients with high PAPSS2 levels
(Figure 8d). We also analyzed gene expression data from
the Cancer Genome Atlas and found that PAPSS2 expres-
sion was upregulated in carcinoma breast tissue compared
with normal breast tissue (Figure 8e). Together, these results
indicate that PAPSS2 depletion induces premature senes-
cence through p53-p21 signaling pathway in a xenograft
tumor mouse model, and that PAPSS2 upregulation may be
involved, at least in part, in human breast cancer develop-
ment via suppression of premature senescence.

Discussion

Cellular senescence was originally observed in human
fibroblasts undergoing replicative exhaustion in vitro.43 As
neoplastic transformation involves events that inhibit the
senescence program, cancer cells are thought to have lost
the capacity to senesce. However, cancer cells can be readily
induced to undergo premature senescence by the hyper-
activation of oncogenes, the loss of tumor suppressors, and a
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variety of stresses in vitro and in vivo.44–47 To our knowledge,
no study has elucidated the importance of sulfation status in
the regulation of cellular senescence, although tremendous
attention has been paid to the role of sulfated PGs in a variety
of other biological processes. Here, we demonstrate that the
undersulfation of HSPGs, in particular desulfation at the 2-O

position of iduronate in HS, prematurely induces cellular
senescence through augmented FGFR signaling pathway.
FGF family, which consists of at least 22 distinct protein

members and is divided into seven subfamilies in humans,
governs many biological and pathological processes.48,49

Members of each subfamily show similarities in sequence as
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well as in biochemical and developmental properties.49

FGFs promote angiogenesis, proliferation, apoptosis, differ-
entiation, wound healing, chemotaxis, and motility in several
cell types. Because of its angiogenic, mitogenic, and anti-
apoptotic properties, FGFs are recognized as potential
oncoproteins.34 In particular, some researchers have reported
that FGF2 can suppress proliferation via a variety of
mechanisms, such as apoptosis50,51 and cell cycle
arrest.52,53 Although the relationship between FGFs and
HSPGs has been the subject of many studies, much remains

unknown about the HS-induced potentiation of FGF activity. In
this study, in contrast to previous reports,30–32,54 we discov-
ered that augmented FGF1/2-FGFR1 signaling triggers
cellular senescence due to an undersulfated HSPG status.
Moreover, we found that p53-p21 signaling is critical for the
induction of HS-dependent premature senescence. Depletion
of FGFR1 or AKT inhibits p53/p21 accumulation and finally
prohibited premature senescence. Our results demonstrate
the importance of the FGFR1-AKT-p53-p21 signal transduc-
tion cascade in sulfation status-dependent premature
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senescence. However, we observed mTOR phosphorylation
instead of DNA damage response in PAPSS2-mediated
premature senescence (Supplementary Figure S9). This
result supports the important role of mTOR in cellular
senescence.55,56 The present study is the first to suggest that
the proper modulation of basal FGFR1 activity that is tightly
linked to HS sulfation status is critical for preventing cellular
senescence both in vitro and in xenograft tumor mousemodel.
Senescent cells could trigger tumor clearance and limit tissue
damage via the innate immune response.57,58 Thus, we
suppose that a PAPSS2-mediated tumor suppressive
mechanism in a xenograft tumor mouse model might be
attributed to the cooperativity between tumor cell senescence
and the innate immune response.
FGFs performs pleiotropic functions through their binding to

cell surface receptors,34 two of which have been identified: the
high-affinity FGFRs and the low-affinity HSPGs.59 The
expression and sulfation status of HSPGs differ depending
on cell type,60 and HSPGs act as multifunctional regulators of
protein activity through a range of different mechanisms that

are dependent on specific HS–protein interactions.22 From the
many studies subjected to the relationship between HSPGs
and FGFs, it has been recognized that the binding of HS to
FGFs confer several biological advantages, such as protecting
FGFs from proteolysis, serving as a reservoir of FGFs, limiting
FGF diffusion, and increasing FGF affinity for its receptors.61

Several previous studies reporting that HS is required
for the bindings and activities of FGFs via the formation of
the FGF/HS/FGFR ternary complex and that inhibition of the
interaction between HS and FGF blocks FGFR signaling
led to the acceptance of the notion that HSPGs function
as FGF activators, although there was a lack of direct
evidence.30–32,61–63 In addition, FGF1/2 binds preferentially
to the 2-O position in HS, whereas the formation of the FGF/
HS/FGF receptor (FGFR) ternary complex and the mitogenic
activity of FGF1/2 require sulfation at the 6-O position in
HS.54,64,65 However, the exact role of HS in FGF signaling is
still a matter of considerable debate.33

In the present study, we found that FGF1 superfamily,
FGF1/2 readily binds to FGFR1 and leads the hyper-activation
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Figure 7 HS2ST1 depletion induces activation of FGFR1 signaling, resulting in premature senescence. (a) After transfection of either HS6ST1 Si or HS2ST1 Si, MCF7 cell
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of FGFR1 signaling in the absence of sulfated HSPG. In
contrast, HGF/Met signaling, another well-known ligand/
receptor signaling regulated by HS, is not affected by HS
sulfation status. Our results demonstrated that HSPG has a
critical role as a reservoir of FGF to avoid excess activation of
receptor signaling, but is not strictly required for FGFR
activation. From our results, we suggest that desulfated HS,
particularly 2-O-desulfated HS, allows FGF1/2 to bind
primarily to FGFR1 instead of HS, and leads to excessive
FGFR signaling. Therefore, we propose the hypothesis that
HS specifically acts as a fine-tuner of FGFR signaling through
modulating FGFand FGFR binding and strictly required for the
prevention of cellular senescence. The present study explains
how FGF signaling is tumor promoting in some contexts, but
tumor-suppressive in others. Our results are consistent with
previous studies demonstrating that FGFR1 can bind to FGF2
in the absence of heparin66 and that mutations in the heparin-
binding region of FGF2 reduce its affinity for cell-associated
HS, but do not affect the affinity for its receptor FGFR1.67

In conclusion, our findings suggest that the potential to
regulate FGF activity through HS-dependent interactions can
provide an attractive system for regulating cellular responses
to FGF in the extracellular environment. Specifically, HSPG
undersulfation can render cells incapable of fine-tuning FGF
signaling and can thereby induce premature senescence,

which can serve as a fail-safe mechanism of defense against
tumorigenesis. Fujita et al.68 report that downregulation of
telomere repeat binding factor 2 (TRF2) is involved in the onset
of cellular senescence. Furthermore, Biroccio et al.69 show
that HS3ST4, which is positively regulated by TRF2, inhibits
the recruitment of natural killer (NK) cells. Based on these
previous reports and our present results, we propose that cell
surface HS sulfation could trigger cellular senescence by
modulating receptor signaling and could modify innate
immune surveillance by affecting sulfated HS recognition by
NK cells. Thus, targeting the sulfation pathway of PGs or
performing immunotherapy for HS at the cell surface may
provide therapeutic benefits to cancer patients.

Materials and Methods
Cell culture. MCF7 and HDF cells were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM; WelGENE, Daegu, Korea). A549 cells were cultured in RPMI 1640
(WelGENE). HCT116 parental, p53− /−, and p21− /− isogenic cell lines were
cultured in McCoy’s 5A medium (WelGENE). MCF10A cells were cultured in
DMEM/F-12 (WelGENE). All cells were supplemented with 10% fetal bovine serum
(Lonza, Basel, Switzerland), 1% penicillin, and streptomycin solution (WelGENE) at
37 °C in a 5% CO2 incubator.

RNA interference and plasmid transfection. All siRNAs
(Supplementary Table 2) were obtained from Bioneer Inc. (Daejeon, Korea). Cells
were transfected with 100 nM siRNA duplexes using RNAiMAX (Invitrogen,
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Figure 8 PAPSS2 depletion retards tumor growth due to the induction of cellular senescence in a xenograft tumor mouse model. (a) Tumor volume in xenograft mice (n= 5)
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Karlsruhe, Germany). Transfection of plasmids was carried out using Lipofectamine
2000 reagent (Invitrogen) according to the manufacturer’s instructions. The plasmid
expressing the Flag-tagged PAPSS2 was generated by ligating polymerase chain
reaction (PCR) products into p3xFlag CMV7.1 at Hind III and Sal I sites, (Macrogen.
Seoul, Korea). The sequences were as follows: 5'-TAAGCTTATGTCGGGGATCAA-3'
(forward) and 5′-TGTCGACTTAGTTCTTCTCCA-3′ (reverse). Mammalian expression
vectors encoding HA-tagged wild-type (WT) FGFR1 or HA-tagged KI FGFR1, a
catalytically inactive mutant of FGFR1 (Y653/654F), were kindly provided by
Dr. Daniela Rotin (University of Toronto, Toronto, Canada).70 To create GFP-FGFR1
fusion protein, WT FGFR1 was released by PCR from HA-tagged WT FGFR1 and was
inserted to pAcGFP-N1 (Clontech, Mountain View, CA, USA). The primer sequences
were as follows: 5′-CCGCTCGAGGCCATGGGCATGTGGAGCTGGAAGTGCC
TCCTCTTCTGGGCTGTGCTGGTCACA-3′ (forward) and 5′-CCCAAGCTTGCG
GCGTTTGAGTCCGCCATTGGCA AG-3′ (reverse). PCR products were digested and
subcloned into the pAcGFP-N1 vector at Xho I and Hind III sites.

WB, IP, and FGFs neutralization. For WB analysis, cell lysates were
prepared in RIPA lysis buffer containing protease inhibitors (Roche, Indianapolis, IN,
USA) and phosphatase inhibitors (Sigma-Aldrich, St Louis, MO, USA). Lysates were
mixed with 2 × Laemmli sample buffer, boiled, and subjected to sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE). After transferring proteins
to a nitrocellulose membrane, WB was performed by blocking the membrane with
5% non-fat dried milk and incubating with various primary antibodies (Abs) followed
by horseradish peroxidase-conjugated secondary Abs (Supplementary Table 3). WB
detection was conducted with ECL reagents (Thermo Scientific, Waltham,
MA, USA).
For IP, cell lysates were prepared in 1% NP-40 lysis buffer (25 mM Tris-HCl at pH

7.5, 150 mM NaCl, 1% NP-40) containing protease inhibitors (Roche) and
phosphatase inhibitors (Sigma-Aldrich). The lysates were precleared with Protein
G- or A-Sepharose beads (Sigma-Aldrich), conjugated with each indicated Ab, and
tumbled with Protein G- or A-Sepharose beads. The immune complexes were then
subjected to SDS-PAGE, which was followed by WB.
For neutralization of FGFs, 1, 2.5, or 5 μg/ml of a blocking antibody for FGF2 (anti-

FGF2 neutralizing antibody; Millipore, Charlottesville, VA, USA) and 5 μg/ml of a
blocking antibody for FGF1, FGF3, and FGF4 (anti- FGF1, FGF3, and FGF4
neutralizing antibodies; R&D Systems, Minneapolis, MN, USA) was exogenously
added daily after 6 h siRNA transfections and incubated for 3 days. After incubation,
WB, SA-β-Gal staining, and quantification of relative cell number were conducted.

Cell growth rate, colony forming assay, and cell cycle analysis.
Cell viability was determined using a trypan blue exclusion in which cell
suspensions were stained with 0.4% (w/v) trypan blue (GIBCO, grand island, NY,
USA) at a 1 : 1 ratio, and viable (unstained) and dead (stained) cells were counted
by hemocytometer microscopy. Cell viability was shown as a value relative to the
number of Con Si-transfected cells. Clonogenicity was examined using a colony
forming assay. Cells were seeded at a density of 1 × 104 cells per 60-mm dish in
triplicate and cultured for 7 days. Colonies were stained with Diff-Quick (Sysmex,
Kobe, Japan).
For cell cycle analysis, cells were collected by trypsinization, fixed in 95% ethanol,

washed in phosphate-buffered saline (PBS), and resuspended in 1 ml PBS containing
1 mg/ml RNase and 50 mg/ml propidium iodide (Sigma-Aldrich). After incubation in
the dark for 30 min, cell cycle distributions were analyzed using a fluorescence-
activated cell sorting (FACS) Calibur flow cytometer (BD Biosciences, San Diego,
CA, USA).

SA-β-Gal staining. Cells and tumors were stained for β-galactosidase activity
as described in Dimri et al.71 In brief, cells were washed in PBS and fixed for 5 min
in 3.7% formaldehyde. Fixed cells were then incubated at 37 °C (without CO2) with
fresh staining solution consisting of 1 mg/ml 5-bromo-4-chloro-3-indolyl β-D-
galactoside (X-Gal) in 40 mM citric acid/sodium phosphate (pH 6.0), 5 mM
potassium ferrocyanide, 5 mM potassium ferricyanide, 150 mM NaCl, and 2 mM
MgCl2. Staining was evident after 12–16 h.

Tumor-xenograft mice. Xenograft mice were established as described
previously.72 In brief, a single-cell suspension of H460 cells (1 × 106) was injected
subcutaneously into the lateral hind leg of 6-week-old BALB/c nude mice (n= 5).
Average tumor volume was determined as (L ×W2)/2; measurements of tumor
length (L) and width (W) were taken with a caliper. When the tumor reached an
average volume of ~ 50 mm3, a siRNA mixture with AteloGenes Local Use (KOKEN,

Koraku, Tokyo) was injected to wrap up the whole tumor mass. After 5 days, a
second injection was performed. Tumor volumes were determined daily after siRNA
gel injection. Mice were killed 8 or 14 days after xenograft injection, and tumors
were removed for further analysis. All animal studies were conducted in accordance
with the guidelines of the Institutional Animal Care and Use Committee of the Korea
Institute Radiological and Medical Sciences (Approval No. KIRAMS 2012-037).

Determination of the sulfation level of HS. For determination of the
level of HS by a confocal microscopy, cells were fixed, blocked, and then incubated
with mouse anti-human HS (10E4 epitope; US Biological, Salem, MA, USA). After
washing, cells were stained with PE-conjugated goat anti-mouse IgG+IgM (Jackson
ImmunoResearch, Suffolk, UK), mounted, and then visualized using a LSM-710
confocal microscope and × 63 objective lens (Carl Zeiss, Jena, Germany). For
quantification of the level of HS, stained cells were measured using a FACS Calibur
flow cytometer (BD Biosciences).

FGFR1 dimerization assay and competition assay of heparin-
derived oligosaccharides. MCF7 cells were co-transfected with plasmids
encoding HA-tagged or GFP-tagged WT FGFR1 6 h before transfection with Con Si
or PAPSS2 Si. Transfected cells were lysed with 1% NP-40 lysis buffer containing
protease and phosphatase inhibitors, and cell lysates were immunoprecipitated
using mouse anti-GFP antibody. The precipitates were separated by 7.5% SDS-
PAGE and then blotted with anti-HA antibody.

For competition assay of heparin-derived oligosaccharides, MCF7 cells were
transfected with Con Si or PAPSS2 Si 6 h before incubation for 3 days with or without
5 nmol/ml heparin-derived octasaccharides. Cells were lysed with RIPA buffer
containing protease and phosphatase inhibitors and subjected to WB. All heparin-
derived octasaccarides were obtained from Neoparin Inc. (Alameda, CA, USA). In
brief, 2-O-desulfated heparin is a derivative in which only the O-sulfated groups on
C-2 of uronic acid residues have been removed. 6-O-desulfated heparin is a
derivative in which most O-sulfate groups on C-6 of glucosamine residues have been
removed but most of the 2-O-sulfate/3-O-sulfate groups remain intact. Fully
desulfated heparin is a derivative in which allO-sulfate and N-sulfate esters of heparin
have been removed without changing the backbone structure. Oversulfated heparin is
a derivative in which all primary hydroxyls in glucosamine residues and a large
proportion of secondary hydroxyl groups in disaccharide units have been substituted
by O-sulfate esters.

Statistical analysis. Unless otherwise stated, comparisons between groups
were performed using two-tailed Student’s t-tests. Values of Po0.05 were
considered statistically significant.
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