
SIGN-R1, a C-type lectin, enhances apoptotic cell
clearance through the complement deposition
pathway by interacting with C1q in the spleen
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Complements, such as C1q and C3, and macrophages in the splenic marginal zone (MZMs) play pivotal roles in the efficient
uptake and processing of circulating apoptotic cells. SIGN-R1, a C-type lectin that is highly expressed in a subpopulation of
MZMs, regulates the complement fixation pathway by interacting with C1q, to fight blood-borne Streptococcus pneumoniae.
Therefore, we examined whether the SIGN-R1-mediated classical complement pathway plays a role in apoptotic cell clearance
and immune tolerance. SIGN-R1 first-bound apoptotic cells and this binding was significantly enhanced in the presence of C1q.
SIGN-R1–C1q complex then immediately mediated C3 deposition on circulating apoptotic cells in the MZ, leading to the efficient
clearance of them. SIGN-R1-mediated C3 deposition was completely abolished in the spleen of SIGN-R1 knockout (KO) mice.
Given that SIGN-R1 is not expressed in the liver, we were struck by the finding that C3-deposited apoptotic cells were still found
in the liver of wild-type mice, and dramatically reduced in the SIGN-R1 KO liver. In particular, SIGN-R1 deficiency caused delayed
clearance of apoptotic cells and aberrant secretion of cytokines, such as TNF-a, IL-6, and TGF-b in the spleen as well as in the
liver. In addition, anti-double- and single-stranded DNA antibody level was significantly increased in SIGN-R1-depleted mice
compared with control mice. These findings suggest a novel mechanism of apoptotic cell clearance which is initiated by SIGN-R1
in the MZ and identify an integrated role of SIGN-R1 in the systemic clearance of apoptotic cells, linking the recognition of
apoptotic cells, the opsonization of complements, and the induction of immune tolerance.
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Apoptosis, or programmed cell death, is a highly regulated
physiological process that involves numerous receptors and
bridging molecules.1 In higher organisms, billions of apoptotic
cells that are generated in physiological homeostasis are
rapidly and efficiently removed by professional phagocytes in
an immunologically silent way.2 As professional phagocytes,
macrophages are the primary cells in charge of clearing
apoptotic cells.3 The recognition and clearance of apoptotic
cells by thesemacrophages activates tolerogenic pathways in
an effort to prevent an immune response against self-
antigens.4 The impaired clearance of apoptotic cells may
influence the resolution of inflammation or trigger autoimmune
disorders4 such as rheumatoid arthritis, systemic lupus
erythematosus, glomerulonephritis, and atherosclerosis.5–8

Apoptotic cells that enter the splenic artery from the
circulation accumulate primarily in the splenic marginal
zone (MZ).9,10 The MZ is an anatomical region that
surrounds the white pulp nodules and separates these
lymphocyte-rich regions from the vascular and macrophage-
rich red pulp.11 The MZ macrophages (MZMs) are a
small subset of specialized splenic macrophages that express
an array of receptors, such as the macrophage receptor
with collagenous structure (MARCO), scavenger receptor A
(SR-A), and specific intercellular adhesion molecule-3-grab-
bing nonintegrin-related 1 (SIGN-R1).12,13 MZMs regulate
not only the efficient clearance of circulating apoptotic cells,
but also the selective engulfment of dying cells by CD8aþ

DCs.14 This mechanism is important in tolerance to
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cell-associated antigens, providing the maintenance of self-
tolerance.9,10,15

Complement C3 contributes to the opsonization of apoptotic
cells,16,17 and facilitates their opsonin-dependent phagocyto-
sis, playing a pivotal role in the efficient clearance of apoptotic
cells.18,19 Also, complement receptor-mediated phagocytosis
optimize the uptake of apoptotic cells and instruct DCs to
induce immune tolerance.15 In addition, C1q and mannose-
binding lectin (MBL) directly bind to apoptotic cells,20–24

facilitating the phagocytosis of apoptotic cells by macro-
phages.22,24 Because C1q-deficient mice show impaired
clearance of apoptotic cells7 and both C1q-deficient mice
and humans are strongly susceptible to autoimmunity, C1q
may play an important role in the apoptotic cell clearance.25

SIGN-R1, which is the murine homolog of human dendritic
cell-specific intercellular adhesion molecule-3-grabbing non-
integrin (DC-SIGN, CD209), is a transmembrane C-type lectin
that is highly expressed on a subpopulation of MZMs.13 SIGN-
R1 directly binds to C1q and dominantly regulates the
immunoglobulin-independent classical complement pathway
for C3 deposition of blood-borne Streptococcus pneumo-
niae.26 In SIGN-R1-deficient mice, C3 deposition is abolished
and innate resistance against pneumococci is reduced.26,27

SIGN-R1 interacts specifically with 2,6 sialylated Fc frag-
ments of immunoglobulins, resulting in the anti-inflammatory
activity of intravenous immunoglobulin, which has beenwidely
used to treat autoimmune diseases, including immune
thrombocytopenia, rheumatoid arthritis, and systemic lupus
erythematosus.28,29

In the present study, we demonstrate that SIGN-R1 first
binds to apoptotic cells and this binding is enhanced by
interacting with C1q. And SIGN-R1–C1q complex immedi-
ately mediates C3 deposition on apoptotic cells, thus
promoting their systemic clearance and maintaining immune
tolerance in vivo.

Results

Direct interactions between SIGN-R1 and apoptotic cells
in vitro. We examined whether SIGN-R1 can directly bind to
apoptotic cells. Apoptotic Jurkat T cells or thymocytes were
prepared with dexamethasone or g-irradiation, and apoptosis
induction was confirmed by Annexin-V and propidium iodide
(PI) double staining in fluorescence-activated cell sorting
(FACS) analysis, showing no PI-single positive necrotic cells
(Supplementary Figure 1). We incubated nonapoptotic and
apoptotic Jurkat T cells with purified SIGN-R1 and performed
FACS analysis with a monoclonal anti-SIGN-1 antibody
(22D1). Contrary to nonapoptotic cells, SIGN-R1 preferen-
tially bound to Annexin-V-positive apoptotic cells (Figure 1a).
To further confirm SIGN-R1 binding to apoptotic cells,
apoptotic thymocytes were treated with biotinylated recom-
binant SIGN-R1 and the binding of SIGN-R1 to apoptotic
thymocytes was evident (Figure 1b, third row). The specificity
of this binding was verified with irrelevant biotin-conjugated
proteins, such as transferrin (Tfe) and endotoxin-free OVA
(efOVA) (Figure 1b, first and second rows). When Alexa568-
conjugated purified SIGN-R1 or efOVA (red) were incubated
with carboxyfluorescein succinimidyl ester (CFSE)-labeled
nonapoptotic or apoptotic thymocytes (green), SIGN-R1 only

bound to the surface of apoptotic cells (Figure 1c). To further
confirm SIGN-R1 binding to apoptotic cells, we used whole
cell lysate of DCEK_SIGN-R1 transfectant as a source of
SIGN-R1 and also observed the specific binding of SIGN-R1
to apoptotic cells (Figure 1d).

The direct binding of apoptotic cells to SIGN-R1-
transfected cells. The binding of SIGN-R1 to apoptotic cells
was examined by FACS analysis using DCEK or CHO
transfectant cell lines. The binding of apoptotic thymocytes to
parental DCEK_wild-type (WT) or DCEK transfectant expres-
sing mouse DC-SIGN (mDC-SIGN) was not significant, even
at 1 : 20 ratio of DCEKs-to-apoptotic cells (Figure 2a, first and
second rows). However, the binding of apoptotic cells to
DCEK_SIGN-R1 was evident and dependent on the dose of
apoptotic thymocytes, becoming significant at a 1 : 4 ratio and
the highest at a 1 : 20 ratio (Figure 2a, third row). The bound
number of apoptotic cells in FACS results was presented for
the respective cell lines (Figure 2a, right graph). To confirm the
binding of apoptotic cells to SIGN-R1, the same experiment
was performed with CHO transfectant cell lines, and similar
results were obtained, showing the specific binding affinity of
apoptotic cells only on CHO_SIGN-R1 (Figure 2b, right graph).
The binding of apoptotic cells to SIGN-R1 was further

confirmed at a 1 : 4 ratio of DCEKs-to-apoptotic cells by
fluorescent microscopy. Although a few apoptotic cells were
bound to DCEK_WT, the clustering of apoptotic cells
(blue, arrow heads) was obvious on the cellular surface of
DCEK_SIGN-R1 (Po0.05) (Figure 2c, right graph;
Supplementary Figure 2), confirming the FACS results of
Figures 2a and b. Apoptotic cell binding was obvious only on
DCEK_SIGN-R1, even at 4 1C, directly indicating that SIGN-
R1 is a receptor for apoptotic cells (Figure 2d). To examine the
binding efficiency of apoptotic cells to SIGN-R1, two-color
FACS analysis was performed. Apoptotic cell binding to
SIGN-R1 was evident even at 30min in DCEK_SIGN-R1, and
maintained for 2 h (Figure 2e, bottom row), confirming the
specificity of SIGN-R1 to apoptotic cells. Although some
binding of apoptotic cells to DCEK_ mDC-SIGN was seen at
30min, this binding was mostly absent at 2 h, suggesting
nonspecific binding or low-binding affinity of mDC-SIGN to
apoptotic cells.

The initial recognition and uptake of apoptotic cells by
SIGN-R1þ macrophages in the MZ. To verify the function
of SIGN-R1 on apoptotic cell clearance in vivo, we examined
the distribution of apoptotic cells around the MZ. Spleen
sections were examined 30min after an intravenous injection
of CFSE-labeled Jurkat cells (5� 107 cells/mouse) or TRITC-
conjugated latex beads (1� 1010/kg). Contrary to the
abundance of nonapoptotic Jurkat cells30,31 or TRITC-latex
beads13 in the red pulp (Figure 3a, left or Supplementary
Figure 3a, left row), the majority of apoptotic Jurkat cells
were primarily entrapped in the MZ, especially on SIGN-R1þ

macrophages (Figure 3a, right), showing the similar results
with previous reports.9,10,32 Next, we confirmed the uptake of
apoptotic thymocytes by SIGN-R1þ macrophages in vivo.
Similar to Figure 3a, apoptotic thymocytes were clearly
seen in SIGN-R1þ macrophages 30min after the injection
of them (Figure 3b, fourth column). Interestingly, apoptotic
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thymocytes were found in the MZ as early as 10min
after their injection (Figure 3b, third column), whereas
nonapoptotic thymocytes were not in the spleen at this
time point (Figure 3b, first column), indicating that the SIGN-
R1þ macrophages rapidly took up apoptotic cells from the
circulation.
To determine if SIGN-R1þ macrophages are critical for the

uptake of circulating apoptotic cells in the MZ, we intrave-
nously injected CFSE-labeled apoptotic thymocytes into
SIGN-R1 transient knockout (TKO) mice, which specifically
and transiently deplete surface SIGN-R1 molecule, but not
SIGN-R1± macrophages.33 The distribution of nonapoptotic
thymocytes in TKO mice was similar in control mouse of
Figure 3b (Figure 3c, left panel). However, apoptotic cells
were significantly lower in both the MZ and the red pulp at
30min (Figure 3c, right panel), implying that SIGN-R1 is
essential for the initial recognition of apoptotic cells. Next, we
examined the clearance efficiency of apoptotic cells in isotype
control and SIGN-R1 TKO mice for 1 h. In control mice,
apoptotic thymocytes were mostly absent at 1 h, suggesting a

rapid clearance of apoptotic cells from the spleen (Figure 3d,
upper row and right graph). However, apoptotic cells still
accumulated in the MZ after 1 h in SIGN-R1 TKO mice
(Figure 3d, lower row and right graph). The same results were
observed in the spleen of SIGN-R1 KO mice (Supplementary
Figure 3b).

C1q enhances the specific binding of SIGN-R1 to
apoptotic thymocytes. C1q binds to apoptotic cells20,21

as well as SIGN-R1.26 Therefore, we examined whether C1q
is competitive or synergistic for SIGN-R1 binding to apoptotic
cells. First, we confirmed the dose-dependent binding of C1q
to apoptotic cells (Figure 4a). Next, DCEK transfectants (red)
and apoptotic thymocytes (green) were coincubated with or
without purified C1q at a 1 : 1 ratio of DCEKs-to-apoptotic
cells in which the binding of apoptotic cells to DCEK_SIGN-
R1 was unfavorable (Figures 2a and b) and the binding of
apoptotic thymocytes to each DCEK transfectants was
analyzed by two-color FACS analysis. The addition of C1q
significantly enhanced the binding of apoptotic cells only to
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Figure 1 SIGN-R1 directly binds to apoptotic cells in vitro. (a) Jurkat T cells were treated with 3mM of dexamethasone (Dexa) for 24 h, and apoptosis induction was
confirmed with Annexin-V, followed by FACS analysis. Nonapoptotic and apoptotic Jurkat T cells were incubated with 2 mg of purified recombinant SIGN-R1 for 30 min at 37 1C
and immunostained with a 22D1 anti-SIGN-R1 monoclonal antibody, which was followed by a FACS analysis. (b) Apoptotic thymocytes of C57BL/6 mice were prepared as in
(a), and 1� 106 nonapoptotic or apoptotic thymocytes were incubated with 2 mg of biotinylated transferrin (Tfe), efOVA, or recombinant purified SIGN-R1 for 30 min at 37 1C
and immunostained with Alexa488-conjugated Streptavidin, which was followed by a FACS analysis. (c) As in (c), but thymocytes were incubated with 2 mg of Alexa568-
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DCEK_SIGN-R1 (Figure 4b). To verify the role of C1q in
enhancing the binding sensitivity of SIGN-R1 to apoptotic
cells, the experiment was performed at 1 : 1 and 1 : 4 ratios of
DCEKs-to-apoptotic thymocytes. C1q enhanced the binding
of SIGN-R1 to apoptotic cells more dramatically at the 1 : 1
ratio than at the 1 : 4 ratio (Figure 4c). When purified C1q was
replaced with normal mouse serum as a source of C1q
(66mg/ml in mouse serum), apoptotic cell binding to DCEK_-
SIGN-R1 also increased (Figure 4d).

Because SIGN-R1 is also expressed on resident peritoneal
macrophages,34 the role of SIGN-R1 on peritoneal macro-
phageswas assessed in apoptotic cell ingestion. The blocking
of SIGN-R1 by 22D1 significantly reduced apoptotic cell
ingestion by peritoneal macrophages compared with control
hamster IgG (Figure 4e, left). When the same experiments
were performed with C1q-deficient mouse serum, a minor
reduction in apoptotic cell ingestion was observed in both
22D1- or control IgG-treated peritoneal macrophages
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Figure 2 SIGN-R1-transfected cells directly bind to apoptotic cells in vitro. (a) Apoptotic thymocytes were prepared as in Figure 1. (b) DCEK transfectants (1� 106) and
CFSE-labeled apoptotic thymocytes were coincubated in the presence of 1% fresh normal mouse serum for 30 min at 37 1C at the indicated ratios (1 : 1, 1 : 4, or 1 : 20), and
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(Figure 4e, right), emphasizing the synergistic role of SIGN-
R1 and C1q in apoptotic cell ingestion.

SIGN-R1 mediates C3 deposition on apoptotic cells in
the MZ. Since SIGN-R1 directly mediates the classical
complement pathway against S. pneumoniae by interacting
with C1q,26 these two molecules may contribute to comple-
ment deposition on apoptotic cells. To verify this possibility,
DCEK_WT and DCEK_SIGN-R1 were incubated with apop-
totic thymocytes (green) with or without 10% normal mouse
serum. After washing cells, we performed immunostaining for
C1q, C4, and C3 (red) in the classical complement pathway.
Based on the FACS analysis, the cell population was
classified into two groups: R1 (for DCEKs alone) and R2
(for apoptotic cell-bound DCEKs) (Supplementary
Figure 4a), and both groups were analyzed for the deposition
of each complement. The deposition of C1q or C4 was
obvious on both groups only with DCEK_SIGN-R1
(Figure 5a, right two columns, first and second rows). C3
was dramatically deposited in both groups of DCEK_SIGN-
R1, showing higher levels of deposition in R2 than in R1
(Figure 5a, right two columns, third row). C3 deposition on
both groups of DCEK_WT was likely to be caused by other
complement activation pathways,17,35 because there were no
deposition of C1q and C4 (Figure 5a, left two columns).
To examine C3 deposition on apoptotic cells in vivo,

apoptotic thymocytes (green) were intravenously injected into

control mice for 10min, and spleen sections were immunos-
tained for C3 or control nonreactive IgG (red), and SIGN-R1
(blue). No red signal was detected on apoptotic cells with
nonreactive IgG (Figure 5b, left column, and the 10� power
image in Supplementary Figure 4b, left). However, C3
deposition on apoptotic cells was significant on SIGN-R1þ

macrophages of the MZ (Figure 5b, right column, its 10�
power image in Supplementary Figure 4b, right, and 10�
power images of other areas in Supplementary Figure 4c).
These results strongly indicate that C3 deposition was
mediated by SIGN-R1 on apoptotic cells in vivo. To verify
these findings, we performed similar immunostaining on
adjacent spleen sections using another C3 antibody (red)
and obtained the same results (Figure 5c and 10� power
image of another area in Supplementary Figure 4d). To
confirm C3 deposition on apoptotic cells in the spleen, the
experiment described in Figure 5b was also performed in C3-
depleted mice (Supplementary Figure 4e). As expected, no
C3 deposition was observed on apoptotic cells in the MZ
(Figure 5d and its 10� power image in Supplementary
Figure 4f) and in other splenic MZ areas examined
(Supplementary Figure 4g), even though SIGN-R1þ macro-
phages were still present. To confirm these results, the
experiment described in Figure 5b was performed in SIGN-R1
KOmice at 30minwhen a significant number of apoptotic cells
accumulated in the MZ of the SIGN-R1 KO mice (Figure 3d).
As expected, no C3 deposition was observed in spleens of
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SIGN-R1 KO mice (Figure 5e, the 10� power image in
Supplementary Figure 4h, and other splenic areas examined
in Supplementary Figure 4i).

C3 deposition on apoptotic cells in the liver is likely to
be mediated by SIGN-R1þ macrophages in the MZ. C3
deposition on apoptotic cells was examined in livers prepared
from mice used in Figure 5. As reported in previous
studies,16,17,20 C3 deposition was evident on apoptotic cells
in the liver of control mice (Figure 6a, first row, and the other
areas in Supplementary Figure 5a), which was further
confirmed by no C3 signal with nonreactive rabbit IgG
(Supplementary Figure 5b). However, C3 deposition was
barely found on a few apoptotic cells in the liver of the SIGN-R1
KO mice (Figure 6a, third row, and the other area in
Supplementary Figure 5d), and not in the liver of C3-depleted
mice (Figure 6a, second row, and the other areas in Supple-
mentary Figure 5c). The quantification data of C3-deposited

apoptotic cells was presented (Figure 6b, also see the
representative counting area in Supplementary Figure 5e).

Delayed clearance of apoptotic cells in SIGN-R1 KOmice
induces abnormal cytokine production in vivo. The
efficiency of apoptotic cell clearance was directly compared
in spleens and livers of control, C3-depleted, and SIGN-R1
KO mice 1h after an intravenous injection of apoptotic cells
(green), when most of the circulating apoptotic cells were
cleared in control mice (Figure 3d). It was obvious that
apoptotic cell clearance was significantly delayed in spleens
of C3-depleted and SIGN-R1 KO mice compared with the
spleen of control mice (Figure 7a). The efficiency of apoptotic
cell clearance was also examined in livers of the above mice
in Figure 7a and a similar pattern was observed in livers
(Figure 7b).
The abnormal production of pro- and anti-inflammatory

cytokines is induced by delayed clearance of apoptotic
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cells.36,37 Therefore, cytokine production was examined in the
spleen and liver of control and SIGN-R1 KOmice 1 h after the
intravenous injection of apoptotic cells. We found a significant
induction of the anti-inflammatory cytokine, TGF-b and a
decrease in the pro-inflammatory cytokine, TNF-a, in spleens
of control mice (Figure 7c, upper first and second graph, black
bars). However, opposite results were obtained in spleens of
SIGN-R1 KO mice where a reduction of TGF-b and a minor
induction in TNF-a production were seen (Figure 7c, upper
first and second graph, empty bars). A similar pattern of
abnormal cytokine production was observed in livers of the
SIGN-R1 KO mice, except for the significant induction of
TNF-a (Figure 7c, lower first and second graph). In addition, the
pro-inflammatory cytokine, IL-6, were higher in both tissues of
SIGN-R1 KO mice (Figure 7c, third graph). However, no
significant changes were seen in the level of IL-10 in either

mouse group (Supplementary Figure 6c). All of these results
were in agreement with those of previous studies.10,38–40

MRL-MpJ/SIGN-R1 TKO mice generate higher levels of
anti-double-stranded (ds) and anti-single-stranded (ss)
DNA antibodies. We next examined if SIGN-R1 deficiency
predisposed mice to autoimmunity due to the delayed
clearance of circulating apoptotic cells. The generation of
autoantibodies, such as anti-dsDNA and anti-ssDNA, was
compared between the isotype control injected and SIGN-R1
TKO (22D1 injected) mice, which were generated in
autoimmune-prone MRL/MpJ mice (MRL/MpJ_hamster IgG
or MRL/MpJ_SIGN-R1 TKO mice, respectively). After four
intravenous injections of apoptotic thymocytes (107 cells/
mouse) at 1-week interval, MRL/MpJ_SIGN-R1 TKO mice
showed a significant increase in levels of anti-dsDNA
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antibodies (IgG) as early as 4 weeks after the first intravenous
injection compared with MRL/MpJ_hamster IgG mice
(Figure 7d). In addition, MRL/MpJ_SIGN-R1 TKO mice also
generated more anti-ssDNA antibodies (IgG) than in MRL/
MpJ_hamster IgG mice as well (Supplementary Figure 6d).

Discussion

MZMs mediate not only the efficient clearance of circulating
apoptotic cells, but also the induction of immune toler-
ance.10,15 Complement C3 is essential for the rapid clearance
of apoptotic cells by opsonizing apoptotic cells and facilitating
the phagocytic function of macrophages.16,17 In the present
study, we demonstrated that SIGN-R1 specifically entrapped
apoptotic cells in the MZ, but not live cells nor latex beads
(Figures 3a and b; Supplementary Figure 3, left row). Also, it
was identified that SIGN-R1 specifically increased C3
deposition on apoptotic cells depending on the presence of
C1q and C4 in vitro (Figure 5a, right two columns,
respectively) within a few minutes in the spleen (Figures 4
and 5). These results suggest that there is a SIGN-R1-
mediated classical complement pathway for apoptotic cell
clearance in vivo, defining a specific role of SIGN-R1þ

macrophages among MZMs. The deposition of complements
such as C1q, MBL and C3 on apoptotic cells and complement
activation are events that mainly take place during the late
phase of apoptotic cells.19,22–24,41 However, our findings are
noteworthy in that the SIGN-R1-mediated C3 deposition
might be early initiated within a few minutes, thus enhancing
the rapid opsonization of C3 fragments such as C3b and iC3b
on apoptotic cells (Figure 5).
Even though SIGN-R1 itself can directly bind to apoptotic

cells, C1q dramatically increased apoptotic cell binding
to SIGN-R1 transfectants at a 1 : 1 ratio of SIGN-R1
transfectants-to-apoptotic cells, at which these cells did
not otherwise bind (Figures 4b–d, respectively). Also, C1q
enhanced apoptotic cell clearance by SIGN-R1þ peritoneal

macrophages (Figure 4e). These results strongly suggest that
the intimate relationship between SIGN-R1 and C1q drama-
tically enhances the initial recognition of the low frequency of
apoptotic cells in the MZ, directly leading to the rapid
activation of the classical complement pathway, as shown in
our previous report.26 Also, this was in agreement with earlier
reports where complement activation and opsonization of
apoptotic cells were significantly dependent on the ratio
of phagocytes-to-apoptotic cells during enhanced clearance
of apoptotic cells.42

C3-deposited apoptotic cells were found in the liver of
control mice (Figure 6, upper row), but significantly reduced in
the liver of SIGN-R1 KO mice (Figure 6a, bottom row and
Figure 6b, right bar). This result was entirely unexpected
because SIGN-R1 is not expressed in the liver
(Supplementary Figure 3a, middle column).13,43,44 Recently,
it was suggested that besides a direct capture mechanism
mediated by MZMs, other active mechanisms must be
involved in the apoptotic cell clearance, likely to locally and
systemically act distal to the spleen, because MZM numbers
are low approximately comprising o1% splenocytes.29,45

SIGN-R1þ macrophage numbers are much lower than
MZMs, comprising o0.05% splenocytes.13,46 Blood entered
the spleen via the splenic artery eventually drains into the liver
circulation.47 And, the liver plays a dominant role in the
clearance of C3-opsonized particles including apoptotic cells
through a variety of complement receptors on liver cells.48–50

Consequently, there might be a systemic clearance of
apoptotic cells in vivo, especially involving the cooperative
roles between splenic SIGN-R1þ macrophages and hepatic
macrophages, representatively F4/80± Kupffer cells
(Supplementary Figure 6b). Also, this possibility might
additionally explain the reasons of the severely delayed
clearance of dying cells and the failure to induce tolerance
when MZMs have been transiently deleted.9

The binding and ingestion of apoptotic cells by phagocytes
results in activating anti-inflammatory responses and
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inhibiting pro-inflammatory responses in control mice.9,51,52

The defect of clearing apoptotic cells in both spleen and liver
of SIGN-R1 KO mice (Figures 7a and b; Supplementary
Figures 3b and 6c, respectively) resulted in the aberrant
secretion of cytokines in vivo (Figure 7c). Also, autoantibo-
dies, like anti-dsDNA and anti-ssDNA, were significantly
increased in the SIGN-R1 TKO mice compared with control
mice (Figure 7d; Supplementary Figure 6d). Recently, it was
shown that SIGN-R1 directly mediates the anti-inflammatory
effects of intravenous immunoglobulin in a local and systemic
manner,28,29 even though splenic SIGN-R1þ macrophage
numbers are extremely low compared with MZM numbers
(o0.05%).13,46 Therefore, our findings suggested that splenic

SIGN-R1þ macrophages are essential for the immune
tolerance against apoptotic cells in vivo.
In conclusion, SIGN-R1 in the MZ rapidly accelerates C3

deposition on circulating apoptotic cells by interacting with
C1q, thus promoting the systemic clearance of apoptotic cells
and maintaining immune tolerance in vivo. These findings are
valuable to identify an integral role of SIGN-R1 in apoptotic
cell clearance by linking the recognition of apoptotic cells, their
opsonization of complements, and the induction of immune
tolerance. Also, these findings provide an insight to under-
stand the role of homologous human C-type lectins, such
as DC-SIGN and liver/lymph node-specific-SIGN (L-SIGN,
DC-SIGN-R; CD209L), in apoptotic cell clearance.
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Materials and Methods
Mice, cells, and reagents. C57BL/6 mice were purchased from B&K
Universal Limited (Hull, England). SIGN-R1 (CD209b) KO mice were kindly
provided by The Consortium for Functional Glycomics (CFG; http://www.functio-
nalglycomics.org). SIGN-R1 TKO or control mice were generated by the
intravenous injection of 100mg of 22D1 antibody or isotype hamster IgG for 48 h
and 22D1 antibody selectively and transiently depleted surface SIGN-R1 molecule
but not SIGN-R1þ macrophages in the splenic MZ, permitting analysis of its
function in vivo, as in a previous report.33 To obtain C3-depleted mice, control mice
were injected intraperitoneally with 60 U/kg of cobra venom factor (CVF) 1 day
prior to the experimental challenge. Six-week-old MRL/MpJ mice (The Jackson
Laboratory, Bar Harbor, ME, USA). were used for the autoimmune susceptibility
study. Mice were maintained under specific pathogen-free conditions until their use
at 6–10 weeks of age. All protocols for this study were approved by the Institutional
Animal Care and Use Committee (IACUC) of Konkuk University (Permit Number:
KU11107). DCEK, a mouse L-cell fibroblast line, and Jurkat cells were cultured in
RPMI-1640 Medium and CHO cells in Dulbecco’s Modified Eagle Medium,
supplemented with 10% fetal bovine serum, 100 units/ml penicillin G, and 100mg/ml
streptomycin, respectively. Stable DCEK transfectants expressing cDNA for mDC-
SIGN or SIGN-R1 (DCEK_mDC-SIGNS and _SIGN-R1 in the figures, respectively)
and stable CHO transfectants expressing cDNA for Neo, MARCO or SIGN-R1
(CHO_Neo, _MARCO or _SIGN-R1 in the figures, respectively) were used.
Resident peritoneal macrophages were obtained by lavage of the peritoneal cavity
of mice with 8 ml of cold sterile saline. The following materials were purchased:
efOVA (Seikagaku Corporation, Tokyo, Japan), CFSE, paraformaldehyde, PKH26,
transferrin, dexamethasone, PI, thymus DNA (Sigma-Aldrich, St Louis, MO, USA),
purified C1q and CVF (Quidel, Santa Clara, CA, USA), Alexa Fluor 568 antibody
labeling kit and EZLinkTM NHS-Biotin (Thermo Fisher Scientific Inc., Rockford, IL,
USA), Hoechst 33258 (Life Technologies, Grand Island, NY, USA), Cell Lysis
Buffer (Cell Signaling Technology, Danvers, MA, USA), phenylmethylsulfonyl
fluoride (PMSF), Quantikine Colorimetric Sandwich ELISAs (R&D Systems,
Minneapolis, MN, USA), and Tissue-Tek OCT compound (Sakura Finetek Japan
Co., Tokyo, Japan). Purified soluble SIGN-R1 protein was prepared as described in
a previous report.33 Antibodies or purified proteins were biotinylated with EZLinkTM
NHS-Biotin for 2 h at 4 1C or conjugated with Alexa Fluor according to the
manufacturer’s instructions. C1q-deficinet mouse serum was obtained from C1q KO
mice and stored at � 70 1C until use as fresh serum.

Antibodies and microscopy. The rabbit polyclonal or hamster monoclonal
antibody against SIGN-R1 (PAb-C13 or 22D1, respectively) were described
previously.13,33 The following antibodies were purchased: FITC- or HRP-
conjugated mouse C3 and mouse C4 (ICN Pharmaceuticals, Costa Mesa, CA,
USA), human C3 (Abcam, Cambridge, MA, USA), total hamster IgG (Jackson
Immunoresearch Laboratories, West Grove, PA, USA), MARCO (ED31 rat IgG1
mAb, AbD SeroTec, UK), Annexin-V and Polyclonal anti-human C1q (Abcam),
monoclonal anti-mouse C1q (7H8, Hycult Biotech, Uden, The Netherlands),
double-stranded (ds) DNA, single-stranded (ss) DNA, TGF-b, TNF-a, IL-6, and IL-
10 (R&D Systems). As secondary reagents, we used HRP-, FITC-, Phycoerythrin-,
7-amino-4-methyl-coumarin-3-acetic acid-, or Alexa Fluor-conjugated donkey anti-
chicken IgY, goat anti-hamster IgG, donkey anti-rabbit IgG, goat anti-rat IgG, and
HRP-conjugated streptavidin from Abcam, Jackson ImmunoResearch Labora-
tories, and Life Technologies Corporation. Cells or tissue sections were examined
for fluorescence with a deconvolution microscope (Olympus Corp., Tokyo, Japan).

Generation of apoptotic cells and FACS analysis. A single-cell
suspension of thymocytes from freshly isolated thymus or Jurkat T cells were
incubated with 3 mM dexamethasone at a concentration of 107 cells/ml in RPMI-
1640 media. After overnight incubation, apoptosis induction was confirmed with
Annexin-V and PI staining, resulting in 470% apoptotic cells. In some
experiments, apoptosis was also induced in mouse thymocytes by exposure to
g-irradiation (1500 rad), which was followed by a 4-h culture in RPMI-1640/0.4%
BSA. DCEK transfectants or apoptotic cells were labeled with 5 mM of CFSE for
30 min at 37 1C. Purified protein binding to apoptotic cells or apoptotic cell binding
to DCEK transfectants were performed in 200ml of TC buffer (10 mM Tris-HCl,
140 mM NaCl, 2 mM CaCl2, 2 mM MgCl2, and 1% BSA) and followed by FACS
analysis using a FACScan (Becton Dickinson, San Jose, CA, USA).

Fluorescent microscopic analysis. CFSE-labeled apoptotic thymocytes
were incubated with Alexa568-conjugated proteins and were analyzed by

fluorescent microscopy. CFSE-labeled DCEK transfectants on a cover glass were
incubated with Hoechst 33258-labeled apoptotic cells for 30 min at 37 1C, fixed
with 1% paraformaldehyde and analyzed by fluorescent microscopy. After
intravenously injecting CFSE-labeled thymocytes, spleen and liver tissues were
snap frozen in OCT compound. After fixing with cold acetone, 10 mm of the
cryosections of the tissues were immunolabeled with 1, 2, or 3-color fluorescence
and analyzed by fluorescent microscopy.

ELISA for cytokines and autoantibodies. Spleen and liver tissues
were aseptically removed and homogenized in cell lysis buffer supplemented with
1 mM PMSF. Endogenous production of cytokines was measured by double-
antibody sandwich ELISA with Quantitative immunoassays kit following the
instruction’s manual. To measure TGF-b1, whole cell lysates were preactivated
with acid according to the manufacturer’s instructions prior to the ELISA assay.
Anti-ds and anti-ss DNA antibodies were measured by ELISA, as described
previously.53 Briefly, microtiter plates were coated with 10 mg/ml of calf thymus
DNA. After incubating the plates with appropriately diluted tissue lysates, the
assay was developed with alkaline phosphatase-labeled rat anti-mouse
monoclonal antibody. The results are expressed in optical density (O.D.) (450 nm).
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