
Hoxb8 regulates expression of microRNAs to control
cell death and differentiation
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Hoxb8 overexpression immortalises haematopoietic progenitor cells in a growth-factor-dependant manner and co-operates
with interleukin-3 (IL-3) to cause acute myeloid leukaemia. To further understand how Hoxb8 contributes to myeloid cell
immortalisation, we generated IL-3-dependant myeloid cells expressing Hoxb8 under the control of an inducible promoter.
Downregulation of Hoxb8, in the presence of IL-3, caused cell-cycle arrest and apoptosis in the majority of cells. Apoptosis was
dependant on Bax and Bak and, in part, on Bim, which was repressed by Hoxb8. Deletion of the miR-17B92 seed sequences in
the Bim 30UTR abolished Hoxb8-dependant regulation of Bim reporter constructs. Expression of all six miRNAs from this
cluster were elevated when Hoxb8 was overexpressed. The miR-17B92 cluster was required for repression of Bim in Hoxb8-
immortalised cells and deletion of the miR-17B92 cluster substantially inhibited Hoxb8, but not Hoxa9, mediated survival
and proliferation. Hoxb8 appears to promote miR-17B92 expression through c-Myc, a known transcriptional regulator of the
miR-17B92 cluster. We have uncovered a previously unrecognised link between Hoxb8 expression and microRNAs that
provides a new insight into the oncogenic functions of Hoxb8.
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Hox genes are a family of transcription factors characterised
by a conserved homeodomain motif.1 Hox genes regulate
transcription as part of a complex with homeodomain-
containing proteins of the Pre-B cell/CEH-20 family
(PBC proteins, Pbx proteins in vertebrates) and the Meis
family.2,3 Hox genes are critical for the development of body
patterning, and several Hox genes from the A and B clusters
are important for normal haematopoiesis.4 For example,
transgenic expression of Hoxb4, Hoxb8 or Hoxa9 results in
expansion of the haematopoietic stem cell compartment,5–7

whereas deletion of Hoxa9 results in leukopaenia as a
consequence of stem cell depletion.8,9

Deregulated Hox gene expression is linked to leukaemia.
Hoxb8, the first Hox gene unequivocally demonstrated
to be an oncogene, co-operates with interleukin-3 (IL-3) to
cause acute myeloid leukaemia (AML).6,10–12 In human AML,
HoxB8 is upregulated as a consequence of overexpression
of another homeobox protein, CDX2.13 Overexpression of
Hoxb8 in haematopoietic progenitor cells, in the presence
of high concentrations of IL-3, permits the generation
of growth factor-dependant myeloid cell lines capable of
self-renewal,6,14,15 combining the proliferative signal from IL-3

with the function of Hoxb8 overexpression to block myeloid
differentiation.16,17 Some evidence suggests that Hox genes
capable of immortalising haematopoietic cells, such as
Hoxb8, may have additional functions to control apoptosis.
For example, AML cell lines harbouring mixed lineage
leukaemia (MLL) rearrangements undergo apoptosis when
HoxA9 expression is silenced,18 and Hoxa9-deficient mice
have increased lymphocyte apoptosis.9 In Caenorhabditis
elegans, Hox genes regulate the viability of specific neurones
by directly regulating the expression of a proapoptotic Bcl-2
family member, EGL-I.19,20 Until now, a direct link between
Hoxb8 and cell death pathways has not been identified.

We have used a 4-hydroxytamoxifen (4-OHT)-inducible
lentiviral expression system to regulate Hoxb8 expression
in IL-3-dependant myeloid progenitor cells. In response to
Hoxb8 downregulation, cells arrest in the G1 phase of the cell
cycle and the fate of most cells was to undergo apoptosis,
even in the presence of IL-3. This cell death was absolutely
dependant on the Bcl-2-regulatable pathway, because it
was completely blocked by deletion of both Bax and Bak.
Downregulation of Hoxb8 resulted in elevated Bim
expression, which was required for efficient apoptosis after
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Hoxb8 withdrawal. Hoxb8-dependant regulation of Bim
expression required the Bim 30UTR (untranslated region)
and, specifically, seed sequences of the miR-17B92 cluster.
We show that Hoxb8 expression resulted in higher expression
of all microRNAs (miRNAs) from the miR-17B92 cluster. The
ability of Hoxb8-immortalised cells (which we refer to as FDM
cells for factor-dependant myeloid cells) to clonogenically
proliferate was dependant on the presence of at least one
allele of miR-17B92. We have gone on to identify a subset of
miRNAs that are regulated in a Hoxb8-dependant manner.
These findings link, for the first time in mammalian cells, Hox
gene expression with the regulation of miRNAs and apoptosis
and provide a new insight into the oncogenic functions of
Hoxb8.

Results

Hoxb8 overexpression is required to maintain IL-3 FDM
cells. We previously generated IL-3-dependant myeloid
cell lines using retroviral overexpression of Hoxb8 to study
the genes required for apoptosis induced by IL-3 depriva-
tion.14,15,21 To study the response of cells when IL-3 is
maintained but Hoxb8 expression is varied, we cloned
Hoxb8 into a lentiviral expression system in which expression
is induced by 4-OHT.22 In this system, Hoxb8 is not fused to
an estrogen-receptor tag.23 C-kit-positive, lineage-negative
(c-kitþ ve/lin� ve) haematopoietic progenitor cells (HPC) from
C57BL/6 E14.5 embryos were infected with Hoxb8 lentivirus
in the presence of 4-OHT and IL-3 to generate
IL-3-dependant myeloid progenitor FDM cells. Hoxb8
expression declined to undetectable levels 96 h after
4-OHT removal and re-addition of 4-OHT restored expression
of Hoxb8 within 48 h (Figure 1a and Supplementary Figure S1a).
We also used a tetracycline-repressible lentiviral expression
system in which Hoxb8 expression was also tightly regulated
(Supplementary Figures S1b and c).

We tested the requirement for Hoxb8 in immortalisation
using colony assays to compare c-kitþ ve/lin� ve progenitors
infected with inducible enhanced green fluorescent protein
(eGFP) or Hoxb8 (Figure 1b). Colonies were efficiently
generated in the presence of Hoxb8 expression but not in
the presence of GFP. The few colonies generated from
progenitor cells infected with Hoxb8 in the absence of 4-OHT
probably arose as a result of background Hoxb8 expression.
Cytokines other than IL-3 could not maintain colony growth in
soft agar or viability in liquid culture (Supplementary Figures
S1d and e). These data demonstrate that c-kitþ ve/lin� ve

progenitors immortalised with Hoxb8 in the presence of IL-3
are strictly dependant on both Hoxb8 and IL-3 for survival and
proliferation.

Following Hoxb8-dependant immortalisation, all FDM
clones expressed lineage markers and no longer expressed
c-kit. Surface antigen expression remained largely
unchanged in the presence or absence of 4-OHT or following
the addition of GM-CSF. Some cells expressed higher levels
of CD11b and F4/80 after 4-OHT withdrawal (Supplementary
Figure S2a) and the morphology of a population of cells
altered, changing from small cells with relatively large nuclei
(promyelocytes) to larger, non-adherent cells resembling
monocytes, with occasional granulocytes (Supplementary

Figure S2b). These data show that Hoxb8 imposes a block on
differentiation after commitment to a myeloid lineage,
as previously observed,23 that is released in a proportion of
cells when Hoxb8 expression is downregulated.

Reduced Hoxb8 expression caused cells to exit S-phase
and accumulate in G1 despite the continued presence
of abundant IL-3 in the culture (Figures 1c and d). Virtually
no cells remained in S-phase 6 days after 4-OHT removal.
Thus Hoxb8 overexpression was required for continued
proliferation in response to IL-3 receptor signalling. This was
not a result of diminished expression of the IL-3 receptor
components as IL-3 beta common, IL-3-specific beta chain
and IL-3 alpha-chain remained detectable after 4-OHT with-
drawal (Supplementary Figure S3a and b) and re-addition of
4-OHT was sufficient to initiate re-entry into S-phase of at
least a proportion of cells, accompanied by concomitant
increase in the number of viable cells (Figures 1c, d and e).
The cell counts in these same cultures showed that cells
with uninterrupted Hoxb8 expression steadily increased in
number, although a ‘plateau’ effect was observed when cells
required replating at day 6. After 4-OHT was removed, the
rate of cell division declined between days 3 and 6, and total
cell number fell thereafter. 4-OHT re-addition after 3 days
restored proliferation. Together, these data showed that
maintenance of Hoxb8 overexpression was required for cells
to respond to proliferative signals transduced by IL-3.

Hoxb8 withdrawal activates Bax and Bak-dependant
apoptosis pathways. The ultimate fate of most cells after
Hoxb8 downregulation was to undergo apoptosis (Figure 1f).
The decline in cell viability was concomitant with the
decline of Hoxb8 to undetectable levels. Cells surviving
4-OHT withdrawal remained IL-3 dependant, eliminating the
possibility of selection of IL-3-independent populations
(Supplementary Figure S3c). Moreover, cells could not be
rescued from apoptosis by the addition of differentiation-
associated cytokines M-CSF or GM-CSF (Supplementary
Figure S3d).

In FDM cells, apoptosis following IL-3 deprivation is
regulated by the Bcl-2 family of proteins and is critically
dependant on two pro-apoptotic Bcl-2 family members,
Bax and Bak.14,24 To determine whether apoptosis induced
by Hoxb8 downregulation was also regulated by Bcl-2 family
proteins, we generated Hoxb8 FDM cells from E13.5 Bax� /� ;
Bak� /� HPC. When Bax� /� ;Bak� /� Hoxb8 FDM cells were
cultured in the absence of 4-OHT for 9 days, no decline in cell
viability was observed (Figure 2a). Further, apoptosis induced
by Hoxb8 downregulation in wild-type FDMs was blocked by
the caspase inhibitor Q-VD-Oph (Supplementary Figure S4a),
indicating that a Bax and Bak, caspase-dependant apoptotic
pathway was activated by downregulated Hoxb8 expression.
We next determined whether regulated Hoxb8 expression
was associated with changes in the expression of other Bcl-2
family members. We analysed the protein expression of Bcl-2
family proteins by western blot in wild-type Hoxb8 FDM cells
after 4-OHT withdrawal and following 4-OHT re-addition
(Figure 2b and Supplementary Figure S4b). The most
consistent finding, across multiple independently generated
lines, was reduced or absent Bim protein expression in the
presence of Hoxb8. Thus, independent of the baseline
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expression of Bim in any clone, as Hoxb8 expression
declined, Bim expression increased. This was also observed
in Bax� /� ;Bak� /� FDM cells (Supplementary Figure S4e).
Bim expression remained elevated after Hoxb8 restoration
over the time course examined, consistent with ongoing
apoptosis. Reduced Bim expression was also observed in
tetracycline-repressible Hoxb8 FDM cells (Supplementary
Figure S4c). Subtle variations in the expression of other Bcl-2
family members were observed. For example, in some clones,
Bmf levels increased, Bcl-xL levels declined and Mcl-1
increased over the time course, even after 4-OHT re-addition
(Supplementary Figure S4b). However, with the exception of
Bim, these variations were not consistently observed in all the
clones tested. qRT-PCR analysis demonstrated elevated Bim
mRNA over a time course of Hoxb8 downregulation

(Figure 2c), indicating that increased Bim protein expression
resulted from increased transcription or stability of Bim
mRNA.

We tested the requirement for Bim in apoptosis induced
by Hoxb8 downregulation using Hoxb8 FDM cells from
Bim-deficient mice.25 Hoxb8 expression was regulated by
4-OHT in Bim� /� Hoxb8 FDM cells as in wild-type cells
(Supplementary Figure S4d). We compared the viability of
Bim� /� with wild-type Hoxb8 FDM cells over 9 days following
4-OHT removal (Figure 2d). Significantly, fewer Bim� /�

Hoxb8 FDM cells underwent apoptosis, particularly during the
first 6 days. Thereafter, the viability of Bim� /� Hoxb8 FDM
cells declined to approach, but not reach, that of wild-type
cells. Thus, Bim is required for the efficient apoptosis
that follows Hoxb8 downregulation, and repression of Bim
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Figure 1 Hoxb8 FDM cells stop proliferating and undergo apoptosis in the absence of Hoxb8 expression. (a) Lysates from Hoxb8 FDM cells were prepared at the indicated
times after 4-OHT withdrawal and following 4-OHT re-addition after 4 days of withdrawal. Membranes were probed with antibodies to detect Hoxb8 and beta-actin as a loading
control. (b) Hoxb8 expression is required for colony formation. Viable c-kitþ ve/lin� ve cells were infected with Hoxb8 or eGFP encoding lentivirus, in the presence (þ ) or
absence (� ) of 4-OHT. Infected cells were single-cell sorted into 96-well plates and the number of colonies counted 14 days later. Results represent means±S.E.M. of four
independent infections of four independent pools of c-kitþ ve/lin� ve cells. (c) Cells in S-phase diminish after Hoxb8 downregulation. Hoxb8 FDM cells were cultured in IL-3
without 4-OHT (� ) or following re-addition of 4-OHT after a 3-day period of withdrawal (re-added). At the indicated time points, cell-cycle analysis was performed using
hypotonic PI buffer staining and flow cytometric analysis. The percentage of cells in S-phase was determined using the cell-cycle analysis software ModFit. Results indicate
means±S.E.M. of seven independent clones in three independent experiments. (d) Cells arrest in G1 after Hoxb8 downregulation. Hoxb8 FDM cells were prepared as
described in (c) and the percentage of cells in G1 phase was determined using Modfit. Results indicate means±S.E.M. of seven independent clones in three independent
experiments. (e) Hoxb8 expression maintains proliferation in IL-3. Hoxb8 FDM cells were cultured in IL-3 with 4-OHT (þ ), without 4-OHT (� ) or following re-addition of
4-OHT after a 3-day period of withdrawal (re-added). At the indicated time points, cell number was counted (see Materials and Methods). Results are means±S.E.M. of seven
independent clones in three independent experiments. (f) Hoxb8 expression maintains viability in IL-3. Cell viability was determined by PI exclusion and FITC-conjugated
AnnexinV staining from the same samples as described in (e). Results are means±S.E.M. of seven independent clones in three independent experiments
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expression is an important mechanism by which Hoxb8
maintains viable, IL-3-dependant cells. However, as many
Bim� /� Hoxb8 FDM cells eventually undergo apoptosis after
Hoxb8 downregulation, other Bax and Bak-dependant, Bim-
independent apoptosis pathways must also be activated.

Proliferative arrest following Hoxb8 withdrawal is
independent of apoptosis. The survival of more Bim� /�

and Bax/;Bak/FDM cells after Hoxb8 downregulation raised
the possibility that this experiment selected cells that
proliferated independently of Hoxb8 expression. To test
this possibility, we analysed whether Bim� /� and Bax� /� ;
Bak� /� Hoxb8 FDM cells still underwent cell cycle
arrest after Hoxb8 downregulation. After 9 days of 4-OHT
withdrawal, Bax� /� ;Bak� /� Hoxb8 FDM cells stopped
proliferating with similar kinetics to wild-type cells
(Figure 3a compared with Figures 1c and d). Cell-cycle
analysis comparing wild-type and Bim� /� Hoxb8 FDM cells
showed that Bim� /� FDM cells were slower to enter G1
arrest than wild-type cells, but by day 6 of 4-OHT deprivation,
virtually no wild-type or Bim� /� Hoxb8 FDM cells remained
in S-phase (Figure 3b). These data demonstrate that
blocking apoptosis does not result in the accumulation of
cells that proliferate independently of Hoxb8 expression. We
next determined whether Bax� /� ;Bak� /� and Bim� /�

Hoxb8 FDM cells surviving Hoxb8 downregulation were able
to form colonies in soft agar when Hoxb8 expression was

restored by replating in soft agar, in the presence of
abundant IL-3 and 4-OHT (Figure 3c). The number of
colonies generated after restoration of Hoxb8 expression
steadily declined over time in all clones tested. Deletion of
Bim or of both Bax and Bak offered no advantage in colony
formation. In fact, some Bim� /� Hoxb8 FDM clones had
a lower relative clonogenicity than wild-type or Bax� /� ;
Bak� /� Hoxb8 FDM clones 3 days after 4-OHT withdrawal.
These data indicate that the function of Hoxb8 to maintain
cell viability and self-renewal can be separated genetically.
Maintaining cell viability after Hoxb8 downregulation is not
equivalent to accumulating cells capable of continued self-
renewal. Our data suggest that the subpopulation of cells that
retain the capacity for clonogenic proliferation is not
expanded in vitro by blocking intrinsic apoptosis pathways.

Hoxb8-dependant regulation of Bim expression requires
the Bim 30UTR. Our data suggested that Bim is a target of a
Hoxb8-dependant gene repression mechanism. To define
the region of the Bim gene required for Hoxb8-dependant
repression, we used luciferase reporter constructs that
encoded 3.6 kB of the murine Bim promoter region upstream
of Exon 1, the first intron of Bim and the 30UTR of Bim. These
constructs were transiently transfected into 293T cells stably
overexpressing GFP or Hoxb8. Expression of Hoxb8 halved
luciferase activity only in cells expressing the Bim 30UTR
construct (Figure 4a). This result suggested that Hoxb8-
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Figure 2 Hoxb8-withdrawal-induced cell death is completely blocked by deletion of Bax and Bak and partially blocked by Bim. (a) Hoxb8 downregulation induces Bax/
Bak-dependant apoptosis. Bax� /� ;Bak� /� Hoxb8 FDM cells were cultured with IL-3 in the presence or absence of 4-OHT. At the indicated times, viability was determined
by PI exclusion and FITC-conjugated AnnexinV staining. Results are means±S.E.M. of five independent clones in two independent experiments. (b) Bim expression is
repressed by Hoxb8. Western blot analysis of Bcl-2 family proteins from lysates of wild-type Hoxb8 FDM cells cultured in IL-3 after 4-OHT withdrawal and following 4-OHT
re-addition on day 4 of 4-OHT deprivation. Membranes were probed with antibodies against Hoxb8, Bim, Bid, Bmf and Noxa. Arrow indicates Hoxb8. Bmf protein runs as a
doublet. (c) Bim mRNA increases after Hoxb8 downregulation. Real-time PCR analysis of RNA harvested from wild-type Hoxb8 FDM cells 0, 2, 4 and 6 days after 4-OHT
withdrawal. All samples were normalised against Sdh2a and Polr2a. Bim mRNA levels are expressed relative to the Bim mRNA level at 6 days after 4-OHT withdrawal (highest
Bim mRNA level). Results show means±S.E.M. of three independent pools in three independent experiments. (d) Deletion of Bim reduces apoptosis after Hoxb8
downregulation. Wild-type and Bim� /� Hoxb8 FDM cells were cultured in IL-3 in the absence of 4-OHT. Viability was determined by PI exclusion and FITC-conjugated
AnnexinV staining at the indicated time points. Results show means±S.E.M. of eight independent clones in three independent experiments
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dependant Bim repression involved mRNA stability and
possibly miRNAs. Several miRNAs can repress Bim expres-
sion, in particular miRNAs from the miR-17B92 cluster.26–29

To determine whether any miRNAs predicted to bind the Bim
30UTR were also regulated in a Hoxb8-dependant manner,
we profiled the changes in expression levels of all murine
miRNAs after Hoxb8 withdrawal by qPCR arrays (Figure 4b).
Most notable among the miRNAs expressed in the presence
of Hoxb8 were all members of the miR-17B92 cluster,
miR-17, miR-18, miR-19a, miR-20, miR-19b and miR-92
(Figure 4c). This significant upregulation of all members of
the cluster strongly suggests that Hoxb8 transcriptionally
regulates the cluster. Of the various miRNAs induced by
Hoxb8, miR-17, miR-19a/b, miR-92, miR-214 and miR-9 are
predicted by Targetscan (http://www.targetscan.org/) to
target the Bim 30UTR, although miR-9 is given an exceed-
ingly low ranking.30,31

To determine the region of the Bim 30UTR required for
Hoxb8-dependant repression, we used a GFP reporter
system in which GFP is fused to the regions of murine
Bim 30UTR extending from the stop codon for 4217
bases (corresponding to chr2:127,984,066-127,988,283).
The reporter constructs contain several predicted
miR-17B92 cluster binding sites. Reporter plasmids were
infected into 293T cells stably expressing Hoxb8 and flow
cytometry used to measure mean GFP fluorescence intensity
relative to cells expressing a reporter containing GFP alone
(Figure 5a). Hoxb8 overexpression decreased GFP expres-
sion in cells transfected with the Bim 30UTR reporter construct
retaining binding sites for miR-17 as well as miR-19a/b and
miR-92. No change in GFP expression was observed in cells
expressing reporter constructs with other segments of the
30UTR. This data, together with the changes of miRNA
expression observed after downregulation of Hoxb8, supports
the conclusion that miRNAs from the miR-17B92 cluster,
in particular miR-17, miR-19a/b and miR-92, mediate
Hoxb8-dependant repression of Bim.

We independently validated the changes in miR-17B92
expression observed after Hoxb8 downregulation.
We measured the abundance of mature miRNAs from this

cluster in the presence or absence of induced Hoxb8
expression in independent Hoxb8 FDM cell lines using
Taqman microRNA assays. As observed in the qPCR array,
the expression of miR-17-5p, miR-19a-3p, miR-19b-3p and
miR-92-3p decreased significantly after 4-OHT withdrawal
(Figure 5b). No decrease in miR-17-3p and miR-18a-5p was
observed, with miR-17-3p being at almost undetectable
levels. miR-18a-5p expression remained stable.

We then determined whether other predicted targets of the
miR-17B92 cluster were also differentially expressed in the
presence and absence of Hoxb8. Cyclin-dependant kinase
inhibitor 21 is described as regulated by the miR-17B92
cluster and PTEN expression is repressed by miR-17-5p and
miR-19 (ref 32–34). Western blots of lysates from three
independent Hoxb8 FDM clones cultured in the presence or
absence of 4-OHT were probed with antibodies against Bim,
p21 and the phosphatase PTEN (Figure 5c). The baseline
expression of Bim varied from clone to clone, but as we have
observed in numerous independent clones and again in these,
reduced Hoxb8 expression is always associated with elevated
Bim expression. We observed variation in p21 expression
across the three lines, with a subtle increase in p21
expression in the absence of Hoxb8 in two of three lines.
This may reflect the proportion of cells within each clone that
have recently entered G1 arrest, which we have previously
observed is associated with transient p21 expression in these
cells.35 PTEN expression was consistently reduced in all the
three clones after Hoxb8 expression was downregulated
(Figure 5c). As miR-17-5p and miR-19a/b expression levels
decline after Hoxb8 withdrawal, the diminished expression of
PTEN is probably independent of the miR-17B92 cluster. The
data suggest that the principal putative miR-17B92 target that
is repressed in these cells is Bim.

miR-17B92 is required for the efficient survival and
proliferation of Hoxb8 FDM cells. To determine whether
miR-17B92 was also required for Hoxb8-dependant
progenitor cell survival and proliferation, we took advantage
of mice in which the miR-17B92 alleles are flanked
by LoxP sites (miR-17B92flx/flx), permitting deletion of the
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miR-17B92 cluster following cre-recombinase expression.29

We utilised miR-17B92flx/flx constitutive Hoxb8 FDM
cell lines and included FDMs immortalised with Hoxa9
as a control. We reasoned that if Hoxb8 did not
require miR-17B92, deletion of the cluster would have no
effect on Hoxb8-dependant immortalisation. miR-17B92flx/flx

Hoxb8 and Hoxa9 FDM cells were cultured in semi-solid
agar after infection with cre-recombinase lentivirus and
the number of colonies counted after 14 days. Both
Hoxb8 and Hoxa9 miR-17B92flx/flx FDM cells formed
colonies after cre-recombinase expression (Figure 6a),

despite an anticipated cre-recombinase-associated
reduction in colony formation. Random colonies were
selected from all independent experiments and genotyped
to establish deletion of miR-17B92 alleles. We found
that 85% of miR-17B92flx/flx Hoxb8 colonies retained at
least one miR-17B92 allele while 50% of Hoxa9-immorta-
lised miR-17B92flx/flx colonies had deleted both alleles
(Figure 6b). This result established that while colonies could
be generated from miR-17B92flx/flx cells, a strong selection
bias against deletion of miR-17B92 was evident in Hoxb8
FDM cells.
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To explore the possibility that deletion of the miR-17B92
cluster in Hoxb8 FDMs resulted in increased levels of Bim,
western blots of miR-17B92� /� Hoxb8 FDM cells before and
after treatment with cre-recombinase were probed with
antibodies against Bim and cre-recombinase. The cre-
recombinase-induced deletion of the miR-17B92 cluster
resulted in an increase in Bim expression which was not
observed when cre-recombinase was expressed in WT cells
or when GFP was expressed in miR-17B92flx/flx cells
(Figure 6c). This result clearly indicates that Bim repression
by Hoxb8 is mediated by the miR-17B92 cluster.

Upregulated expression of miR-17B92 may be a direct or
indirect consequence of Hoxb8 expression. A region 2 kB
upstream of the transcriptional start site of the MIR17HG
locus contains a putative Hox binding site. We therefore
immortalised progenitor cells with a Flag-tagged Hoxb8
construct and performed a chromatin immunoprecipitation
(ChIP)-PCR experiment to detect any direct binding of Hoxb8
within the miR-17B92 promoter (Supplementary Figure S5a
and b). We selected primers that covered the main promoter
regions of MIR17HG, as well as regions up-and downstream.
We found no significant enrichment for Hoxb8 binding above

that observed for beta-actin, a negative control.
This strongly suggests Hoxb8 does not bind within the
promoter region of MIR17HG. The best described transcrip-
tional regulator of the miR-17B92 cluster is c-Myc.36

We speculated that Hoxb8 expression may be associated
with c-Myc expression. We used western blotting to visualise
c-Myc expression levels in three independently derived Hoxb8
FDM cell lines in the presence or absence of 4-OHT
(to regulate Hoxb8 expression). In each clone, we observed
a reduction in c-Myc expression when Hoxb8 expression
declined (Figure 6d). These data support the hypothesis
that miR-17B92 expression, in the presence of Hoxb8, is a
consequence of c-Myc expression. The mechanism by which
Hoxb8 maintains c-Myc levels remains to be determined.

Discussion

Hoxb8 was the first Hox gene demonstrated to function as an
oncogene, contributing to the development of AML.6,10,12

When overexpressed, Hoxb8, like other oncogenic Hox
genes, imposes a block on differentiation. However, the
molecular targets regulated by Hoxb8 remain largely
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Three individual clones, C1, C2 and C3, are shown. Arrow indicates Hoxb8

Hoxb8 regulates microRNAs
M Salmanidis et al

1376

Cell Death and Differentiation



unknown. Here we show that an additional critical role of
Hoxb8 overexpression is suppression of apoptosis, achieved
in part by repression of Bim. Furthermore, we have identified
the miR-17B92 cluster as a mediator of Hoxb8-dependant
Bim repression. Our data strongly suggest that a larger subset
of miRNAs are also involved in the block to differentiation and
apoptosis imposed by Hoxb8 overexpression and the
response when that block is released. The link between
Hoxb8 and miR-17B92 expression has not previously been
described. Hoxb8 and paralogues Hoxa7, Hoxc8 and
Hoxd8 are themselves regulated by the miR-196 miRNAs.37

However, the concept that some or all of the oncogenic
functions of Hoxb8 might be mediated through the expression
of other miRNAs is a novel finding for which, to our knowledge,
no precedent exists.

miR-17-92 is a polycistronic miRNA cluster located in the
human genome at chromosome 13q31.3. The cluster
contains six mature miRNAs, miR-17, miR-18a, miR-19a,
miR-20a, miR-19b and miR-92. Strong evidence supports the
oncogenic effects of overexpression of miR-17B92. Genomic
amplification and elevated expression of miR-17B92 expres-
sion is recognised in several tumour types, including diffuse
large B-cell lymphoma,38 Mantle Cell Lymphoma39 and
several types of solid tumours.40,41 In the absence of copy
number changes, other transcription factors, notably c-Myc,
directly upregulate miR-17B92 expression.36 Co-expression
of c-Myc and miR-17B92 cooperate to promote lymphoma-
genesis.42 In the absence of any direct binding by Hoxb8 in the
miR-17B92 genomic locus, we observed a correlation
between Hoxb8 expression, miR-17B92 elevation and
c-Myc expression. This suggests a pathway in which c-Myc,
expressed at elevated level in the presence of Hoxb8, drives
expression of miR-17B92. The mechanism by which

Hoxb8 maintains c-Myc levels remains to be determined.
Our success in immunoprecipitating Hoxb8 under ChIP
conditions makes it now possible to undertake a ChIP-Seq
approach to identify bona fideHoxb8 targets, including miRNA
genes and possibly c-Myc.

Our data shows that Hoxb8 specifically requires miR-17B92
to repress Bim expression and efficiently maintain the survival
and proliferation of hematopoietic cells. This requirement was
evident in the strong selection against deletion of miR-17B92 in
Hoxb8-immortalised FDM cells and suggests that elevated miR-
17B92 expression, driven by Hoxb8, is an important mechan-
ism of Hoxb8 oncogenic activity. This may also be true of other
Hox genes, as half the Hoxa9-immortalised colonies from miR-
17B92flx/flx FDM cells also retained at least one miR-17B92
allele. This is supported by observations that rearrangements of
the MLL locus cause AML that is dependant on endogenous
Hoxa9 (ref 43,44) and that leukaemic stem cells from MLL-
associated leukaemias express higher levels of miR-17B92
than normal progenitor cells.32 However, our data also clearly
show that miR-17B92 is not absolutely required for Hoxa9-
dependant immortalisation.

Bim deletion protected cells from apoptosis after
downregulation of Hoxb8, showing that repression of Bim
expression is one mechanism by which Hoxb8 maintains cell
viability. Bim is required for normal haematopoiesis and
deletion of Bim results in leukocytosis and diminished
apoptosis in response to a range of stimuli.25 It is well
established that Bim mRNA is regulated by miR-17B92. It is
tempting to conclude that Bim regulation by Hoxb8 is a key
molecular mechanism underpinning Hoxb8 onocgenic func-
tion, as both deletion of Bim and enforced expression of
miR17B92 can drive the generation of lymphoma and
lymphoproliferative disease.42,45,46 However, deletion of Bim
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Figure 6 Hoxb8 FDM cells require the miR-17B92 cluster for efficient survival and proliferation. (a) Clonogenic potential of miR-17B92flx/flx Hoxb8- and Hoxa9-
immortalised FDM cells after infection with lentiviral constructs encoding constitutive cre-recombinase. Cells were plated in soft agar and the number of colonies counted after
14 days. Results are mean±S.E.M. of two independent pools in three independent experiments. (b) Deletion of miR-17B92 is selected against in Hoxb8 FDM cells. Colonies
derived from (a) infected with cre-recombinase expressing lentivirus were transferred to liquid culture and genomic DNA harvested for genotyping by PCR. Colonies were
scored depending on whether cells had deleted both miR-17B92 alleles (flx/flx) or had retained at least one allele (þ /þ ;þ /flx). Values in brackets indicate percentage of
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independent experiments. Chi-square test P-value of 0.00058. (c) Western blot of Bim expression in miR-17B92flx/flx Hoxb8 FDM cells after miR-17B92 deletion. Cells were
left uninfected or infected with either a 4-OHT-inducible GFP or cre-recombinase encoding lentivirus. After selection, cells were induced with 4-OHT for 14 hours before lysates
were probed with antibodies against Bim, Cre and beta-actin as a loading control. Arrow indicates cre (d) Western blot of c-Myc expression in three independent clones of WT
Hoxb8 FDM cells. Cells were cultured in the presence (þ ) or 4-day absence (� ) of 4-OHT. Membrane was probed with antibodies against Hoxb8, c-myc and beta-actin as a
loading control
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(or Bax and Bak) was not sufficient to promote clonogenic
survival or growth-factor-independent proliferation in our
experiments. In contrast, deletion of miR-17B92 significantly
diminished the capacity of Hoxb8 to maintain clonogenic
potential, indicating that miR-17B92-regulated targets other
than Bim are equally, if not more, important in Hoxb8-
dependant immortalisation. Although other published data
suggest these targets include p21 or PTEN (ref 32–34,36,47),
our data do not support the hypothesis that p21 or PTEN
are directly regulated by Hoxb8 in our cells. Full characterisa-
tion of bone fide miRNA target mRNAs remains a
considerable experimental challenge.48 Other approaches,
which capture and sequence mRNAs in complex with
the RNAi-induced silencing complex, may provide a more
robust approach.

We have identified that the ability of Hoxb8 overexpression
to maintain viability and proliferation of haematopoietic
progenitor cells relies crucially on the capacity of Hoxb8 to
maintain miR-17B92 expression, and for this miRNA cluster
to regulate critical targets that include Bim. The regulation of
miR-17B92 and other miRNAs in a Hoxb8-dependant
manner provides a novel insight into the oncogenic functions
of Hoxb8 and identifies a subset of miRNAs that may crucially
regulate the block in differentiation and maintenance of
self-renewal potential that contribute to leukaemiagenesis.
Identification of other key targets regulated by miR-17B92
and other miRNAs in our model may provide the necessary
means to specifically target critical deregulated pathways in
these malignancies.

Materials and Methods
Cloning. The mouse Hoxb8 cDNA was amplified using PCR from pET Hoxb8
HIS-tag kana and cloned into the 4-OHT inducible, pF 5xUAS eGFP SV40 puro
GEV16 lentiviral plasmid49 and the doxycycline repressible, pF 7xTetOP GSlinker
RS PGK Hygro TetRVP16 lentiviral plasmid as described in Supplementary
Materials and Methods and Supplementary Tables 1 and 2. Both plasmids were
kind gifts from Dr. John Silke (Walter and Eliza Hall Institute, Parkville, VIC,
Australia). Constitutive expression of Hoxb8 as well as Hoxa9 was achieved by
cloning Hoxb8 or HoxA9 into the lentiviral vector, pFU SV40 puro W. Cre-
recombinase was also cloned into this vector system.

The Bim 3.6 kB promoter region upstream of Exon 1 as well as full-length Intron 1
were cloned into the pGL2 basic plasmid using restriction enzyme sites HindII and
KpnI while the Bim 30UTR was cloned into the pGL3 promoter plasmid using
restriction enzyme sites SpeI and BamHI. All plasmids were a kind gift from Hamsa
Puthalakath (LaTrobe University, Melbourne, VIC, Australia). The various Bim
30UTR segments were cloned into the FUGW lentiviral plasmid using an EcoRI/
EcoRI site. All constructs were a kind gift from Dr. Marco Herold (Walter and Eliza
Hall Institute).

Constitutive cre-recombinase was expressed using the pFU cre PGK Hygro
W plasmid, a kind gift from Dr. John Silke (Walter and Eliza Hall Institute).
Doxycycline inducible cre-recombinase expression was achieved using the
pFTREtight MCS rtTAadvanced GFP lentiviral vector (Kahn, Okamoto and
Huang—manuscript in preparation). Cre-recombinase was digested from the pFU
cre-PGK Hygro W plasmid using BamHI/NheI and ligated into the BamHI/NheI
digested pFTREtight MCS rtTAadvanced GFP lentiviral vector. Successful ligation
was confirmed by diagnostic digest.

Mice. All wild-type cell lines were derived from C57BL/6 E14.5 embryos.
The Bim� /� , Bax� /� ; Bak� /� and miR-17B92flx/flx mice have been previously
described.25,29,50

Hoxb8 FDM cell line generation. IL-3-dependant Hoxb8 FDM cells were
generated by isolating c-kit-positive, lineage-negative, haematopoietic progenitors
from E14.5 fetal livers by flow cytometry using an antibody cocktail mix of

c-kit-APC, Gr-1-FITC, NK1.1-FITC, B220-FITC and TER-119-FITC (All from BD
Pharmingen, North Ryde, NSW, Australia). Cells were infected via spinoculation
with 4-OHT-inducible or doxycycline-repressible Hoxb8 lentivirus and 5mg/ml
polybrene at 30 1C for 90 min at 2500 r.p.m. 4-OHT-inducible cell lines were
selected with 0.5mg/ml of puromycin (Sigma-Aldrich, St. Louis, MO, USA) for 10
days while doxycycline-repressible cell lines were selected with 200mg/ml
of hygromycin (Roche, Dee Why, NSW, Australia) for 14 days. After selection,
4-OHT-inducible cell lines were continuously maintained in low glucose DMEM
supplemented with 10% fetal calf serum, 0.25 ng/ml IL-3 (R&D Systems,
Minneapolis, MN, USA) and 0.1mM 4-OHT (Sigma-Aldrich) to induce Hoxb8
expression. Doxycycline-repressible cell lines were cultured as per 4-OHT-
inducible cell lines, however, in the absence of 4-OHT. Repression was achieved
with 0.5mg/ml of doxycycline (Sigma-Aldrich). Individual clones were selected
using soft agar cloning as previously described.15

Reverse transcription and real-time PCR. RNA was extracted from
5.5� 106 cells using the RNeasy RNA extraction kit (Qiagen, Chadstone, VIC,
Australia), as per the manufacturer’s instructions. In all, 1.5mg of RNA was
reverse transcribed using H-HLMV (Promega, South Sydney, NSW, Australia) and
random primers (Promega, South Sydney, NSW, Australia). Levels of Bim mRNA
were quantitated using the Universal Probe Library (Roche, Melbourne, VIC,
Australia) and Faststart Taqman Probe Mastermix (Roche, Melbourne, VIC,
Australia). Experiments were run using the ABI 7900 HT instrument (Applied
Biosystems, Foster City, CA, USA), and results analysed using the LightCycle 480
software (Roche, Hawthorne, VIC, Australia).

Cell lysis and western blotting. A total of 5� 104 cells/ml were lysed in
RIPA buffer (150 mM NaCl, 50 mM TrisHCl pH7.4, 0.5% sodium deoxycholate,
0.1% SDS, 1% NP40) with protease inhibitor cocktail (Merck, Kilsyth, VIC,
Australia) and phosphatase inhibitors (5 mM b-glycerophosphate, 1 mM Na
Molybdate, 2 mM Na Pyrophosphate, 10 mM NaF). Lysates were centrifuged at
10 000 r.p.m., supernatant collected, diluted 1 : 5 with 5� SDS-PAGE loading
buffer (250 mM Tris.Cl pH 6.8, 10% 2-mercaptoethanol, 10% SDS, 0.2%
Bromophenol blue and 50% glycerol) and boiled for 10 min. Lysates were run on
either 10 or 12% SDS-PAGE gels, loaded equally by cell number and transferred
to nitrocellulose membranes (Hydrobond, Amersham Biosciences, Little Chalfont,
Buckinghamshire, UK) and western blot reactions were detected using Super
Signal West Dura chemiluminescence reagent (Thermo Scientific, Rockford,
IL, USA). Membranes were probed with the following antibodies: anti-Hoxb8
(Abnova, Neihu District. Taipei City, Taiwan), anti-Bim (Stressgen, Waterloo,
NSW, Australia), anti-Bid (kind gift from Andreas Strasser), anti-Bax (Sigma-
Aldrich), anti-Bak (Sigma-Aldrich), anti-Puma (ProSci, Poway, CA, USA), anti-Mcl-
1 (Rockland, Gilbertsville, PA, USA), anti-Bcl-xL (R&D Systems), anti-Bcl-2
(BD Pharmingen), anti-Bmf (kind gift from Lorraine O-Reilly, Walter and Eliza Hall
Institute), anti-Noxa (Millipore, Billerica, MA, USA), anti-IL-3 alpha chain and anti-
IL-3 �-specific chain (R&D Systems), anti-p21 (Abcam, Waterloo, NSW, Australia),
anti-PTEN (Cell Signalling, Danvers, MA, USA), anti-HSP-70 (Cell Signalling),
anti-c-Myc (Santa Cruz, Dallas, Texas, USA), anti-Flag and anti-b-actin
(Sigma-Aldrich), anti-rat-HRP (Amersham, Rydalmere, NSW, Australia),
anti-rabbit-HRP (Amersham), anti-mouse-HRP (Sigma-Aldrich) and anti-goat-
HRP (Sigma-Aldrich).

Assays for cell survival, cell number and cell cycle. As a measure
of cell death, cells were stained with Propidium Iodide (Sigma-Aldrich) and FITC-
coupled, Annexin V (Invitrogen, Mulgrave, VIC, Australia) in a balanced salt
solution with 5 mM CaCl2 and analysed by flow cytometry. To analyse cell
proliferation by cell counts, Fluorescent Microsphere beads (Sigma-Aldrich) were
added at a 1 : 10 dilution to the same samples stained with FITC-coupled
AnnexinV and PI and analysed by flow cytometry. The number of cells was
calculated as the number of beads/ml detected. To analyse cell cycle, the
individual cell nuclear content was measured by incubating cells for 1 h at 4 1C
with a hypotonic Propidium Iodide buffer (0.1% Na3Citrate in ddH20, 0.1% Triton
X-100, 50mg/ml PI, 25mg/ml RNaseA (Sigma-Aldrich)). Histogram plots generated
from flow cytometry were analysed using the ModFit software programme
(Verity Software House, Topsham, ME, USA).

Clonogenic assays. Cells were washed three times in PBS to remove
4-OHT and single-cell sorted by flow cytometry for PI-negative cells into round-
bottom 96-well plates containing DMEM with 10% FCS, 0.25 ng/ml IL-3 with or
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without 0.1mM 4-OHT. Growth supplements were replenished by adding 100ml of
DMEM plus 10% FCS, 0.25 ng/ml IL-3 and 0.1mM 4-OHT if cells were initially
sorted with 4-OHT. After 14 days, the number of colonies were counted.

For clonogenic assays in soft agar culture, cells were washed three times in PBS
to remove 4-OHT and known numbers of cells were replated into a soft agar master
mix with DMEM, 20% FCS and 0.3% Agar. 4-OHT was used at 0.1mM and IL-3 at
0.3 ng/ml if required in soft agar.

Luciferase reporter assays. 105 293T cells were transfected using the
Effectene Transfection Kit (Qiagen) with 1.5mg of firefly luciferase plasmid and
0.5mg of renilla luciferase plasmid. Twenty-four hours after transfection, culture
medium was replaced. Seventy-two hours after initial transfection, cells were lysed
and analysed on a FLUOstar Optima (BMG Labtechnologies, Ortenberg,
Germany) using the Dual Luciferase Reporter Assay System (Promega, Auburn,
VIC, Australia).

miRNA PCR array. A total of 300 ng of total RNA extracted using Trizol was
reverse transcribed using TaqMan MicroRNA Reverse Transcription Kit (Applied
Biosystems, Mulgrave, VIC, Australia) and Megaplex RT Primers, Rodent Pool A
and Pool B v3.0 (Applied Biosystems, Australia). cDNA was then pre-amplified
using Taqman PreAmp Master Mix (Applied Biosystems, Australia) and Megaplex
PreAmp Primers, Rodent Pool A nd Pool B v3.0 (Applied Biosystems, Australia).
Amplified Product was then loaded onto Taqman Array Rodent v3.0 miRNA
(Aþ B) cards (Applied Biosystems, Australia) and PCR performed on the 7900-HT
real-time PCR system (Applied Biosystems, Australia). The array cards contain
Taqman assays for 641 unique mouse miRNAs. Ct values were extracted for each
miRNA using RQ Manager software (Applied Biosystems, Australia). miRNA data
were expressed as dCT relative to U6snRNA and then normalised between
samples based on global miRNA expression of the 50% highest expressing
miRNAs. miRNAs with primary expression of Ct435 and differential miRNA
expression of 41.5-fold with P values r0.05 (Student’s t-test, two-tailed,
independent) were considered to be significant. Fold change is the DDCt of the
difference in the average normalised DCt across three biological samples for both
þ 4-OHT and � 4-OHT.

miRNA qRT-PCR. RNA from 5� 106 cells was extracted using Trizol
(Sigma-Aldrich). In all, 10 ng of RNA was reverse transcribed as per
the manufacture’s instructions using a Taqman miRNA Reverse Transcription
Kit (Applied Biosystems, Australia) with the RT-specific primers for age-miR-17-3p,
age-miR-17-5p, hsa-miR-16-5p, hsa-miR-20a-5p, hsa-miR-19b-3p, hsa-miR-92a-
3p, age-miR-18, hsa-miR-19a-3p and U6 snRNA (all from Applied Biosystems,
Australia). miRNA levels were quantitated using the Taqman Small RNA assay kit
(Applied Biosystems, Australia) with miRNA-specific primers as per the
manufacture’s instructions. qPCR was performed using the Viia7 Real-Time
PCR system (Applied Biosystems, Australia). U6 were used for normalisation.
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