
Genomic instability in induced stem cells
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The ability to reprogram adult cells into stem cells has raised hopes for novel therapies for many human diseases. Typical stem
cell reprogramming protocols involve expression of a small number of genes in differentiated somatic cells with the c-Myc and
Klf4 proto-oncogenes typically included in this mix. We have previously shown that expression of oncogenes leads to DNA
replication stress and genomic instability, explaining the high frequency of p53 mutations in human cancers. Consequently, we
wondered whether stem cell reprogramming also leads to genomic instability. To test this hypothesis, we examined stem cells
induced by a variety of protocols. The first protocol, developed specifically for this study, reprogrammed primary mouse
mammary cells into mammary stem cells by expressing c-Myc. Two other previously established protocols reprogrammed
mouse embryo fibroblasts into induced pluripotent stem cells by expressing either three genes, Oct4, Sox2 and Klf4, or four
genes, OSK plus c-Myc. Comparative genomic hybridization analysis of stem cells derived by these protocols revealed the
presence of genomic deletions and amplifications, whose signature was suggestive of oncogene-induced DNA replication
stress. The genomic aberrations were to a significant degree dependent on c-Myc expression and their presence could explain
why p53 inactivation facilitates stem cell reprogramming.
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Recent studies have demonstrated that it is possible to
reprogram somatic cells into pluripotent stem cells by
expressing a specific combination of transcription factors.1–5

The typical mix of transcription factors used for this purpose
includes the oncogenes c-Myc and Klf4. Interestingly,
oncogenes have the potential to induce genomic instability,6

which raises the possibility that induced pluripotent stem (iPS)
cells have aberrant genomes.
Given the excitement in the stem cell field by the ability to

transform adult differentiated cells into pluripotent stem cells,
it is not surprising that research has focused mainly on
methods that enhance reprogramming efficiency, with less
attention been paid to the genomic status of the generated iPS
cells.7–9 However, the presence of genomic aberrations in iPS
cells could be one of the reasons why the efficiency with which
these cells produce live mice in tetraploid complementation
assays is very low.10

The possibility that aberrant genomes are prevalent in iPS
cells became more likely after the demonstration that
p53 inactivation facilitates reprogramming.11–14 One study

suggested that the absence of p53 enhances reprogramming,
because it enhances cell proliferation.15 However, p53 is a
DNA damage response gene,16 raising the possibility that
reprogramming is accompanied by DNA damage and
genomic instability. Consistent with this interpretation, iPS
cells generated from mouse embryo fibroblasts (MEFs)
lacking p53 function, form malignant tumors when injected
in donor mice.17

In this study, we examined directly the genomes of induced
stem cells by array-based comparative genomic hybridization
(cGH) analysis. Using three different experimental systems,
we report genomic aberrations in induced stem cells. These
aberrations were associated with oncogene-induced DNA
replication stress.

Results

Genomic instability in induced mammary stem cells. As
a first step in exploring whether stem cell reprogramming is
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accompanied by genomic instability, we developed a protocol
for inducing mammary stem cells. The protocol involves
expressing c-Myc, one of the four original stem cell
reprogramming genes, in mouse mammary cells and
examining whether these cells acquire stem cell properties,
such as the ability to form mammospheres in vitro and to
repopulate cleared mouse fat pads.18

We first attempted to reprogram nearly homogeneous
populations of mammary progenitor cells. These cells, chosen
because they lack stem cell properties, were obtained using a
previously described PKH26-based label-retaining protocol.19

Briefly, primary mammary cells were pulse-labeled with the
lipophilic, fluorescent-dye PKH26 and then cultured as
mammospheres for two passages. At this time, PKH26-high
cells (about 0.3% of all cells, representing stem cells) and
PKH26-negative cells (about 30% of all cells, representing
progenitor cells) were isolated by flow sorting.19 The PKH26-
negative cells were then infected with a control lentivirus or a
lentivirus-expressing MycER, a c-Myc protein containing a
modified estrogen receptor hormone-binding domain at its
C-terminus.20 Five thousand infected cells were cultured
under non-adherent conditions to generate mammospheres,
which were then passaged on a weekly basis. The control-
infected progenitor cells formedmammospheres with very low
efficiency even at the first passage and both the mammo-
sphere number and the cumulative cell number declined to
practically zero within a few passages (Figures 1a–c). In
contrast, the MycER-expressing progenitor cells were repro-
grammed into mammary stem cells, as ascertained by their

ability to form mammospheres and repopulate a cleared
mouse fat pad (Figure 1).
Having established that c-Myc can reprogram mammary

progenitor cells into stem cells, we repeated these experi-
ments bypassing the PKH26-sorting step. Control virus-
infected mammospheres prepared from wild-type mice could
be maintained only for a few passages in tissue culture,
suggesting exhaustion of the stem cell population. In contrast,
mammospheres infected with the virus-expressing MycER
could be easily expanded with no signs of crisis or stem cell
exhaustion and could also repopulate a clearedmouse fat pad
(Figure 2).
The reprogramming of mammary progenitor cells into

mammary stem cells described above was performed in the
absence of 4-hydroxytamoxifen (TAM). When TAM was added
to the media, nuclear MycER protein levels increased (Supple-
mentary Figure 1a) and the MycER-expressing mammosphere
cultures were exhausted within one passage (Figure 2a). This
was associated with phosphorylation and stabilization of p53,
expression of p53 target genes and apoptosis (Supplementary
Figure 1b), suggesting that high levels of MycER protein
induced a p53-dependent DNA damage response.16,21–23

Consistent with this scenario, MycER-expressing mammo-
spheres prepared from p53�/�mice could be expanded in the
presence of TAM (Figure 2a). During stem cell reprogramming,
MycER levels were lower and apparently insufficient to induce
an overt DNA damage response (Supplementary Figure 1b),
but whether they were low enough to prevent induction of
genomic instability was not clear.
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Figure 1 Reprogramming of progenitor mammary cells to stem cells by MycER. (a and b) PKH26-negative cells, which are devoid of stem cells, were isolated from
secondary mammospheres and infected with a lentivirus-expressing MycER or with a control virus (Empty Vector). The cells were cultured under non-adherent conditions and
mammosphere number (a) and cumulative cell number (b) were determined at each passage. Results are presented as means±1 S.D. (c) Representative images of the
cultures at passages 1 and 2. (d) Repopulation of a cleared mouse fat pad by MycER-expressing mammospheres originally prepared from PKH26-negative cells with no
evidence of tumor development
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To address the issue of genomic instability, mammary cells,
reprogrammed into stem cells by infecting them with the
lentivirus-expressing MycER, were passaged for 9 weeks in
the absence of tamoxifen. Then, the cells were serially diluted
in 48-well plates, to obtain single stem cell clones, which were
expanded for 3–6 weeks, again in the absence of tamoxifen,
before preparing genomic DNA (Figure 3a). Control genomic
DNA was prepared from non-infected primary mammo-
spheres (passage 5). Eight randomly selected reprogrammed
stem cell clones were subjected to cGH analysis using high-
density arrays covering chromosomes 10–13 in their entirety
and part of chromosomes 9 and 14, corresponding in total to a
quarter of the mouse genome.
Four out of the eight examined clones had focal copy

number changes (CNCs) (Figure 3b). The first clone had a
deletion of about 100 kbp within the retinoic acid receptor-
related orphan receptor A (Rora) gene in chromosome 9. In
humans, the RORA gene maps to the common fragile site
(CFS) FRA15A.24,25 The second reprogrammed clone had a
deletion of about 250 kbp within the phosphodiesterase 4D
(Pde4D) gene in chromosome 13. Like Rora, Pde4D is a very
large gene. The third clone had a deletion of about 200 kbp
within the protein tyrosine phosphatase receptor type G
(Ptprg) gene in chromosome 14. In humans, PTPRG maps
within the CFS FRA3B,25 although most deletions targeting
FRA3B involve the adjacent fragile histidine triad (FHIT) gene.
The fourth clone had an amplification of the jumonji AT rich
interactive domain 2 (Jarid2) and dystrobrevin-binding protein
1 (Dtnbp1) genes in chromosome 13. The protein product of
Jarid2 associates with the Polycomb repressive complex 2

and regulates the self-renewal of embryonic stem cells,26–28

suggesting that the amplification of Jarid2 may have been
selected in this clone. The observed frequency of genomic
aberrations within just a quarter of the mouse genome
indicates that reacquisition of stemness features in the
reprogramming protocol is associated with the occurrence of
genomic rearrangements.

Genomic instability in iPS cells. The analysis of the
genomes of induced mammary stem cells, described above,
prompted us to explore the presence of genomic instability in
iPS cells prepared by standard protocols.1–5 We first focused
on iPS cells reprogrammed using three factors. Cells
prepared from six independent clones (from two
independent experiments, three clones per experiment)
expressed pluripotency markers and could be induced to
differentiate and form embryoid bodies in vitro
(Supplementary Figure 2). Further, all these clones were
diploid, as determined by karyotype analysis (data not
shown). cGH was performed for chromosomes 5–13 in their
entirety and for part of chromosomes 4 and 14, corresponding
in total to half the mouse genome. Only two clones showed
signs of genomic instability. One clone had a small gain within
chromosome 8 targeting the odd Oz/ten-m homolog 3 (Odz3)
gene; a second clone also had a small gain, again within
chromosome 8, targeting the cadherin 13 (Cdh13) gene
(Figure 4). Both Cdh13 and Odz3 are large genes.
We subsequently examined iPS cells that had been

reprogrammed using four factors. Pluripotency was assessed
by expression of pluripotency markers (including the
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Figure 2 Stem cell reprogramming of primary mammary cells by MycER. (a) Primary mammary cells prepared from wild-type or p53�/� mice were infected with a
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endogenousOct4 locus and alkaline phosphatase), the ability
to grow in the presence of ERK and GSK3 kinase inhibitors
(the most stringent conditions for the propagation of embryonic
stem cells) and the ability to differentiate into embryoid bodies
(Figure 5). The karyotypes of cells from four independent
clones were examined; two clones were diploid and two
aneuploid (data not shown). Cells from the diploid clones were
subjected to cGH for half the mouse genome, as described
above for the OSK iPS cells (Figure 6a). Cells from the first
clone had an amplification in chromosome 7 that involved
420 genes, as well as a deletion in chromosome 8 targeting
the fat mass and obesity associated (Fto) gene (Figure 6b), a
large gene. In contrast, we could not identify any focal CNCs in
cells from the second clone.

Genomic lesions induced by DNA replication stress.
Given the conservation of CFS in the mouse and human
genomes,29–31 it appears that some of the CNCs identified in
the induced stem cells map to CFS. Specifically, the
deletions in the Rora and Ptprg genes map to the human
CFS FRA15A and FRA3B, respectively. Several of the
remaining identified CNCs targeted large genes, again

suggesting DNA replication stress as the culprit.30,31 To
explore the spectrum of CNCs generated by DNA replication
stress, we treated cells for 4 weeks with low doses of
aphidicolin, a prototypical agent for inducing DNA replication
stress, and then monitored CNCs by cGH (Figure 7a). For
this experiment, we employed a mouse–human hybrid cell
line, GM11713A, which contains a single copy of human
chromosome 3, thus, facilitating the detection of deletions.
This cell line was previously used to map aphidicolin-induced
deletions within the FHIT gene.32

Six aphidicolin-treated clones were isolated for cGH
analysis spanning the entire chromosome 3. Two clones
were essentially identical, except for one small deletion,
suggesting that they arose from a common ancestor cell. The
concordance of the findings for these two clones provided a
validation of the quality of the cGH analysis, but reduced the
number of independent clones from six to five. In addition to
deletions targeting the FHIT gene in FRA3B in four out of the
five clones, two clones had deletions within the PTPRG gene,
also mapping to the FRA3B CFS (Figure 7b). Deletions were
further found in the genes dedicator of cytokinesis 3 (DOCK3),
cell adhesion molecule 2 (CADM2), limbic system-associated
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membrane protein (LSAMP) and N-acetylated alpha-linked
acidic dipeptidase-like 2 (NAALADL2), none of which map
within established CFS (Supplementary Figure 3). Finally, a
gain was detected within the ELKS–RAB6-interacting/CAST
family member 2 (ERC2) gene (Figure 7b). An interesting
feature of this analysis is that all the identified CNCs mapped
to large genes. In fact, the CNCs targeted 7 of the 17 largest
genes of chromosome 3, whereas no CNCs were detected in
any of the remaining annotated genes of chromosome 3
(Figure 7c). Further, while DNA replication stress is usually
associated with deletions, one of the observed CNCs was a
gain. Similar findings have been obtained by another group
using a similar experimental approach.32,33 Thus, based on
the spectrum of CNCs induced by aphidicolin, we propose that
of the eight CNCs observed in the induced stem cells
(mammary stem cells and iPS cells), six may be linked to
DNA replication stress.

Discussion

Previous analyses of mouse and human iPS cells has
demonstrated the presence of aneuploid karyotypes in some
clones.3,34 However, it was assumed that the clones that had
diploid karyotypes did not have genomic aberrations.3,35 Our
analysis and data accumulating in the literature suggests that
this assumption was incorrect.36–38 Although it is difficult to be
conclusive, the most likely mechanism underlying the
observed genomic instability in induced stem cells is
oncogene-induced DNA replication stress.6,39–42 The pre-
sence of CNCs targeting very large genes and the lower
frequency of genomic aberrations in stem cells induced

without c-Myc support this tentative conclusion. It is important
to note that the mechanisms by which c-Myc and other
oncogenes induce DNA replication stress and genomic
instability are not well established. Yet, we know that genomic
instability is not directly linked to the number of cell divisions or
to proliferation rate.39 In some settings, oncogenes induce
genomic instability within one cell cycle.43 Importantly, the
induced stem cells we examined were all early passage and
were all derived from very early passage mammary cells or
MEFs.
A key question is whether a few genomic aberrations

compromise the function and utility of reprogrammed stem
cells. To answer this question, it will be important to determine
whether the observed genomic aberrations are due to
transient genomic instability during the reprogramming
process or whether the genomic instability persists even after
reprogramming. Our study does not address this point. We
note that the induced mammary stem cells described here,
despite harboring CNCs, were capable of repopulating
cleared mouse fat pads and none of the mammary glands
derived from these cells have become cancerous so far (in 20
reconstituted mice; albeit within the short time frame of
7 months after transplantation; data not shown). Also, it has
been established that OSK and OSKC-iPS cells can form
viable fertile mice; yet, the efficiency is variable, possibly
reflecting the presence of genomic aberrations in the iPS
cells.2,3,5,10 Finally, mice derived from iPS cells often develop
tumors and many of them die in utero, suggesting develop-
mental abnormalities.2,10

As considerable effort is being placed to develop more
efficient protocols for inducing stem cells, care must be
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taken that increased efficiency is not achieved at the
expense of genomic stability. For example, c-Myc enhances
the efficiency of reprogramming,1,4,5 but in our study it
promoted genomic instability. Inactivation of p53, which
also increases the efficiency of reprogramming,11–14 probably
does so by allowing genomically unstable cells to escape
apoptosis; thus explaining why iPS cells derived from
p53-deficient fibroblasts form malignant tumors in mice.17

Finally, some of the chemicals used for reprogramming,
such as 5-azacytidine, are known DNA damage-inducing
agents.44 On a brighter note, if oncogene-induced
DNA replication stress is a significant contributor to the
genomic instability observed in induced stem cells, then
modifications to the reprogramming protocols that mitigate
oncogenic stress should improve the quality of the
generated cells. Nevertheless, at this time, our results and
the results of others,36–38 suggest that great caution should be
exercised when planning human therapies using induced
stem cells.

Materials and Methods
Induced mammary stem cells. To prepare mammosphere cultures,
mammary tissues from 5-month-old virgin female FVB mice (Harlan) or p53�/�
mice (in the C57/BL6J background, back-crossed from a 129v background) were
collected and dissociated mechanically. Disaggregation of the tissues was completed by
enzymatic digestion in DMEM supplemented with 100 U/ml Hyaluronidase (Sigma,
St. Louis, MO, USA) and 200 U/ml Collagenase (Sigma) for approximately 3 h at 37 1C.
The digested material was then centrifuged and filtered through 100, 70, 40 and 20mm
meshes. Red blood cells were lysed by incubating the cell suspension in 0.2% NaCl.
The resulting cells were plated on ultralow adhesion plates (Falcon, BD Biosciences,
San Jose, CA, USA) at 100 000 cells/ml in MEBM medium (BioWhittaker, Walkersville,
MD, USA) supplemented with 5mg/ml insulin, 0.5mg/ml hydrocortisone, 2% B27
(Invitrogen, Carlsbad, CA, USA), 20 ng/ml EGF and bFGF (BD Biosciences, San Jose,
CA, USA) and 4mg/ml heparin (Sigma). Primary mammospheres were allowed to form
for 6 days. At passaging, the number of mammospheres was counted, the
mammospheres were then dissociated in single cells and the number of cells
counted. A total of 5000 cells were then plated in 24-well plates. At each passage, the
number of mammospheres reflects the number of stem cells that had been plated,
because a stem cell can form a mammosphere, whereas, by definition, progenitor cells
cannot form mammospheres.

For distinguishing native stem cells from progenitor cells, primary mammary cells
were incubated with the PKH26 dye (Sigma) for 5 min, as previously described.19
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The reaction was blocked in 1% BSA and the cells were plated and passaged twice
to obtain secondary mammospheres. Single cells obtained from disaggragated
secondary mammospheres were sorted by flow cytometry on the basis of PKH26
fluorescence (FACS Vantage SE flow cytometer, Becton and Dickinson, Franklin
Lakes, NJ, USA). The PKH26-high population was isolated as the most
epifluorescent of the total population (about 0.3% of the cells). PKH26-negative
cells were gated at 10 times less fluorescence units with respect to the PKH26-high
population (about 30% of the cells). Since stem cells divide once or just a few times
during each passage, they retain high levels of the dye, whereas the progenitor cells
that divide many times, become PKH-negative. For non-infected mammospheres
obtained from wild-type mice, the frequency of stem cells in the PKH26-high
population is about 1 : 3, whereas the corresponding frequency in the PKH26-
negative population is o1 : 80 000.19

Lentiviral infections were performed using the lentiviral vector pWPI (Addgene,
Cambridge, MA, USA) carrying the GFP reporter gene and either no other insert
(Empty Vector) or MycER as an insert. Disaggregated primary mammospheres or
PKH26-negative cells were plated in Phoenix-generated viral supernatants and
infections were carried out in three cycles of 6 h each. After 6 days in culture,
secondary mammospheres were collected, disaggregated and FACS sorted for the
expression of GFP. For serial passage experiments, 5000 cells from disaggregated
mammospheres were plated in 24-well plates and, after 6 days, counted, and re-
plated at the same density. Treatment with 500 nM TAM (Sigma) was performed
continuously for 7 days during mammosphere formation or once on replating of
disaggregated mammospheres on day 1 of culture.

For transplantation experiments, mammosphere cell suspensions were pelleted
into Eppendorf benchtop microfuge tubes, counted and resuspended in PBS. In all,
30ml of cell suspensions were transplanted in the cleared fat pad of 3-week-old
virgin female FVB mice. The presence of positive outgrowths was evaluated 2
months later by whole mount analysis.

Immunoblot analysis of protein extracts from mammosphere cultures was
performed using anti-vinculin (Sigma), anti-p53 (clone AI25, gift from K Helin),
anti-phospho-serine15-p53 (Santa Cruz Biotechnology, Santa Cruz, CA, USA),
anti-p21 (clone F5, Santa Cruz Biotechnology) and anti-cleaved caspase3 (clone
D175, Cell Signaling Technology, Danvers, MA, USA) primary antibodies, HRP-
conjugated secondary antibodies (Sigma) and the SuperSignal West Pico Substrate
detection kit (Pierce, Rockford, IL, USA). For immunofluorescence, single cell
suspensions were fixed with 4% paraformaldehyde, permeabilized with 0.1% Triton
X-100 and blocked with 3% BSA. Cells were stained with anti-Myc antibody
(provided by S Hann, Vanderbilt University School of Medicine, Nashville, TN, USA).

iPS cells inducedbyOSK. MEFs containing anOct4-GFP transgene45 were
infected with a lentiviral vector-expressing human OCT4, SOX2 and KLF4 (OSK)
from an SFFV promoter as a single transcript with self-cleaving 2A sequences
separating each gene. Colonies of reprogrammed cells were picked and expanded
after 20–25 days. iPS cells were cultured on feeder layers in embryonic stem cell
(ESC) medium (DMEM, 15% knock-out serum replacement supplement
(Invitrogen), L-glutamine, penicillin–streptomycin, nonessential amino acids,
b-mercaptoethanol, and 1000 U/ml LIF).

Expression of endogenous pluripotency genes, such as Nanog, Oct4 and Sox2,
was measured in iPS cells and matched MEFs in triplicate by quantitative PCR.
Expression levels were normalized to the levels present in embryonic stem (ES)
cells. For embryoid body differentiation, the iPS cells were washed in IMDM medium
supplemented with FBS, L-Glu and MonoThioGlycerol to remove LIF. Cells were
then resuspended in methylcellulose (40%) containing IMDM medium and plated.
GFP expression from the Oct4-GFP reporter was monitored for 10 days.

iPS cells induced by OSKC. MEFs containing an Oct4-GFP knock-in
reporter allele46 were infected with a lentiviral vector-expressing mouse Oct4, Sox2,
Klf4 and c-Myc (OSKC) from a doxycycline-regulated TetO-mini CMV promoter as a
single transcript with self-cleaving 2A sequences separating each gene.47 After
lentiviral infection, the cells were cultured in ESC medium and treated with
doxycycline (1 mg/ml) for 23 days. iPS cell colonies were isolated 12 days after
doxycycline withdrawal. Genomic DNA was extracted from passage 6 iPS cells.

To monitor expression of pluripotency markers, iPS cells were washed in PBS,
stained with anti-SSEA-1 phycoerythrin-conjugated antibody (eBioscience,
San Diego, CA, USA) and examined for SSEA1 and Oct4-GFP expression by
flow cytometry (FACS Calibur flow cytometer, Becton and Dickinson). In addition,
expression of the endogenous genes Oct4, Zfp296, Eras and Fgf4 was monitored in
the iPS cells, matched MEFs and ES cells by PCR, as previously described.48

Embryoid body differentiation was induced, as described above for the iPS-OSK
cells. 21 days later, embryoid bodies were collected, fixed and stained with
hematoxylin and eosin.

Aphidicolin-inducedDNA replication stress. The GM11713A cell line,
a mouse–human hybrid cell line containing a single wild-type copy of human
chromosome 3 (Coriell Cell Repository, Camden, NJ, USA), was subjected to DNA
replication stress over a period of 30 days, by adding every 4 days to the tissue
culture media 0.4mM aphidicolin. At the end of the 30-day period, the cells were
trypsinized and hundred cells were plated on a 10 cm diameter plate. Two weeks
later, single colonies were isolated and expanded for 3 weeks, at which time
genomic DNA was prepared.

cGH analysis. Control DNA was labeled with Cy5, whereas DNA from the
induced stem cells or aphidicolin-treated cells was labeled with Cy3. Equal amounts
of Cy5- and Cy3-labeled DNA were hybridized against high-density tiling
microarrays. For analysis of mouse genomic DNA the tiling arrays contained
probes covering chromosomes 5–8 and parts of chromosomes 4 and 9 (Roche
Nimblegen, Madison, WI, USA, array MM8 WG CGH2; Build 36) and/or
chromosomes 10–13 and parts of chromosomes 9 and 14 (Roche Nimblegen
array MM8 WG CGH3; Build 36). The median probe density on these arrays was
1388 bp. For analysis of human genomic DNA, the tiling arrays contained probes
covering chromosome 3 (Roche Nimblegen array HG18 CHR3 FT B3734001-00-
01; Build 36). The median probe density on this array was 475 bp.
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