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Ubiquitination and selective autophagy

S Shaid1,2, CH Brandts*,2, H Serve2 and I Dikic*,1

Ubiquitination has long been recognised as a key determinator of protein fate by tagging proteins for proteasomal degradation.
Most recently, the ability of conjugated ubiquitin chains to confer selectivity to autophagy was demonstrated. Although
autophagy was first believed to be a bulk, non-selective ‘self-eating’ degradative process, the molecular mechanisms of
selectivity are now starting to emerge. With the discovery of autophagy receptors – which bind both ubiquitinated substrates and
autophagy specific light chain 3 (LC3) modifier on the inner sheath of autophagosomes – a new pathway of selective autophagy
is being unravelled. In this review, we focus on the special role of ubiquitin signals and selective autophagy receptors in sorting a
variety of autophagic cargos.
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Facts

� The ubiquitin–proteasomal system (UPS) and the ubiquitin-
like system (UBL) have functional similarity.

� Ubiquitination is frequently a prerequisite for substrate
recognition and determines selectivity in autophagy in
higher eukaryotes.

� Crosstalk between ubiquitination and autophagy is
provided by autophagic adaptor proteins (or autophagy
receptors), which bind both ubiquitin and autophagy-
specific UBL modifiers (LC3 (light chain 3)/GABARAP
(gamma-aminobutyric acid receptor-associated protein)).

� To date, seven autophagy receptors have been identified,
which specifically regulate the selective autophagosomal
degradation of large protein aggregates, mitochondria and
bacterial pathogens.

Open Questions

� What are the spatio-temporal mechanisms governing the
dynamics of selective autophagosomal degradation?

� Are there regulatory feedback loops, whereby autophagy
activity affects ubiquitination?

� What are the molecular basics that regulate selective
autophagy under certain conditions?

� Are there germline or somatic mutations in key autophagy
regulators that are causative for disease?

� What is the interplay between selective autophagy path-
ways and macroautophagy during starvation?

Ubiquitin, a small protein consisting of 76 amino acids, is found
in all tissues of eukaryotic organisms. With only three amino-
acid differences between mammals, yeast and plants,
ubiquitin displays a remarkable evolutionary conservation.1

It acts as a modifier by covalent attachment to cellular proteins
through an enzymatic cascade, which involves three classes
of enzymes termed E1 (activation), E2 (conjugation) and
E3 (ligation).1 The process of tagging a protein with ubiquitin is
called ubiquitination and is one of the most versatile known
cellular regulatory mechanisms for controlling physiological
and pathological cellular events. Discovered in the 1970s
it took several decades to elucidate that ubiquitination serves
as the ‘kiss of death’ signal for protein turnover. More recently,
it has been shown that ubiquitination also regulates
key cellular processes including gene transcription, cell cycle
progression, DNA repair, apoptosis, virus budding and
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receptor endocytosis. Among the three major protein degra-
dation pathways in eukaryotes, ubiquitination constitutes the
main denominator by targeting substrates to (i) the protea-
some, (ii) the lysosome and as a part of the lysosomal system,
(iii) the autophagosome.

Autophagy is a catabolic degradative process delivering
cytoplasmic components to the lysosome.2 This ancient and
highly conserved pathway occurs through one of the three
different routes, that is, macroautophagy, microautophagy
and chaperone-mediated autophagy (CMA). Macroauto-
phagy describes the process of forming first a lunate-shaped
membrane structure (the phagophore) leading to a LC3-
containing vacuole (the autophagosome). Subsequently, the
cargo is sequestered before being delivered for lysosomal
degradation (Figure 1). By contrast, in microautophagy and
CMA cytosolic components are directly incorporated into the
lysosomes. This review focuses mainly on macroautophagy
and – unless specified otherwise – is referred to as autophagy.

When autophagy was discovered over 50 years ago it was
assumed to represent a general non-selective degradative
pathway activated by nutrient limitation.3 Since then auto-
phagy has been linked to human pathophysiology, including
cancer, neurodegeneration, immune response and ageing.4,5

Through ‘self-digestion’ of its own cytoplasmic contents,
the cell recycles all nutrients during limited energy supply.
In addition, under normal (nutrient-rich) conditions basal
autophagy serves as an intracellular quality control system:
protein aggregates including damaged or redundant orga-
nelles are selectively eliminated. Compared with classical
starvation-induced autophagy, this form of autophagy needs
to distinguish between normal and ‘abnormal’ cell content.
Autophagy is considered selective when a precise cargo is

specifically and exclusively targeted into autophagosomes.
The exact mechanism of cargo recognition remains obscure.
However, this process clearly involves ubiquitination.
The molecular characterisation of ubiquitin binding proteins
such as p62 and neighbour of breast cancer 1 (NBR1)6,7 has
demonstrated that, analogous to the proteasome where
ubiquitinated cargos are delivered by ubiquitin receptors,8

a ubiquitin-dependent sensor system is responsible for
substrate specificity. Before autophagic clearance, these
receptors need to ‘tether’ the ubiquitinated cargo to the
nascent autophagosome, which carries UBL proteins known
as LC3 or GABARAP proteins on its surface.9 Thus,
autophagy receptors binding to both ubiquitin and LC3 or
GABARAP proteins are able to control protein degradation by
selective autophagy. In this review, we will concentrate on the
aspect of substrate modification by ubiquitin and its effect on
cargo turnover, particularly in selective autophagy.

Ubiquitin Degrades Proteins in Two Ways: via UPS
and through Selective Autophagy

All cells monitor misfolded proteins resulting from translation
errors, impaired folding or damages due to harsh conditions
(i.e., oxidative stress, heat shock).10 Misfolded proteins
severely impair cellular physiology, as exposed hydrophobic
residues lead to formation of insoluble oligomers and larger
aggregates alter essential protein–protein interactions, thereby
causing cellular toxicity.11 Accumulation of toxic protein
aggregates is a hallmark of several common human diseases,
so-called protein misfolding disorders or proteinopathies.

The critical factors that direct a specific substrate to one
degradation route or the other is incompletely understood,

UBIQUITINTAION DEGRADATION

Figure 1 The Ubiquitin code links between proteasomal and lysosomal degradation. A model for different degradation routes of a misfolded protein. As illustrated, a
misfolded protein can be degraded by proteasome or lysosomal system. Chaperone-dependent E3-ligase CHIP or other related E3-ligases leads to ubiquitination of the
misfolded protein, predominantly in a K48-linked mode, which targets for the proteasome. Under certain conditions i.e., if the capacity of the chaperone-mediated refolding
machinery and the UPS is overloaded, protein aggregation occurs, which are then targeted for autophagic clearance. Thereby, ubiquitin chains on misfolded proteins can
undergo remodelling by combined activity of deubiquitinating enzyme (DUB) and E3-ligases. Newly formed ubiquitin chains, i.e., K63-linked chains are then recognised by the
UBD of p62, NBR1 to form inclusion bodies or by the corresponding UBD of HDAC6, which direct protein aggregates to the aggresome. Aggresomes can be degraded via the
proteasome or via autophagy pathway. If degradation occurs via autophagy, targeting of the protein aggregates are determined by the LIR motif of p62 and NBR1. Autophagy
takes part in distinct steps. Cytosolic components are enclosed by an isolation membrane so-called phagophore, which leads to the formation of the autophagosomes.
Thereby, LC3 and other ATG proteins such as the ATG 5/12/16L complex are recruited to autophagosome. Finally, the outer membrane of the autophagosome fuses with the
lysosome and the internal material is degraded in the autolysosome. LC3, mammalian LC3 modifier including all LC3 and GABARAP family protein; Ub, ubiquitin
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but is partially encoded in how ubiquitin is attached to its
substrates: conjugation of a single ubiquitin monomer
(monoubiquitination) or sequential conjugation of several
ubiquitin moieties (polyubiquitination) of variable length.
Dependent on which of its seven lysine (K) residues is linked
to the ubiquitin monomer, the chains are called K6, K11,
K27, K29, K33, K48 or K63 ubiquitin chains.12 Conjugation on
its amino terminal methionine (M1) moieties leads to the
formation of linear chains.13 ‘Classical’ K48 ubiquitin chains
were originally identified as the canonical signal to target
proteins for proteasomal degradation.1 In contrast, non-
classical linkage types such as K63, K11, M1-linked chains
or single ubiquitin moieties (monoubiquitination) were thought
to signal mainly for non-proteolytical functions.14,15 These
chain types are involved in controlling several processes
such as receptor transport, DNA repair and signalling.14–16

However, recent reports have demonstrated that regulatory
proteins of the cell cycle modified with K11 chains are also
targeted for the proteasomal pathway,17 whereas K63 chains
can target substrates for degradation via autophagy.18

Molecular chaperones of the heat-shock protein (HSP)
family initiate the first protective mechanism to prevent toxicity
and ensure intracellular quality control-mediated clearance.
On the one hand HSP assist folding of de novo synthesised
protein while they traffic into cellular compartments and
promote refolding of denatured or damaged proteins. On the
other hand protein aggregation is prevented by shielding
hydrophobic surfaces of folding intermediates from the
cytosol.11 If refolding of the protein is not successful, E3
ubiquitin ligases, such as the co-chaperone carboxyl terminus
of heat-shock cognate70 (HSC70)-interacting protein (CHIP),
induce ubiquitination and thereby select unfolded or
damaged proteins for degradation preferentially by the UPS
(Figure 1).11 The UPS has a major role in cellular quality,
which unlike bulk degrades substrates in a highly selective
manner via covalent attachment of ubiquitin chains. These
chains serve as recognition motifs for delivery to 26S
proteasomes. If the capacity of the chaperone-mediated
refolding machinery and the UPS is overloaded, protein
aggregation can occur. Accumulation of misfolded proteins
leads to the formation of so-called inclusion bodies (also
called aggresomes), which are then delivered to the lysosome
for autophagic degradation (Figure 1). The term ‘inclusion
bodies’ has been referred to the intracellular foci into which
protein aggregates are sequestered. Aggresomes are
inclusion bodies, which require a microtubule-based appara-
tus involving the ubiquitin-binding histone deacetylase
6 (HDAC6) (Figure 1). Importantly, ubiquitinated aggresomes
can also be degraded by the UPS (Figure 1). The biological
relevance of aggregate formation remains obscure, although
it may have a protective role by actively removing toxic
misfolded monomers and preventing widespread intracellular
toxicity.19 Conversely, it may block proteasomal degradation
and increase cytotoxicity.20

Molecular Links between the Proteasomal and the
Autophagic Machinery

Although it has long been assumed that the proteasomal and
the autophagosomal machinery are two complementary

(but strictly separate) degradative systems with distinct
clients, increasing evidence suggests that there are numerous
intersections. The way how a misfolded protein is degraded is
partly determined by the relative activity of each degradation
systems (Figure 1).21 For instance, recent studies demon-
strate that activation of the forkhead transcription factor O 3
induces both autophagosomal and proteasomal degrada-
tion.22,23 It remains unclear whether autophagy is strictly a
parallel or a compensatory degradation system when the UPS
is impaired. A molecular link between these systems could be
HDAC6, a microtubule-associated deacetylase that interacts
with polyubiquitinated proteins and can rescue defects of the
UPS by increasing autophagy.24 Moreover, long-term inhibi-
tion of autophagy can increases proteasomal substrates level
by compromising the UPS as a consequence of p62
accumulation.25 Finally, chaperones and co-chaperones such
as BCL-2-associated athanogene 1 (Bag1) and Bag3 have a
very important regulatory role in recognising misfolded
proteins for degradation.26 For instance, as a consequence
of cell ageing, the amount of misfolded proteins gradually
increases. To cope with this situation, ageing cells switch co-
chaperone expression from Bag1 to Bag3 to control recogni-
tion of misfolded proteins and gather them into p62-containing
aggregates.27 Bag1, highly expressed in young cells, pro-
motes high use of proteasomal degradation, whereas Bag3
was upregulated in ageing cells correlating with increased
autophagic activity and enhanced p62 formation, suggesting
that the Bag1/Bag3 ratio decides between proteasomal and
autophagic degradation. Bag3 was found in the same
complex with p62 and interacts with Hsp/Hsc70.27 Also p97/
VCP, a HDAC6-interacting chaperone, is linked to both
degradation systems by disassembling protein complexes
for degradation to the UPS28,29 but also interacting with
protein aggregates destined for autophagy.30,31 Importantly,
mutations in p97 cause an autophagosome maturation defect
by preventing autophagosome–lysosome fusion (reviewed
in Ju and Weihl32). This leads to the development of the
proteinopathy inclusion body myopathy associated with
Paget’s disease of the bone and fronto-temporal dementia.32

Another kind of crosstalk between proteasomal and
lysosomal degradation takes place at the substrate level.
The ubiquitin code predicts that the respective degradation
system is selected upon specific types of ubiquitin chains, as
described above. Main factors for this process are the
ubiquitin E3-ligases, as they, together with specific E2
enzyme, are responsible for the conjugation of different
ubiquitin chains. Misfolded proteins resistant to refolding by
chaperones are ubiquitinated by the E3-ligase CHIP with K48-
linked chains and degraded by the proteasome (Figure 1).
In combination with the E2 enzyme ubiquitin-conjugating
enzyme, CHIP is able to make K63 chains33 and target the
substrate to the autophagic machinery. As an example,
a-synuclein, is degraded by both proteasomal and autophagic
after CHIP ubiquitination.34 A recent study demonstrated that
coexpression of aggregation-prone proteins with different
ubiquitin mutants in cultured cells leads to formation of
inclusion bodies. Thereby, K48- and K63-linked polyubiquiti-
nation, as well as monoubiquitin modifications, all contributed
to the biogenesis of these inclusions, but only K63-linked
chains induced autophagic degradation of the inclusion
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bodies.18 Also, the E3-ligase Parkin is able to ligate several
ubiquitin linkages (Figure 1), though the mechanism remains
elusive. Numerous proteins have been shown to undergo
Parkin-dependent K48-linked ubiquitination followed by
proteasomal degradation.35 Others have identified that Parkin
forms K63-linked polyubiquitin chains on misfolded DJ-1
protein, which leads to recruitment into aggresome via
HDAC6.36 In addition, recent studies showed that Parkin
promotes selective autophagy of dysfunctional mitochondria
(mitophagy, see below).37,38 By interacting with different sets
of cofactors under specific conditions it may be conceivable
that CHIP, Parkin and other related E3-ligases act like
dual-function ubiquitin ligases targeting substrates to either
proteasomal or autophagic degradation pathways (Figure 1).

The Autophagy Modifiers have UBL Functions

The process of autophagy is divided mechanistically into distinct
steps: (1) the initiation starts with the formation of a cup-shaped
isolation membrane, the so-called phagophore (Figure 1);39,40

(2) the elongation of the phagophore engulfs cytoplasmic
components, including membrane bound organelles and finally
closes to form a double membrane vacuole, the autophago-
some;40,41 (3) fusion of the outer membrane of an autophago-
some with a lysosome forms an autolysosome (Figure 1). Over
30 autophagy-related genes (ATG) involved in the process of
autophagosome formation have been identified to date.42,43 The
‘core’ ATG proteins, which show high functional homology to
mammalian genes, can be categorised into four subgroups: (1)
Atg1/ULK1 kinase complex (ULK, ATG13, FIP200, ATG101);
(2) PI3K complex (VPS34-BECN1), and two UBL systems
comprised by the (3)ATG12-ATG5-ATG16L and (4) MAP1LC3/
GABARAP modifiers.

The two UBL conjugation systems ATG12 and LC3 are
highly conserved from yeast to humans and function in both
selective and non-selective autophagy during the autophago-
some formation. Although Atg12 and LC3 modifiers (LC3 and
GABARAP family proteins) do not have apparent sequence
homology with ubiquitin from yeast to mammals, they share a
common ubiquitin-like beta-grasp superfold and show simila-
rities to the ubiquitin conjugation system (schematically
summarised in Figure 2).44,45 Both systems utilise an E1-like
enzyme in the first activation step, called Atg7 in the UBL
system. Then, the E2-like enzyme Atg10 conjugates Atg12 to
Atg5 to form a complex with Atg16. Finally, similar to the E3
ubiquitin ligase, this complex assists in the ligation of LC3 to
phosphatidylethanolamine (PE) by Atg3 (E2-like enzyme)
(Figure 2).46 The cysteine protease Atg4 (corresponding to
deubiquitinating enzymes) has a dual role: it processes LC3
modifiers before their activation and subsequently it removes
LC3 from PE on the autophagosome after vesicle completion
(Figure 2). Reactive oxygen species (ROS) seem to be
involved in regulating Atg4 activation at this step.47 The
exposed glycine residue of LC3 can then be conjugated to PE
(i.e. formation of LC3-II). In the conjugated form, LC3 seems
to be indispensable for hemifusion of lipid membranes,
thereby driving expansion of the autophagosome.48 Further-
more, LC3 may also control the size of autophagosomes.49

The yeast Atg8 protein has eight orthologs in mammals,
which are divided into two subfamilies according to their

sequence homology: the microtubule-associated protein 1 LC3
(MAP1LC3) family with MAP1LC3A-C (MAP1LC3A has two
splicing variants), and the GABARAP/GATE-16 (golgi-asso-
ciated ATPase enhancer of 16 kDa) family with GABARAP,
GABARAPL1, GATE-16 (also called GABARAPL2) and
GABARAPL3.9 Among all Atg8 homologues LC3B has been
extensively studied and is emerging as the main actor in
starvation-induced autophagy.50 The exact function of either
LC3 or GABARAP/GATE-16 in the autophagic process remains
yet unclear. It appears that both subfamilies are required for
autophagy and that members of both subfamilies contribute to
different aspects of autophagosome biogenesis.51

The Role of Ubiquitin in Different Types of Selective
Autophagy and its Implications for Disease

As ubiquitin moieties are recognised by proteins containing
ubiquitin binding domains (UBD),52 autophagic UBLs such
as the LC3 modifiers, interact to a short hydrophobic
sequence, termed LC3-interacting region (LIR) motif (named
LC3 recognition sequence53; LRS54). LIR motifs were
identified in adapter proteins, which have also the ability to
bind ubiquitinated substrates simultaneously facilitating
autophagic degradation.6,7 These so-called autophagy recep-
tors are involved in the elimination of various substrates such
as protein aggregates, organelles and pathogens (Figure 3).

Several types of selective autophagy can be distinguished,
based on the remarkable substrate specificity of this process:
aggrephagy, mitophagy, xenophagy, ribophagy and pexo-
phagy.55 The following sections emphasise on (i) ubiquitina-
tion as a signal for substrate targeting and (ii) the crucial role of
autophagy receptors (Figure 3). The rapidly growing number
of autophagy receptors identified to date are listed in Figure 4.

UBIQUITIN SYSTEM UBIQUITIN-LIKE SYSTEM

Figure 2 Two UBL are required for autophagy. (a) In the ubiquitin system,
ubiquitination takes part in three steps. First, the enzymes E1 leads to activation of
ubiquitin followed by a conjugation step, which is catalysed by E2 enzyme. Finally, a
ubiquitin E3-ligase process tagging of ubiquitin to a protein. Removal of ubiquitin is
performed by DUB. (b) The UBLs ATG12 and LC3 have functional similarities to the
ubiquitin system. Both systems utilise a E1-like enzyme (Atg7) in the first activation
step. Then, the E2-like enzyme Atg10 conjugates Atg12 to Atg5 to form a complex
with Atg16L, which assists as a E3 ubiquitin ligase in the ligation of PE to LC3 by
Atg3 (E2-like enzyme). The corresponding deubiquitinating enzyme (DUB) ATG4
removes LC3 from PE. LC3, mammalian LC3 modifier including all LC3 and
GABARAP family protein; Ub, ubiquitin
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Role of p62/SQSTM1 (sequestosome 1) and NBR1
in Selective Autophagy. p62/SQSTM1 is a common
component of ubiquitinated inclusion bodies found in
neurodegenerative and liver disease as well as in cultured
cells. Accumulation of so-called p62 bodies is associated
with autophagy induction or subjected to misfolded protein

stresses.56 p62 as a multifunctional adaptor protein is
involved in several biological processes such as cell
signalling, differentiation and particularly in the removal of
toxic protein aggregates.57 Through its Phox and Bem1p
(PB1) domain, it undergoes oligomerisation and interaction
with protein kinases (i.e MAP-kinases) and NBR1.58–60 Via
its ubiquitin-associated (UBA) domain (Figure 4), p62 is able
to bind mono- or poly-ubiquitinated proteins.61 Furthermore,
p62 is required for the concentration of ubiquitinated proteins
forming aggregates and crucial for their clearance.6,62

Depletion of p62 in combination with inhibition of autophagy
was shown to prevent accumulation of ubiquitin-positive
protein aggregates, indicating that p62 is indispensable
for basal autophagy.53 By directly binding to LC3 via its LIR
motif, p62 becomes a selective autophagy receptor, bringing
ubiquitinated protein aggregates to the emerging autophago-
some.6,53 The importance of p62 as a selective autophagy
receptor for degradation of misfolded proteins or aggregates
is reflected in the development of several human bone
diseases. Thereby, the role of the UBA domain seems to be
critical. Paget disease of the bone, a chronic and metabolic
disorder characterised by increased bone turnover
with lesion throughout the skeleton has been frequently
associated with mutation of p62, predominantly in the
UBA domain.63 Dominant-acting mutations in one of the
p62 alleles were observed either leading to deletion of the
UBA domain or the disability of binding ubiquitin.64 The loss
of functional UBA causes increased osteoclastogenesis by
activating TNF receptor-associated factor 6–NF-kB signal-
ling,64 suggesting that regulation of p62 is important for
specific biological settings such as bone formation. The
efficiency of ubiquitin chain binding may constitute a platform
for cellular signal pathways. For example, phosphorylation of
serine 403 phosphorylation within the UBA domain of p62
can enhance the binding to ubiquitin chains and leads to
increased autophagic clearance of ubiquitinated proteins.65

Moreover, it was shown that p62 can selectively regulate the
turnover of signalling molecules: under starvation conditions,
wingless-type MMTV integration site signalling is negatively
regulated by dishevelled 2 (Dvl2) degradation by p62-
mediated selective autophagy.66 Ubiquitination of Dvl2 by
the E3-ligase Von Hippel–Lindau is recognised by p62,
which in turn facilitates aggregation and LC3-mediated
autophagosome recruitment.

NBR1 has a similar domain structure as p62 and binds
directly to ubiquitin and LC3.7 Although NBR1 and p62 differ in
sequence and size, they both share an N-terminal PB1 and a
C-terminal UBA domain as well as a LIR sequence (Figure 4).
NBR1 undergoes dimerisation via the coiled coil domain,
whereas p62 dimerises through its PB1 domain. NBR1 can
directly bind to p62, and together they act as cargo receptors
for autophagic degradation of ubiquitinated substrates.6,7,53

In contrast, elimination of midbody derivatives through
autophagic degradation is only dependent on NBR1 without
any detectable involvement of p62.67 However, it had
been previously reported that p62 has a role in midbody
clerarance.68 Kuo et al.67 demonstrated that accumulation of
midbody derivatives through evasion of autophagy is
associated with cellular reprogramming of stem cells and
enhanced tumorigenicity of potential cancer stem cell. Thus,

NON-SELECTIVE AUTOPHAGY

SELECTIVE AUTOPHAGY

Figure 3 Non-selective and selective Autophagy. (a) Upon nutrient deprivation,
autophagy catabolizes cytoplasmic components nonselectively into autophago-
some and mediates recycling and global turnover of cytoplasmic materials. (b) In
selective autophagy particular substrate are targeted into the autophagosome by
selective autophagy receptors. The targeted cargo includes protein aggregates,
damaged mitochondria or pathogens such as bacteria. 16/12/5, ATG 16/12/5
complex; LC3, mammalian LC3 modifier including all LC3 and GABARAP family
protein; Ub ubiquitin
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NBR1 promotes cell differentiation and may act as a tumour
suppressor in this case. Similar to p62, NBR1 is also involved
in bone remodelling.69 It appears that NBR1 may also be
involved in protein misfolding disorders such as sporadic
inclusion body myositis and autophagic degradation may
have role in the pathophysiology.70

Selective Autophagy of Mitochondria – Mitophagy.
Mitophagy mediates the removal of mitochondria, either by
selective elimination of damaged mitochondria as a form of
quality control71 or by removal of surplus mitochondria for
steady-state turnover to adapt either to metabolic require-
ments or during specialised development stages, such as red
blood cell differentiation.72 Also, the role of ubiquitin in these
two forms of mitophagy is distinct. During reticulocyte
maturation it was shown that Nix (Bnip3L) acts as a
mammalian mitophagy receptor and is important for the
complete removal of mitochondria.71 In comparison with
other autophagic adapter proteins, Nix has a LIR motif but is
lacking a UBD (Figure 4). Probably due to its physiological
localisation within the mitochondrial outer membrane,
ubiquitination might not be required for NIX-dependent
delivery of damaged mitochondria to autophagosomes.

During fertilisation, mitochondrial clearance has an impor-
tant role as strictly maternal inheritance of mitochondria and
its DNA in mammals derives from selective elimination of
sperm mitochondria, which are tagged by ubiquitin.73 Later it
was shown that ubiquitinated mitochondria in the midpiece of
mouse sperms after fertilisation were also LC3-positive.74

Intriguingly, p62 and K63 ubiquitin chains were also detected

in the midpiece of spermatozoa, suggesting that this
selective autophagy receptor, might be also involved in the
degradation process.74 Besides, it was demonstrated that in
Caenorhabditis elegans paternal mitochondria are degraded
by fertilisation-induced autophagy.74,75 However, sperma-
tozoan mitochondria were not ubiquitinated at all, neither
before nor after entry into the ooplasm. Indeed, sperma-
tozoan-specific membranous organelles (MO) were instead
rapidly ubiquitinated after fertilisation. Despite these
differential ubiquitination states, both mitochondria and MOs
were degraded by autophagy. Overall, autophagy-mediated
degradation of paternal mitochondria is an evolutionarily
conserved process, though the dependency of this process on
ubiquitin is not conserved.

Mitochondria form large cellular networks and serve as
major sites of ATP production; their morphology also
determine cellular response to autophagy as, elongated
mitochondria are spared from autophagic degradation, have
increased activity of ATP synthase, and maintain ATP
production.76 At the same time dysfunctional mitochondria
are a main source of ROS and cytochrome c, which cause cell
damage and death. Accumulation of damaged mitochondria is
accompanied with neurodegenerative diseases, hypoxia and
cancer. Therefore, removal of depolarised mitochondria is
essential and loss of membrane potential upon mitochondrial
damage leads to autophagic degradation.77 This process is
ubiquitin-dependent, especially in case of Parkin-mediated
mitophagy. The E3-ligase Parkin is translocated to damaged
mitochondria and mediates ubiquitination of voltage-depen-
dent anion channel 1 (VDAC1).37 p62 is in turn recruited

INTERACTION WITH UBIQUITIN

INDIRECT ASSOCIATION WITH UBIQUITINATED PROTEINS AND WITH LC3

INTERACTION WITH UBIQUITIN AND LC3 LIR MOTIF

LIR MOTIFINTERACTION WITH LC3

Figure 4 Hitherto identified proteins involved in selective autophagy and their domain architecture. (a) p62, NBR1, OPTN, NDP52 and c-Cbl are autophagic adaptor
proteins. Excluding c-Cbl they all interact with both ubiquitin and LC3 to promote autophagic degradation. The UBD domain of c-Cbl instead seems not to be involved in
autophagic degradation. (b) NIX and newly found FUNDC1 are mitochondrial membrane proteins, which bind LC3/GABARP via their LIR motifs. (c) HDAC6 has only a UBD
corresponding called BUZ and binds to ubiquitin (but not to LC3), (d) whereas the proteins Alfy, Bag3 and Tecpr1 are indirectly associated with ubiquitinated proteins or with
LC3. Although this may ultimately also result in bridging substrates to autophagosomes, these proteins are not referred to as autophagy receptors. Numbers indicates length of
human proteins in amino acids. BEACH, BEACH domain; BH3, Bcl-2 homology 3 domain; BUZ, ubiquitin-binding zinc finger; CC, coiled coil domain; Dysf, Dysferlin domain;
FYVE, Fab1,YOTB/ZK632.12, Vac1, and EEA1 domain; PH, Pleckstrin homology domain; TM, transmembrane domain; WD40, WD40 repeats; WW, WW domain;
ZnF, Zinc-finger domain
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to ubiquitinated VDAC1 in a K63- and K27-dependent
manner leading to clustering of mitochondria and autophagic
degradation.78 Although it is clear that p62 can bind Parkin-
ubiquitinated mitochondria and promotes mitochondrial
‘clumping’, several conflicting reports show that p62 is not
responsible for parkin-mediated mitophagy and that VDAC1 is
dispensable for both.79 Concordantly, translocation of Parkin
to uncoupled mitochondria and also its induction seems to
be activated by PTEN-induced putative kinase 1.78,80,81

Recently, it was demonstrated that HDAC6 is recruited
to mitochondria after Parkin-mediated ubiquitination and is
needed for degradation. As HDAC6 binds to ubiquitin and
microtubules, it potentially links transport of damaged
mitochondria with mitophagy.82 In addition to K63-linked
ubiquitination, other Parkin substrates relevant for mitophagy,
such as mitofusin, can be ubiquitinated.83 Mitofusins are small
transmembrane guanosine 50-triphosphatases located in the
outer membrane of mitochondria and mediate mitochondrial
fusion. By selective degradation of mitofusin, Parkin can
inhibit re-fusion of mitochondria.84 Recognition of damaged
mitochondria for selective removal can be initiated by integral
mitochondrial membrane proteins. For instance, Nix has been
reported to promote Parkin translocation and Parkin-mediated
mitophagy in mouse embryonic fibroblast85 and can
recruit GABARAPL1 to depolarised mitochondria.71 Another
mitochondrial membrane protein FUN14 domain containing 1
(FUNDC1) was identified as a receptor for hypoxia-induced
mitophagy by interacting with LC3 through a LIR motif.86

Intriguingly, hypoxia-induced dephosphorylation of Tyr18 in
the LIR motif (YxxL) of FUNDC1 (Figure 4C) enhances its
interaction with LC3 for selective mitophagy. Thus, under
normal physiological conditions FUNDC1-mediated mito-
phagy is inhibited by sarcoma viral oncogene homologue
(src)-mediated LIR phosphorylation, whereas under hypoxia
dephosphorylation takes over and increases LC3 binding
and mitophagy.

Ubiquitination and Autophagy of Pathogens – Xenophagy.
In xenophagy pathogen-containing phagosomes are exclu-
sively targeted for autophagic degradation. The influence of
ubiquitin in xenophagy within the context of bacterial invasion
is clearly depicted in several studies.87–89 The association of
ubiquitin with intracellular bacteria led to the hypothesis that
antimicrobial autophagy requires a ubiquitin-dependent
mechanism for cargo recognition and degradation, analo-
gous to aggrephagy.87 In fact, at least three autophagic
adaptor proteins are known – p62, nuclear domain 10 protein
52 (NDP52) and optineurin (OPTN) – which fulfil a dual role
in recognising ubiquitinated cytosolic bacteria and bringing
them into autophagosomes.90–92 p62, NDP52 and OPTN are
not redundant, as depletion of either protein causes
hyperproliferation of Salmonella typhimurium90–92 and all
three proteins are independently recruited to the same
bacterium.92,93 NDP52 appears to function in innate
immunity against cytosolic pathogens by linking the TANK
binding kinase 1 (TBK1) signalling pathway to autophagic
elimination. TBK1 is a serine/threonine kinase from the IKK
family that has an antibacterial activity.91 Moreover, it was
shown that TBK1 enhances LC3 binding to OPTN by
phosphorylation of a conserved serine residue adjacent to

the LIR motif of OPTN.92 Similar to NDP52 and TBK1
signalling, p62 interacts with atypical PKC, which promotes
delivery of Salmonella-containing vacuoles for autophagy.89

TBK1 also forms a complex with autophagy-linked FYVE
protein, which may facilitate formation of autophagosomal
membranes around large ubiquitinated cargos, such as
bacteria. Besides pathogen recognition, p62 mediates
recruitment of antibacterial peptides derived from ribosomes
and ubiquitinated proteins to Mycobacterium tuberculosis
containing compartments, which is critical for antibacterial
defence.94 Another explanation for the non-redundant func-
tion of p62, NDP52 and OPTN might rely on their UBD. The
ability of UBDs to bind different ubiquitin chains may explain
the differential localisation of autophagy receptors in distinct
microdomains surrounding the bacterium. However, neither
the identity of the E3 ubiquitin ligase nor the type of ubiquitin
chains conjugated to the bacterial surface ise currently
known. Also, modifications in binding affinity to ubiquitinated
substrates may control pathogen elimination. The UBA
domain of p62 is critical for the recruitment to ubiquitin-
positive S. typhimurium. Similar to TBK1-mediated LIR
phosphorylation in OPTN (resulting in stronger LC3 binding),
phosphorylation of serine 403 in the UBA domain of p62 by
casein kinase 2 was shown to enhance the binding to
ubiquitin chains.65 Thus, recruitment of several kinases to the
vicinity of bacteria targeted by autophagy might ensure
coordinated regulation of pathogen sensing and efficient
elimination of invading pathogens by autophagy.

Besides ubiquitin-dependent pathogen defence, subscrib-
ing a later time point against bacterial invasion, there is an
early line of defence comprising accumulation of diacylgly-
cerol on bacteria-containing vesicles.89 Subsequently, they
are targeted selectively to autophagy. Bacteria escaping this
early defence line expose host glycans on their damaged
vacuoles. Recently, it was shown that the host glycans on the
surface of Salmonella are targeted by galectin 8, a cytosolic
lectin, which directly binds NDP52 promoting antibacterial
autophagy in a ubiquitin-independent way.95 This interaction
is transient and followed by a ubiquitin-dependent NDP52
recruitment, outlining the third layer of defence.

Ubiquitination and Other Forms of Selective Autophagy.
Mounting evidence suggests that peroxisomes (pexophagy),
ribosomes (ribophagy) and surplus endoplasmatic reticulum
(ER) (reticulophagy) are also selectively degraded by
autophagy. However, the mechanism of cargo recognition
is poorly understood, but may require ubiquitination.
For instance, a significant role of ubiquitin in pexophagy
has been described: monoubiquitination of peroxisomes
was sufficient for targeting them to autophagosomes in a
p62-dependent manner.96 The deubiquitination activity of
Ubp3/Bre5 is crucial for selective autophagy of excess
ribosomes.97 Similarly, selective autophagy of zymogen
granules is dependent on the activity of the ubiquitin-specific
protease USP9x.98 It seems that USP9x regulates zymogen
granule-selective engulfment presumably by deubiquitination
of vacuole membrane protein 1, an autophagy-associated
protein. Alternatively, both ubiquitination and deubiquitination
of distinct critical molecules might be required for
zymophagy; however, specific E3-ligases have not been
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yet identified. Another example of selective autophagy is
described as ER-phagy or reticulophagy induced by UPR
(unfolded protein response). Upon severe ER stress,
ER-phagy may constitute a cell survival mechanism against
UPR-induced ER expansion. As a consequence, reducing
ER volume is followed by decreasing unfolded ER proteins,
though the molecular mechanisms remain elusive.99,100

Future Direction/Outlook

There is a growing body of evidence, suggesting that the
specificity factor for selective autophagy is determined by
ubiquitination and binding of this ubiquitin signal by autopha-
gic adaptor proteins. Beside ‘classical’ autophagy receptors
such as p62 and NBR1 characterised by their UBD and
LIR motifs, also ‘non-classical’ autophagy receptors are
appearing. Such adaptor proteins target substrates selec-
tively for autophagy independently of classical UBD and LIR
motifs. They are giving new molecular insights in selective
autophagy. For instance, quite recently the relatively promis-
cuous c-Casitas B-lineage lymphoma (c-Cbl) was shown to
act as an autophagic adapter protein under certain
conditions.101 In the absence of focal adhesion kinase activity
c-Cbl targets Src into autophagsosomes by binding LC3 via its
LIR motif.101 Intriguingly, only the LIR motif and not the
E3-ligase activity of c-Cbl is required for the autophagosomal
targeting. Thus, the ubiquitin ligase activity of c-Cbl is
essential for proteasomal degradation of Src but dispensable
for Src degradation by autophagy. Furthermore, the role of
ubiquitination in this model remains unclear, as binding of
c-Cbl to Src is a ubiquitin-independent process. SMAD-
specific E3 ubiquitin protein ligase 1 (SMURF1), another
E3-ligase, was also shown to operate as an adaptor protein in
selective autophagy independently of its catalytic activity.102

As a mediator of both viral autophagy and mitophagy, it was
assumed that its C2 domain bridges autophagic substrates to
the autophagosomes. Analogous to c-Cbl, SMURF1 may
have dual functions in targeting substrates to either protea-
somal degradation via its ubiquitination activity or in targeting
to autophagic degradation via its C2 domain. In general,
it will be interesting to clarify what exactly determines
proteasomal or lysosomal degradation of the same protein
and, in particular, which factors or signals can switch an
E3-ligase from its ubiquitination function to its autophagic
adaptor mode.

It will be important to understand how autophagy substrates
are selected and labelled for degradation. Selection does not
always mean ubiquitin labelling. As an example, Tachylectin-
II-like beta-propeller domain (Tecpr1) was initially identified as
an Atg5 binding partner.103 Later it was shown to colocalise
with ATG5 at Shigella-containing autophagosomes promoting
efficient autophagic degradation of bacteria.104 Importantly,
targeting of bacterial pathogens for selective autophagy by
Tecpr1 is ubiquitin-independent, as Shigella are able to avoid
polyubiquitin tagging. Furthermore, Tecpr1 interacts with
WIPI-2, a yeast Atg18 homologue and PI(3)P-interacting
protein, which is required for LC3-positive autophagosomes
formation. Hence, neither a LIR nor a UBD domain is
required for autophagic degradation of Shigella by Tecpr1.104

In addition, Tecpr1 appears to have a more general role

in autophagosome maturation in starvation-induced
autophagy.105

The future challenge will be to delineate the spatio-temporal
mechanisms by which ubiquitin signals control selective
autophagy and its importance in physiological and pathophy-
siological processes. Among the questions to be addressed
are how post-translational modifications including phospho-
rylation, acetylation and ubiquitination coordinate selective
autophagy.106 Recent reports indicate an intricate network of
regulatory steps, as exemplified by the phosphorylation of the
LIR motif of OPTN that is crucial for xenophagy92 and
phosphorylation of the UBA domain of p62 that mediates
autophagy of protein aggregates.65 Lastly, it will be of great
interest to elucidate the role of selective autophagy in different
signalling pathways, especially to reveal how autophagy can
control cellular homoeostasis by modulating the capacity of
intracellular signalling networks.
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