
Systems analysis of apoptosis protein expression
allows the case-specific prediction of cell death
responsiveness of melanoma cells
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Many cancer entities and their associated cell line models are highly heterogeneous in their responsiveness to apoptosis
inducers and, despite a detailed understanding of the underlying signaling networks, cell death susceptibility currently cannot
be predicted reliably from protein expression profiles. Here, we demonstrate that an integration of quantitative apoptosis protein
expression data with pathway knowledge can predict the cell death responsiveness of melanoma cell lines. By a total of
612 measurements, we determined the absolute expression (nM) of 17 core apoptosis regulators in a panel of 11 melanoma cell
lines, and enriched these data with systems-level information on apoptosis pathway topology. By applying multivariate
statistical analysis and multi-dimensional pattern recognition algorithms, the responsiveness of individual cell lines to tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL) or dacarbazine (DTIC) could be predicted with very high accuracy
(91 and 82% correct predictions), and the most effective treatment option for individual cell lines could be pre-determined in
silico. In contrast, cell death responsiveness was poorly predicted when not taking knowledge on protein–protein interactions
into account (55 and 36% correct predictions). We also generated mathematical predictions on whether anti-apoptotic Bcl-2
family members or x-linked inhibitor of apoptosis protein (XIAP) can be targeted to enhance TRAIL responsiveness in individual
cell lines. Subsequent experiments, making use of pharmacological Bcl-2/Bcl-xL inhibition or siRNA-based XIAP depletion,
confirmed the accuracy of these predictions. We therefore demonstrate that cell death responsiveness to TRAIL or DTIC can be
predicted reliably in a large number of melanoma cell lines when investigating expression patterns of apoptosis regulators in the
context of their network-level interplay. The capacity to predict responsiveness at the cellular level may contribute
to personalizing anti-cancer treatments in the future.
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Many cancer entities are biologically highly heterogeneous.
As a consequence of biological heterogeneity, only subsets of
patient populations benefit from anti-cancer chemotherapies.
On an average, only 15% of metastatic melanoma patients
respond to the standard single-agent chemotherapy with the
proapoptotic alcylating agent dacarbazine (DTIC).1 Likewise,
alternative chemotherapeutics or DTIC combination treat-
ments so far did not result in more effective therapies.1 Inter-
individual heterogeneity also contributes to the unsustainably
high attrition rates of phase II/III clinical trials, as cohort
recruitment is often not informed by tools that allow to predict
whether patients are likely to respond to treatment.2 Biological
heterogeneity has been captured in numerous biomarker
discovery studies to identify whethermolecular signatures can
predict drug responsiveness. However, these traditional
statistical approaches so far are rather unsuccessful, with
most biomarker candidates failing at the clinical validation

stage.3 In melanoma, the presence of V600E-mutated B-Raf
kinase is such a marker, and can be found in approximately
50% of patients with advanced disease. Whenever V600E-
mutated B-Raf is found, the inhibitor Vemurafenib has proved
to be a remarkable success as monotherapy.4 The remaining
patient population, however, still receives DTIC-based
chemotherapy or immune therapy with ipilimumab, a CTLA-
4 antagonizing antibody. Most recently combination therapies
of programmed death-1 receptor-directed antibodies
combined with ipilimumab showed a dramatic success,
indicating that immune-mediated cell death is a successful
way to control melanoma metastasis.5 Even though dereg-
ulations in apoptosis signaling are known to limit melanoma
responsiveness to treatment,6 so far no apoptosis-related
protein expression patterns could be firmly associated
with responsiveness to DTIC or other apoptosis-inducing
agents in patients or cell line model systems. A broader
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multi-parametric system-level approach toward apoptosis
signaling in cell line models is therefore warranted and may
contribute to informing future translational research strate-
gies. Apoptosis signals are transduced by two main pathways
(extrinsic and intrinsic), which are tightly regulated by a
complex interplay of multiple proteins.7,8 Therefore, a large
number of possibilities exist by which apoptosis signaling may
be impaired. Integrating information on protein–protein inter-
play and pathway topology into data sets on protein
expression may therefore allow multivariate statistical models
to accurately and case-specifically predict cell death respon-
siveness. The perspectives offered by systems biological and
systems medical approaches,9 and the first successful proof-
of-principle systems medical studies in the field of cancer and
apoptosis10,11 support this notion.
Here, we therefore developed a system-level approach of

knowledge- and data-driven multivariate statistical modeling
and applied this to a panel of malignant humanmelanoma cell
lines in order to identify whether baseline protein expression
patterns carry information on the susceptibility to apoptosis-
inducing drugs.

Results

Defining functional groups of apoptosis proteins for a
knowledge- and data-driven modeling approach. As
decision points in apoptosis signal transduction are under
the control of multi-protein interactions, we integrated basic
pathway knowledge on protein–protein interplay into baseline
expression data. This was achieved by defining functional
groups, each of which combined a limited number of proteins
by arithmetic operations. These operations reflected
the protein relationship within the signaling network that is
initiated by tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL; Figure 1a). In brief, TRAIL binds to death
receptors DR4 and DR5. DR4/5 then recruit the adapter
protein FADD and form the death-inducing signaling complex
(DISC). Caspase-8 is activated on the DISC, but activation
can be antagonized by the catalytically inactive homolog
cFLIP. Caspase-8 proteolytically activates the BH3-only
protein Bid as well as effector caspase-3. Truncated Bid
promotes the permeabilization of the outer mitochondrial
membrane by activating Bax and Bak, and by inhibiting anti-
apoptotic Bcl-2 family members Bcl-2, Bcl-xL and Mcl-1.
Cytochrome-c (cyt-c) and the x-linked inhibitor of apoptosis
protein (XIAP) antagonist Smac are released into the cytosol.
Cyt-c activates Apaf-1, and Apaf-1 oligomerizes to form the
caspase-9-activating apoptosome. Caspase-9 proteolytically
activates caspase-3, with the inhibitor XIAP suppressing
caspase activity. Caspase-3 cleaves a large number of target
proteins and is the central driver of rapid apoptosis
execution.7,8 The intrinsic apoptosis pathway is induced
by various forms of intracellular stresses and feeds in at
the level of BH3-only proteins, which are transcriptionally
induced, posttranslationally activated or stabilized, and
contribute as Bax/Bak activators and/or as Bcl-2/Bcl-xL/
Mcl-1 antagonists.
To code this pathway by functional groups, the rationale

was to keep these groupings arithmetically simple (sums,
products or ratios of a small number of proteins), biologically

justifiable and to incorporate the amount of each protein only
once (Figure 1b). For example, we defined a functional group
that represents the key anti-apoptotic Bcl-2 family members
by pooling the absolute amounts (nM) of Bcl-2, Bcl-xL and
Mcl-1. Likewise, we defined the mitochondrial Bax/Bak pore
formation capacity by pooling the amounts of Bax and Bak.
By multiplying Apaf-1 and caspase-9, we defined a functional
group that represents the caspase-9-activating apoptosome
complex. Here, the multiplication ensures that the value for
this group approaches zero when either Apaf-1 or caspase-9
expression is very low or absent. With similar reasoning,
we multiplied the pooled DR expression with the amount of
FADD to represent the DISC. Functional groups of apoptotic
caspases and their antagonists were defined as ratios.
Following these groupings, the three remaining proteins
(Bid, cyt-c, Smac) were kept as individual variables. Although
cyt-c is known to be an abundant protein,12 only a fraction of
the cyt-c pool would be expected to contribute to apoptosis
signaling. For example, significant amounts of cyt-c may be
immobilized by cardiolipin interactions13,14 or may otherwise
be inaccessible for apoptosome formation.15–17 Other BH3-
only proteins or Omi/HtrA2, which were not quantified in this
study but functionally overlap with Bid or Smac, could form
functional groups with the latter in future model extensions.
To parameterize the functional groups, we measured the

expression of the 17 key proteins involved in TRAIL-induced
apoptosis in 11 melanoma cell lines. With the exception of
DR4/5, whose cell surface expressions were determined by
indirect immunofluorescence (Supplementary Figure 1A),
all amounts were measured by quantitative immunoblotting
at 12-bit dynamic range (absolute protein concentrations are
provided in Supplementary Table 1). Representative 8-bit
converted signals are shown in Supplementary Figure 1B.
An overview based on 612 quantifications is presented as
Figure 1c and demonstrates the high heterogeneity in protein
expression across the cell line panel.

Multi-dimensional pattern recognition identifies a
relation between apoptosis regulators and cell death
responsiveness to TRAIL and DTIC. As part of a data-
driven modeling approach,18 we next applied a principal
component analysis (PCA)19,20 to the data set of the
functional groups and combined this with the integration of
drug response data into the PCA output and a spatial
segmentation of cell line clusters with similar drug respon-
siveness (see step-by-step workflow in Supplementary
Figure 2). A PCA is a multivariate statistical procedure that
reduces the dimensionality of complex multi-dimensional
data sets by mathematical transformation into principal
components (PCs). This transformation can be understood
as a rotation of the data around their mean so that previously
independent variables (the nine dimensions of the functional
groups; Figure 1b) now jointly define new axes. These new
axes are the PCs and describe the PC space. Although each
PC consists of contributions by all variables of the original
data set, the contributions of these variables differ for each
PC according to specific weighting coefficients, as shown
below. The PCA is geared toward representing as much of
the data variance as possible in the first few PCs, thereby
making the information content of the remaining PCs
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negligible for further analyses. We visualized this by showing
the PCA results in a modified scree plot (Figure 2a). The first
four PCs were required to reflect 85% of the data variance
found in the functional groups, and these four PCs fulfilled
the Kaiser criterion21,22 (Figure 2a). The Kaiser criterion is a
decision guideline, which states that only PCs with an
eigenvalue of at least one are needed for further analysis
as these PCs contain more information on data variance than
a single variable in the original data set. The first four
PCs were therefore retained for all subsequent analyses.
The associated weighting coefficients for the functional
groups are displayed in Figure 2b and are also provided in
Supplementary Table 2. The coefficients indicated that the
first PC is strongly influenced by multiple functional groups:
the anti-apoptotic Bcl-2 proteins are antagonized by Baxþ
Bak. Similarly, contributions by the XIAP/caspase-3 ratio are
antagonized by caspase-9*Apaf-1. (DR4þ 5)*FADD and Bid
strongly contribute to the second PC, as is cyt-c. The cFLIP/
casp-8 ratio prominently influences the fourth PC. We used
the PCs to define a four-dimensional Euclidean space into
which we positioned the 11 cell lines according to their
functional groups values. To this end, these values were
multiplied with the respective weighting coefficients in the
PCs. Associated visualizations naturally had to be limited to
the first three dimensions, which still reflect 71% of the
original data variance (Figure 2c). Cell lines with similar
compositions of the functional groups would have been
expected to cluster together. However, no obvious clusters
could be detected. Rather, cell lines were scattered
throughout the PC space (Figure 2c), indicating a high
variability in the values of the functional groups across the
cell line panel.

We next investigated whether the cell line positions are
related to their cell death responsiveness. To this end, we
measured the overall cell death induced by TRAIL or DTIC,
the standard melanoma chemotherapeutic in B-Raf-negative
melanoma. DTIC is a pro-drug that is converted intracellularly
by mitochondrial cytochrome P450 to the alkylating agent
MTIC, and induces apoptosis through the intrinsic pathway.23

Cell death in response to TRAIL or DTIC was highly
heterogeneous across the cell line panel, and individual
cell lines typically were also differentially sensitive to TRAIL or
DTIC (Figure 2d). Caspase inhibition in highly responsive cell
lines demonstrated that cell death was executed primarily by
apoptosis (Supplementary Figure 3). The cell lines in the PC
space were then color coded according to their TRAIL or DTIC
responsiveness (Figures 2e and f). Cell lines were defined as
resistant (0–10% cell death; black) or responsive (graded into
‘low’ (10–30% cell death; red), ‘medium’ (30–60% cell death;
yellow) or ‘high’ (460% cell death; green)). Interestingly, cell
lines with a similar TRAIL responsiveness appeared to occupy
common regions in the 3D PC space (Figure 2e), and these
response regions did not intersect when visually segmented
(see also 3601 rotation in Supplementary Movie 1). Common
response regions were also found for DTIC treatments
(Figure 2f; see also 3601 rotation in Supplementary Movie 2
and an alternative viewing angle provided as Supplementary
Figure 4). Corresponding to the cell line panel responding
differently to TRAIL or DTIC, the spatial response regions
differed between TRAIL and DTIC treatments (Figures 2e
and f; Supplementary Movies 1,2). To determine whether
the spatial regions could also be separated objectively,
we applied a linear discriminant analysis (LDA) to the
four-dimensional PC space. A canonical LDA is a pattern
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Figure 2 Functional groups of apoptosis regulators highlight an association between protein expression profiles and cell death responsiveness to TRAIL and DTIC.
(a) A principal component analysis (PCA) was applied to the functional groups of the melanoma cell line panel, and results are shown as a scree plot. Bar graphs show the
contribution of each principal component (PC) toward explaining the data variance. Eigenvalues of PCs fulfilling the Kaiser criterion are shaded in gray. (b) Bar graphs show
the coefficients for all functional groups in the first four PCs. Coefficient values are provided as Supplementary Table 2. (c) Graphical illustration of the distribution of melanoma
cell lines along the first three PCs. Circle sizes decrease with distance from the observer to aid 3D visualization. (d) Cell death in response to TRAIL or DTIC. Cells were treated
for 48 h and cell death was measured by propidium iodide uptake. Data are meansþS.D. above untreated controls and were pooled from n¼ 3 independent repeat
experiments. (e and f) Cell lines in the 3D PC space were color coded according to cell death responsiveness to TRAIL or DTIC, respectively. Color codes reflect resistance
(black), low responsiveness (red) or medium responsiveness (yellow). Cell lines with high responsiveness (green) were not detected. 3D rotations are available as
Supplementary Movies 1 and 2. (g) Linear discriminant analysis (LDA) was applied to the four-dimensional PC space. The 2D schematic visualizes the principle of separating
response regions by this pattern recognition approach. (h) The performance of the response group separation in the four-dimensional space by LDA is shown by listing
the amounts of correctly classified cell lines
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recognition approach that defines linear functions with the aim
to optimally separate multiple classes of objects in n-
dimensional space.24 The LDA working principle is visualized
for a simplified 2D scenario in Figure 2g. LDA accurately
separated the TRAIL response groups. All cell lines were
correctly classified (Figure 2h). Likewise, a very good
separation was achieved for DTIC, with 10 out of 11 cell lines
correctly classified (91%; Figure 2h).
Taken together, we found that spatial regions exist, which

represent distinct levels of drug responsiveness, that these
spatial regions differ between TRAIL and DTIC treatments,
and that these regions can be separated by a pattern
recognition algorithm. Therefore, even though the cell lines
are very heterogeneous in their protein expression profiles,
these protein profiles, together with basic pathway knowl-
edge, can be used to relate expression patterns to cell death
susceptibility with high accuracy.

Case-specific predictions of TRAIL and DTIC respon-
siveness allow the in silico identification of optimal
treatments. To determine whether cell death responses can
be predicted case and drug specifically, we next applied
‘leave-one-out’ cross-validations (LOOCV). To this end,
11 new PCAs were conducted to cover all possible
combinations of 10 from the pool of melanoma cell lines.
Clusters of common responsiveness were then identified by
LDA as described above. The missing cell lines (test cell
lines) were positioned into the four-dimensional PC spaces,
and their responsiveness was predicted based on the
LDA-defined cluster associated with their PC space position.
These predictions were validated against experimentally
measured cell death responses. 2D projections of 3D PC
spaces for TRAIL responsiveness demonstrate that test
cell lines positioned in close proximity to cell lines with
similar responsiveness (Figure 3a). The predictive power of
this approach was very high for both TRAIL and DTIC
treatments, with 10 and 9 cell lines positioning in the
correct response regions (91% and 82% accuracy, respec-
tively; Figure 3b). As a control, we performed the
same procedure on the raw protein expression data rather
than the functional groups data. The accuracy dropped
significantly, with the responsiveness of only 55% and
36% of the cell lines correctly predicted for TRAIL or
DTIC treatments, respectively. This highlights that accurate
predictions can only be made when taking pathway
knowledge into account.
We next investigated whether this predictive capacity is

sufficiently high to case specifically determine the optimal
treatment in silico. ‘Optimal treatment’ here is defined as the
drug that evokes the higher amount of cell death, with
either drug being an acceptable choice if both were predicted
to induce comparable amounts of cell death. In contrast,
wrong predictions suggest treatments that in experiments
perform worse than the alternative drug. Cell line-specific
suggestions were correct for 10 out of the 11 cell lines
(Figure 4). Only for PM-WK cells, the better treatment option
was not identified. These results indicate that our approach
can predict cellular drug responsiveness and can select
the optimal treatment option between TRAIL and DTIC for
individual cell lines.

Systems modeling can identify targeted perturbations
that sensitize poorly responding cell lines to TRAIL. The
positioning of each cell line in the PC space is coded by the
values calculated for their functional groups. We therefore
hypothesized that this information could be exploited to
generate case-specific predictions on how to sensitize poor
TRAIL responders by targeted drugs or by siRNA-based
protein depletion. As a representative targeted drug, we used
ABT-737, a well-characterized synthetic antagonist of Bcl-2
and Bcl-xL25 that is currently also clinically tested as a
sensitizer of melanoma to proliferation inhibitors such as
MEK inhibitors.26 To generate predictions on which poor
responders can be sensitized by ABT-737, we determined
how their position in the PC space would change upon
elimination of Bcl-2 and Bcl-xL. The vector for the direction of
this repositioning can be calculated from the PCA results by
moving in opposite direction to the coefficients of the targeted
functional group in all PC axes (Figure 5a). The distance by
which individual cell lines are repositioned then depends on
the combined amounts of its targets (Bcl-2þBcl-xL;
Figure 5b). The resulting repositioning vectors were applied
to four representative cell lines that poorly respond to TRAIL
(RPM-EP, RPM-MC, MeWo, Preyer). For the TRAIL-resis-
tant MeWo and Preyer cells, the vectors pointed in the
direction of cell lines that are moderately TRAIL sensitive
(yellow; Figure 5c), indicating that addition of ABT-737 may
enhance TRAIL responsiveness. In contrast, for the poor
TRAIL responders RPM-EP or RPM-MC the vectors did not
result in a movement toward regions of higher TRAIL
responsiveness (Figure 5c). The predictions on high versus
low sensitization by ABT-737 were validated experimentally.
ABT-737 strongly sensitized MeWo and Preyer cells to
TRAIL, whereas sensitization of RPM-EP and RPM-MC was
far less pronounced (Figure 5d). Control experiments
ensured that ABT-737 readily entered all cell lines and
sensitized these for mitochondrial translocation of ectopically
expressed YFP-Bax (Supplementary Figure 5). We next
applied the same approach to a scenario of siRNA-mediated
XIAP depletion. Our calculations on movement direction and
movement distance (Figures 5e and f) suggested that out of
four poor TRAIL responders (Preyer, MeWo, RPM-EP,
MM-AN) only MM-AN could be relocated closer to cell lines
with higher TRAIL responsiveness (Figure 5g). Again, these
predictions were confirmed by subsequent experiments.
Even though XIAP was efficiently depleted using a previously
validated siRNA sequence27,28 (Figure 5h), only MM-AN cells
were significantly sensitized to TRAIL (Figure 5h). These
results demonstrate that accurate predictions can be made
on which proteins should be targeted to enhance apoptosis in
cell lines that poorly respond to TRAIL.

Discussion

Cell death induction is a mainstay of anti-cancer chemo-
therapies29 and is likely an important predictor if treatment
modalities such as immune therapy can be effective to control
disease relapse. Apoptosis is an irreversible cell fate decision
and is regulated by the complex and nonlinear interplay of
multiple proteins. Here, we integrated quantitative information
on systems-level protein interplay with multivariate statistical
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analysis and pattern recognition in order to generate predic-
tions on the susceptibility of melanoma cells to TRAIL and
DTIC (Figure 6). These predictions were highly accurate
(91 and 82% correct predictions) and outperformed the
predictive capacity of a systems knowledge-independent
statistical analysis (55 and 36% prediction accuracy). Our
findings therefore indicate that to reliably predict cell
death responsiveness the multi-factorial control of apoptosis
signaling needs to be taken into account.
Our knowledge- and data-driven modeling approach was

successfully applied for drug treatments that induce extrinsic
and intrinsic apoptosis, and control measurements confirmed
that apoptosis was the primary cell death modality
(Supplementary Figure 3). Performance scores were very
high for TRAIL-induced cell death, which may be attributable
to our protein measurements having covered all critical TRAIL

signal transducers. Furthermore, TRAIL-induced apoptosis
can proceed independent of protein neosynthesis, explaining
why a systems analysis of baseline protein expression is
sufficient to predict TRAIL responsiveness. As TRAIL ligands
are currently investigated in clinical trials and as improved
second generation ligands are currently in preclinical
development,30,31 our systems approach may provide possi-
bilities to identify TRAIL-responsive melanoma by molecular
profiling, and by extension may assist in patient stratification
as part of future clinical trial designs. We also predicted
DTIC-induced cell death, albeit with slightly lower accuracy.
The induction of apoptosis by genotoxic stress is mediated by
p53-dependent transcriptional induction of BH3-only proteins
such as Noxa, Puma and Bik.32,33 Baseline expression
amounts of these BH3-only proteins are typically low, and
p53 is rarelymutated inmelanoma (o5%).34 Thismay explain
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why we achieved predictive capacity for DTIC treatments as
well, even though we did not measure BH3-only protein
amounts other than Bid. However, Bid has been reported to
also contribute to genotoxic apoptosis,35 and in this context is
cleaved by death receptor independent, presumably ripopto-
some-activated caspase-8.36,37 A more comprehensive
profiling of BH3-only proteins may nevertheless further
enhance the performance, and including information on the
p53 mutational status could be required when developing this
approach for other cancer entities. Likewise, coverage of
alternative cell death mechanisms, such as necroptosis
signaling, may be required for scenarios where apoptosis-
independent cell death signaling has a substantial role.38,39

Various previous studies suggested that abundance
measurements of proteins that regulate apoptosis in mela-
noma, including Bcl-2 family members and XIAP,40,41 may be
sufficient to predict cell death susceptibility. We instead
demonstrate that apoptosis susceptibility depends on the
quantitative interplay of multiple proteins, and that targeted
interventions to enhance responsiveness need to be identified
on a case-by-case basis. Our study also highlights that
because of the heterogeneity in apoptosis protein expression
a single optimal treatment strategy cannot be suggested for a
given tumor entity, exemplified here by malignant melanoma.
As we investigated a large number of proteins (n¼ 17) in a
large panel of cell lines (n¼ 11) by quantitative measure-
ments, the biological heterogeneity in protein expression and
cell death responsiveness in melanoma model systems may
have been more representatively captured in our study than
was the case in previous reports. Importantly, despite the
heterogeneity in protein expression, the systems-level data
analysis allowed insight into both drug responsiveness and
resistance mechanisms of individual cell lines. Together,
these findings may have important implications for biomarker
identification strategies in the field of melanoma and other
highly heterogeneous cancers. As the classical repertoire of
preclinical and clinical biomarker screening so far yielded
surprisingly few biomarkers that successfully translated into
clinical practice,3 integrating systems-level approaches may
contribute to improving this situation.

It can be speculated that our approach could be used to
analyze primary tumors or metastases for their capacity
to execute apoptosis, to predict therapy responsiveness and
to generate personalized treatment recommendations.
However, a validation for clinical application at the present
time is challenging due to the need for large scale, quantitative
protein data. Commonly used tissue immunohistochemistry in
clinical diagnostics, based on immunoperoxidase staining, is
of limited dynamic range, and stained tissue slides are
typically not calibrated for quantitative readouts. Sufficient
fresh frozen tissue as required for quantitative immunoblotting
is rarely collected or available, and reverse phase protein
arrays, which can be applied for large-scale multi-sample
protein quantification in clinical specimens,42 require the prior
identification or development of high-quality antibodies for
each protein of interest. A successful clinical implementation
of pathway-based systems models will furthermore necessi-
tate their integration with mathematical models that cover
higher level aspects known to influence therapy responsive-
ness. These include, for example, drug pharmacokinetics and
pharmacodynamics, tumor vascularization and information on
the tumor microenvironment and immune infiltration.
Higher-scale modeling strategies that can make use of such
information have been described in recent years10,43 and
could be linked to models that have been validated in cellulo.
Our study may therefore make an important contribution
toward developing systems-based predictive tools that can be
applied in a clinical context in the future.

Materials and Methods
Materials. DTIC was purchased from Sigma-Aldrich Ireland Ltd (Dublin,
Ireland), ABT-737 was from Biorbyt (Riverside, UK), Mitotracker Red was
from Invitrogen (Paisley, UK). Human recombinant TRAIL was a generous gift
from Carlos Ricardo Rodrigues dos Reis, University of Groningen.

Cell culture and drug treatments. The human melanoma cell lines
PM-WK, RPM-MC, RPM-EP, MM-RU, MM-AN and MM-LH were generously
provided by Randy H Byers (Department of Dermatology, Boston University
School of Medicine) and cultured as previously described.44 The following human
melanoma cells were obtained either from ATCC (Manassas, VA, USA) or
DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH,
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Braunschweig, Germany) and cultured as described: A375 (ATCC CRL-1619),
MeWo (ATCC HTB-65), SK-Mel-30 (SK-Mel; ACC 151) and IGR-37 (IGR; ACC
237). Preyer melanoma cells (generated from a subcutaneous melanoma
metastasis) were kindly provided by A Schwaaf and EB Bröcker (University of
Würzburg, Germany). All melanoma cell lines were cultured in DMEM (Lonza,
Slough, UK) supplemented with 4 mM L-glutamine, 4.5 g/l glucose, 10% (w/v) heat-
inactivated fetal bovine serum (Sigma-Aldrich), 100 U/ml penicillin and 100mg/ml
streptomycin (Sigma-Aldrich) as published.45 Cells were grown at 5% CO2 and
37 1C. For cell death analysis, cells were incubated for 24 h with TRAIL (100 ng/
ml) or for 48 h with DTIC (1 mg/ml).

Transfections. siRNA known to specifically silence the expression of XIAP
and non-silencing control sequences were obtained by Sigma-Aldrich (XIAP:
50-AAGUGGUAGUCCUGUUUCAGC-30;28 control: 50-UUCUCCGAACGUGUCAC
GU[dT]-30). Cells were transfected with siRNA (100 nM) in Optimem with
Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instruction at
least 24 h before drug treatment. Protein depletion was validated by immunoblot-
ting. Transient transfections for the expression of YFP-Bax were conducted as
described before46 and cells were analyzed by conventional wide-field
fluorescence microscopy.

Immunoblotting and densitometry. Cells were harvested, washed in
PBS and homogenized in lysis buffer (62.5 mM Tris-HCl, pH 6.8, 10% (v/v)

glycerin, 2% (w/v) SDS, 1 mM phenylmethylsulfonyl fluoride, 1mg/ml leupeptin and
5 g/ml aprotinin). Lysates were heated to 95 1C for 15 min and cleared of debris by
centrifugation. Protein content was assayed using the Micro BCA protein assay kit
(Thermo Scientific, Dublin, Ireland). Samples (20 mg) were resolved on 10–15%
SDS-polyacrylamide gels (150 V for approximately 1 h). Proteins were transferred
to nitrocellulose membranes (Whatman, Kent, UK) in transfer buffer (25 mM Tris,
192 mM glycine, 20% methanol (v/v) and 0.01 (w/v) SDS) at 18 V for 1.5 h.
Membranes were blocked in 5% nonfat dry milk in distilled water at room
temperature for 1 h and incubated with primary antibodies overnight at 4 1C.
Membranes were then washed with TBST three times for 5 min and incubated with
anti-mouse, anti-rabbit or anti-goat peroxidase-conjugated secondary antibodies
(Millipore, Molsheim, France). The following primary antibodies were used: a rabbit
polyclonal APAF-1 antibody (No. 559683, BD Transduction Laboratories,
San Jose, CA, USA), a rabbit polyclonal Bak antibody (sc-832, Santa Cruz
Biotechnology, Santa Cruz, CA, USA), a rabbit polyclonal Bax antibody (No.
Q07815, Millipore), a mouse monoclonal Bcl-2 antibody (sc-509, Santa Cruz
Biotechnology), a mouse monoclonal Bcl-XL antibody (sc-8392, Santa Cruz
Biotechnology), a goat polyclonal Bid antibody (AF860, R&D Systems,
Minneapolis, MN, USA), a rabbit polyclonal caspase-3 antibody (#9662, Cell
Signaling Technology, Danvers, MA, USA), a mouse monoclonal caspase-8
antibody (No 804-242, Alexis, San Diego, CA, USA), a rabbit polyclonal caspase-9
antibody (No. 218794, Calbiochem/Merck Bioscience, Nottingham, UK), a mouse
monoclonal cyt-c antibody (No. 556433, BD Transduction Laboratories), a mouse
monoclonal DR4 antibody (ab47138, AbCam, Cambridge, UK), a rabbit polyclonal
DR5 antibody (No 804-298, Alexis), a mouse monoclonal FADD antibody (No.
610399, BD Transduction Laboratories), a mouse monoclonal FLIP antibody (No
804-428, Alexis), a mouse monoclonal Mcl-1 antibody (No. 559027, BD
Transduction Laboratories), a rabbit polyclonal SMAC/Diablo antibody (AF789,
R&D Systems), a mouse monoclonal XIAP antibody (No 610763, BD Transduction
Laboratories), a mouse monoclonal b-actin antibody (A5441, Sigma-Aldrich). Anti-
mouse IgG, anti-goat IgG, anti-rabbit IgG peroxidise-conjugated secondary
antibodies (AP124P, AP106P, AP132P, Millipore) were used at a dilution of
1:5000 for 1 h. Blots were washed and developed using the Immobilon western
chemiluminescence HRP substrate (Millipore). Chemiluminescence was detected
at a depth of 12-bit in the linear detection range of a Fuji LAS 4000 CCD system
(Fujifilm UK Ltd, Bedfordshire, UK). Special care was taken not to overexpose in
order to guarantee accurate quantifications. For all proteins, at least three
independent membranes were analyzed. Densitometry was performed on 12-bit
raw images using ImageJ 1.4.1o software (National Institute of Health, Bethesda,
MD, USA; http://rsb.info.nih.gov/ij).47 For each protein, the integrated density of
the signal was measured, corrected for background signals and adjusted to
loading controls. Intensities were then compared with signals obtained from HeLa
cell extracts run on the same gels. Absolute protein levels in HeLa cells (nM) have
been determined by us and others before by comparison to titrated purified
proteins.47,48 For visual presentation, 12-bit images were contrast adjusted and
converted to 8-bit.

Flow cytometry. Flow cytometry was performed on a BD LSRII flow
cytometer (BD Bioscience, Oxford, UK) equipped with a high-throughput system to
acquire samples directly from 96-well plates. DR-4 and DR-5 surface expression
were assessed by indirect immunofluorescence. Briefly, cells were harvested,
washed, fixed in 4% paraformaldehyde in PBS for 15 min and incubated with a
mouse monoclonal DR4 (AbCam) or DR5 antibody (Alexis; 5mg/106 cells) for
30 min followed by secondary anti-mouse FITC-conjugated antibody (AbCam; 1:50
dilution) for 30 min in the dark. Controls were stained with secondary antibody

Apoptosis protein
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Knowledge- and data-driven
systems modelling

Identification of best
treatment option

(Fig. 4)

Prediction of drug
responsiveness

(Fig. 3)

Identification of
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Figure 6 Workflow and associated functionalities for data- and knowledge-
driven systems modeling to predict apoptosis sensitivity and treatment options. The
systems analysis of apoptosis protein expression allowed (i) to predict
responsiveness of melanoma cell lines to TRAIL and DTIC, (ii) to predict optimal
treatment options for individual cell lines and (iii) to successfully identify targeted
interventions that increased apoptosis responsiveness in treatment-resistant cells

Figure 5 Prediction and experimental validation of targeted perturbations that sensitize poorly responding cell lines to TRAIL. (a–d) Targeted perturbation with Bcl-2/Bcl-
xL antagonist ABT-737. (a) Inverse vectorial addition of the coefficients of the Bcl-2þ Bcl-xLþMcl-1 functional group in the first three PCs. The resultant vector is shown in
red and indicates the direction of cell line displacement in the PC space upon antagonizing this functional group by ABT-737. (b) Bar graphs show the distance by which
individual cell lines are displaced in the 3D PC space when neutralizing Bcl-2 and Bcl-xL by ABT-737. (c) Combination of movement direction and distance shown in the 3D PC
space for four poorly TRAIL-responsive cell lines. (d) Experimental validation of sensitization predictions. Cells were treated with 100 ng/ml TRAIL and/or 5 mM ABT-737 as
indicated. Data show cell death above untreated controls (meansþ S.D. from n¼ 3 independent experiments). Student’s t-test was used for statistical analysis.
(e–h) Targeted perturbation by siRNA-mediated XIAP depletion. (e) The red vector indicates the direction of cell line displacement by XIAP depletion. (f) Bar graphs indicate
the distance of movement of individual cell lines in the 3D PC space upon eliminating XIAP. (g) Combination of movement direction and distance shown in the 3D PC space for
four poorly TRAIL-responsive cell lines. (h) Experimental validation of sensitization predictions. Cells were treated with 100 ng/ml TRAIL 24 h after transfection with 100 nM
XIAP siRNA or scrambled control siRNA. Data show cell death above controls transfected with scrambled siRNA (meansþS.D. from n¼ 3 independent experiments).
Student’s t-test was used for statistical analysis. Immunoblot insets show the efficacy of XIAP depletion by siRNA
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only. After each incubation, cells were washed with 3% BSA in PBS to remove
excess antibody. FITC was excited at 488 nm and fluorescence emission was
collected through a 552/50-nm band-pass filter and a 505-nm long pass filter.
The relative expression of death receptors was determined by comparison of
specific staining intensities. For cell death measurements, cells were detached
and incubated on an orbital shaker (300 r.p.m.) with propidium iodide (2mg/ml;
Sigma-Aldrich) at room temperature for 15 min in the dark. Propidium iodide was
excited with a 561-nm laser line and fluorescence emission was collected through
a 605/40-nm band-pass filter and a 570-nm long pass filter. Data were analyzed
using Cyflogic software (CyFlo Ltd, Turku, Finland). Cell death measurements
were conducted as end-point readings. Control experiments in selected high- and
low-responding cell lines were performed at multiple time points with AnnexinV-
FITC (Biovision, Milpitas, CA, USA)/propidium iodide co-staining to ensure the
absence of significant amounts of early apoptotic cells (Annexin Vþ /PI� ) at the
time of measurement.

Data processing and analysis for knowledge- and data-driven
modeling. All data processing and analysis were performed using a
programming code developed for MATLAB 2007b (The Mathworks, Cambridge,
UK), equipped with the statistics toolbox. Protein data in functional groups were
rescaled before statistical analysis by dividing through the respective standard
deviation, followed by mean centering. A PCA based on the correlation matrix of
these data was performed.19,20 The Kaiser criterion and an adapted scree plot
were used to identify how many PCs needed to be retained for subsequent
analyses.21,22 For visualizations, scatter plots were generated from the first three
PCs. Cell lines were assigned to classes of cell death responsiveness using
k-means clustering. LDA24 was performed in the first four PCs to determine the
quality of response class separation in the PC space. To determine predictive
capacity, LOOCV was applied iteratively on training sets of 10 cell lines, with the
remaining cell line being the test set. The test cell line was placed into the PC
space according to its specific functional group values and associated PC
coefficients calculated from the training cell lines. LDA was applied to determine
whether the test cell line positioned in the spatial region that corresponded to its
drug responsiveness. To predict the consequences of targeted protein
perturbations, the target protein concentrations were set to zero, and the
displacement of individual cell lines was calculated by multiplying the changes in
the respective functional groups with the coefficients in the first three PCs.
Movement toward spatial regions of higher responsiveness were considered to be
predictive of sensitization.

Statistical testing. Student’s t-tests were used to identify statistically
significant differences between treatment groups. P-values above 0.05 were
considered not to be significant. P-value ranges below 0.05 were indicated in
the respective figure panels. Analyses were performed using SPSS 15
(Lead Technologies Inc., Charlotte, NC, USA).
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