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Perforin deficiency and susceptibility to cancer

AJ Brennan1,2,5, J Chia1,5, JA Trapani1,3 and I Voskoboinik*,1,4

Cytotoxic lymphocytes (CLs) are the killer cells that destroy intracellular pathogen-infected and transformed cells, predominantly
through the cytotoxic granule-mediated death pathway. Soluble cytotoxic granule components, including pore-forming perforin and
pro-apoptotic serine proteases, granzymes, synergize to induce unscheduled apoptosis of the target cell. A complete loss of CL
function results in an aggressive immunoregulatory disorder, familial hemophagocytic lymphohistiocytosis, whereas a partial loss
of function seems to be a factor strongly predisposing to hematological malignancies. This review discusses the pathological
manifestations of CL deficiencies due to impaired perforin function and describes novel aspects of perforin biology.
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Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells,
collectively called cytotoxic lymphocytes (CLs), kill virus-
infected and transformed cells through a number of contact-
dependent mechanisms.1,2 Engagement of death receptors by
membrane-bound members of the TNF superfamily of death
ligands is critical for maintaining lymphoid homeostasis in the
host. By contrast, studies of gene deficiencies indicate that
defects of the granule exocytosis pathway result in a failure to
eliminate infected cells or those that pose a risk of subsequent
malignancy. Although cytotoxic granules contain diverse toxins
that together contribute to apoptosis induction, this review will
deal exclusively with the critical role of the pore-forming protein
perforin (PRF) as an essential enabler of target-cell apoptosis,
and its more recently described role as a potential ‘extrinsic’
tumor suppressor.
Perforin is a 67-kDa pore-forming protein that is stored and

released from the secretory granules (SGs) of CLs along with a
number of pro-apoptotic serine protease granzymes that display
broad substrate specificities.3 Following exocytic release, PRF
and the granzymes are exposed to the neutral pH and calcium-
rich environment of the immune synapse.4 After binding calcium
through their C2 domains, PRF monomers acquire the ability to
bind generic lipids in the target cell membrane,5 and then
coalesce into large transmembrane pores that permit the
granzymes to access key death substrates in the cytosol.6–8

Although the diverse apoptotic pathways triggered by granzymes
have been extensively studied and are now understood in
considerable detail, it is only of late that insights into themolecular
and cellular functions of PRF have been even partly addressed.

In this review, we will re-examine the pathological con-
sequences of PRF deficiency, both in mice and humans. In
doing so, important differences in PRF biology between these
species will be described. We will discuss the pathogenic
effect of a number of recently described missense mutations
of human PRF. In particular, although the complete absence
of PRF function typically results in an aggressive, fatal
immunoregulatory disorder of early childhood known as
familial hemophagocytic lymphohistiocytosis (FHL),9 we have
recently discovered that partial loss of PRF function is strongly
associated with FHL and/or an array of hematological
malignancies later in childhood or in adolescence.10 The
latter findings have specific significance for our understanding
of the role of the immune system in detecting and destroying
cancer cells before clinical presentation, a process also
known as cancer immune surveillance.

Perforin Biology

In contrast to granzymes, PRF is represented in mammals
andmarsupials by a single gene,PRF1. In mammals,PRF1 is
uniquely expressed in CLs, although some reports also
suggest its expression in regulatory T cells. The regulation
of PRF1 gene expression is complex and has been revealed
only recently in an elegant study by Lichtenheld and
coworkers.11 The study showed a Locus Control Region that
regulates cell lineage- and activation signal-specific expres-
sion of PRF1. Such a heterochromatin-dependent regulation
may enable exogenous stimuli or endogenous transcription-
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regulating factors to induce PRF1 transcription in other cell
types. Indeed, there are several lines of evidence for UV
radiation acting through the epidermal growth factor receptor
to induce the expression of PRF (and granzyme B) in cultured
keratinocytes, thus enabling the irradiated cells to kill ‘target’
cells.12,13 However, the mechanisms responsible for synapse
formation or intercellular contact and the triggering event for
PRF and granzyme release in these cells remain unclear.
Perforin was first discovered in the year 1983 and cloned from

an expression library in the year 1988 through anti-complement
C9 antibody cross-reactivity.14–19 Sequence comparison
revealed a striking similarity between the two proteins within
a short region in their middle part, which was named the
‘membrane attack complex/perforin’ (MACPF) domain.16,20,21

Initial characterization of PRF revealed that its pore-forming
activity at the phospholipid membrane was calcium depen-
dent.22,23 Paradoxically, the CLs could synthesize and store
large amounts of PRF without any apparent detrimental
consequence, even though the endoplasmic reticulum seems
to provide Ca2þ concentrations suitable for membrane
binding and pore formation. Granzymes and other toxic
proteases are synthesized as zymogens and are typically
activated only on reaching lysosome-like SGs;24,25 in the
cytosol of CLs, ‘escaped’ granzymes can be irreversibly
inhibited by serpins (for example, human PI-9 or mouse
SPI-6).26–29 However, there does not seem to be any naturally
occurring inhibitor for PRF. This paradox gave rise to various
hypotheses, including receptor-dependent PRF activity.
Alternatively, one might propose that a cell should use non-
generic resources to regulate PRF expression andmanage its
toxicity. Indeed, the only study addressing this intriguing issue
suggested that PRF glycosylation in the endoplasmic reticu-
lum and the extremeC-terminal peptide prevent Ca2þ binding
to the C2 domain, thus inhibiting the first essential step in pore
formation – membrane binding. It has been hypothesized that
a putative protease cleaves the extreme C-terminal peptide
together with its N-glycosylation moiety in the SGs, thereby
activating PRF.4 However, a protease and direct evidence for
the essential role of PRF cleavage are yet to be shown.
Irrespective of the mechanism, the acidic environment of SGs
prevents the PRF C2-domain from binding Ca2þ .5 Only after
reaching the immunological synapse with its presumably
neutral pH does PRF acquire the ability to bind Ca2þ and
initiate pore formation5 (Figure 1).
The three dimensional structure of PRF and any other

MACPF proteins (4500 are currently known or predicted),
has been an enigma for well over two decades, mainly due to
difficulties in expressing sufficient amounts for structural
studies.30 Furthermore, the lack of sequence similarity with
other structurally characterized proteins also delayed pro-
gress. However, in the year 2007–2008, three independent
studies arrived at the same remarkable conclusion: despite
sharing minimal amino acid sequence similarity, mammalian
and other MACPF proteins are structurally related to bacterial
cholesterol-dependent cytolysins (CDCs) and operate by an
analogous mechanism.31–33 These studies opened new
horizons in studying MACPF proteins, as their membership
with a large family of well-characterized proteins has finally
been identified. Despite these advances, major milestones in
MACPF research are yet to be reached, namely, the crystal

structure of a pore-forming MACPF protein, the mechanism of
pore formation and the structure of a pore.
The effect of recent discoveries was the fall of previous

dogma that the central, most conserved domain shared by
PRF and the complement components represented two
amphipathic a-helices that formed the transmembrane region
of the pore.21 Rather, it is now unequivocally clear that this
region forms an interface between adjacent PRF monomers
within an oligomeric pore.34 Importantly, this discovery
indirectly assigned the membrane-spanning role to two
alternative helical domains TMH1 and TMH2 that unfold into
two membrane-spanning b-hairpins.31–33 This provided

Figure 1 Regulation of PRF1 gene expression and post-translation activation of
perforin function. (1) The active chromatin domain of PRF1 includes an B150 kb-
long DNA domain that is regulated by the activated Locus Control Region (LCR),
DHS4–DHS8, in CTLs and NK cells (adapted from Trapani JA and Voskoboinik I94).
(2) It has been hypothesized that binding and activation of the high-affinity
Ca2þ -dependent phospholipid C2 domain of PRF is prevented in the ER (which
has high Ca2þ and neutral pH) by the extreme C-terminus (last 12–20 a.a.). (3) The
extreme C-terminus is proteolytically cleaved in the acidic SGs, which is thought
to liberate the Ca2þ -binding moiety and produce a form of PRF that remains non-
functional until the pH becomes neutral in the context of the immune synapse.
(4) Recognition of target cell surface receptor molecules triggers the polarization of
the microtubule organizing center (MTOC) towards the immune synapse, followed
by vectorial trafficking of secretory granules towards the synaptic cleft. (5) The
granules dock to the plasma membrane, fuse and exocytose PRF and pro-apoptotic
serine proteases granzymes (Grz) into the immune synapse in which PRF forms
a transmembrane pore (not shown) to allow granzyme internalization by a yet to
be identified mechanism and deliver the ‘kiss of death’
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further support for the ancestral relationship between CDC
and MACPF protein families.

Perforin and Immune Homeostasis in Mice

The fundamental basis of the SG death pathway is the
synergy between its components, PRF and granzymes.
These molecules have distinct roles, wherein transmembrane
PRF pores serve as entry points for proteases into the cytosol
of the target cell allowing granzymes to initiate various
apoptotic pathways. Although granzymes can internalize
independently of PRF, when sequestered in the lumen of
endocytic vesicles, they have no access to cytosolic
substrates and remain innocuous. Earlier and recent studies
(described above) have clearly indicated that PRF pores are
sufficiently large (up to 200 Å diameter) to allow multiple
granzyme molecules to enter the cells. However, it is still
debated whether PRF and granzymes co-internalize into an
endocytic compartment, which is subsequently lysed in the
cytosol, or whether the influx of granzymes occurs through
disrupted plasma membrane. Regardless, the essential role
of PRF in the SG death pathway is undisputable and remains
the cornerstone of CL cytotoxicity.
Owing to the essential role of PRF in the delivery of

granzymes to the target cell, PRF�/� mice have become a
classic model of CL immunodeficiency, and show impaired
immune surveillance of viruses and spontaneous, induced
and transplanted cancers. However, here we will emphasize
only two aspects of PRF biology in mice that are of particular
significance for understanding the role of PRF and CLs in
humans.35,36

Although unchallenged PRF-deficient mice would be
expected to be prone to viral infections, they remain healthy
when housed in standard facilities. Only when challenged
with mouse pathogens such as lymphocytic choriomeningitis
virus (LCMV) or ectromelia, did the mice rapidly succumb to
infections.37–40 In response to LCMV, PRF-deficient mice
developed a syndrome highly reminiscent of human hemo-
phagocytic lymphohistiocytosis (discussed below).41 By con-
trast, loss of individual granzymes, such as mouse granzyme
A or B, had no significant effect on the suppression of tested
viral pathogens apart from ectromelia, and the absence of
both granzymes was needed to show marked susceptibility to
these pathogens.6,42–44 Together, the combined substrate
specificity of granzymes offers CLs a broad spectrum of
cytotoxic mechanisms that provide resistance to immuno-
genic challenges.42–46 For this reason, in the context of
genetic models, only the total loss of granzyme function can
be compared with PRF deficiency with respect to the function
of CLs. These and other studies have clearly assigned the
undisputable role of ‘gatekeeper’ to PRF, whereas granzymes
appear to have evolved to allow adaptation to ever-evolving
viral challenges.42–46 Accordingly, analysis of granzyme
sequences in wild mice revealed extensive geographic
heterogeneity, but in all inbred strains tested, they were
almost identical.47 This apparent discrepancy is explicable in
that all commonly used inbred strains originated more than a
century ago from a single female, as determined by studies of
mitochondrial DNA. By contrast, PRF was remarkably
conserved in the wild mice (our unpublished observations),

supporting the notion of a single-function generic protein.
Consistent with this, only two ‘silent’ PRF polymorphisms and
one amino acid substitution have been identified in large-scale
human population studies to affect more than 1% of the
population.47

Earlier research convincingly showed that PRF1�/� mice
were up to 1000-times more susceptible than immunocom-
petent animals to transplanted and induced malignancies,
predominantly of hematological origin.36,48–56 These findings
are broadly consistent with the theory of tumor immune
surveillance first proposed by Macfarlane Burnett and Lewis
Thomas over 50 years ago. However, the most intriguing
observation, with direct implications for immune surveillance
of tumors in humans, was that the majority of unchallenged
PRF�/� mice developed highly aggressive disseminated B-
cell lymphoma beyond the age of 12months.36 Importantly, all
the tumors were MHC class I positive meaning they could be
rejected by immunocompetent CD8þ CTLs, as shown by
transplantation into syngeneic PRF1þ /þ mice. This observa-
tion was critical for understanding the role of PRF in protection
against spontaneous malignancy. However, it is unclear why
B-cell lymphomas dominate the spectrum of cancers, with
few carcinomas and sarcomas noted.

Perforin Deficiency in Humans

Functional perforin is also essential for CL function in humans,
as detrimental mutations in PRF1 lead to a devastating
disease of immune homeostasis, type 2 FHL (FHL2),9

accounting for 30–60% of all FHL cases58 and affecting B1
in 90 000 live births.59 FHL results from dysregulated path-
ways that govern the termination of immune/inflammatory
responses, implicating the SG death pathway as a critical
regulator of CL cytotoxicity in humans.60 The hallmark feature
of FHL is the hyper-activation of antigen-presenting cells
(macrophages and tissue histiocytes) and CD8þ T cells. This
uncontrolled activation results in the proliferation and accu-
mulation of T cells in certain inflammatory sites, particularly in
the central nervous system (CNS), and prolonged elevation of
multiple proinflammatory cytokines (chronic hypercytokine-
mia), which is indicative of impaired CL function and the failure
of normal immune downregulation.60,61

Perforin deficiency is not the only cause of FHL. Mutations
in UNC13D are responsible for type 3 FHL (FHL3).62 This
gene encodes Munc13-4, a member of the ubiquitous family
of Munc proteins, which have an important role in subcellular
trafficking. Mutations in Munc13-4 result in the loss of SG
priming at the plasma membrane and their inability to
exocytose PRF and granzymes into the immunological
synapse.63 Importantly, as both Munc13-4 and PRF are
uniquely expressed in hematopoietic cells, their loss of
function does not have a systemic effect, and bone marrow
transplantation is therefore a potentially life-saving therapy for
FHL patients.
Recently, mutations in the STX11 gene encoding a

t-SNARE protein, syntaxin 11 (STX11), and the partner
protein Munc18-2 (STXBP2)64,65 have also been associated
with type 4 and 5 FHLs, respectively. Although FHL2 and
FHL3 phenotypes are easily identifiable through the loss
of IL-2-stimulated peripheral blood mononuclear cell (LAK)
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cytotoxicity, FHL4 and FHL5 patients display a differential
phenotype, in which only NK cells appear to be functionally
impaired.66 Consistent with the role of SNAREs in subcellular
trafficking, unstimulated NKs from FHL4 and FHL5 patients
had no cytotoxic activity and were unable to degranulate.64,65

However, IL-2 stimulation considerably restored cytotoxi-
city.66 These observations are significant as they are the first
to implicate NK cell deficiency as a specific trigger for FHL,
although the mechanism is not fully understood.66 One
possible explanation is that NK cells might regulate immune
homeostasis through killing dendritic cells or regulating CTL
proliferation. It also remains unclear why IL-2 restores killing in
syntaxin 11-deficient NK cells. However, as a result, the FHL4
phenotype is relatively mild and the disease rarely has CNS
symptoms, as opposed to FHL2 and FHL3.

Genetics and Geoepidemiology of FHL

There are several clear epicenters of PRF1-associated FHL,
based on some common mutations originating specifically in
Japan, Central Africa or the Eastern Mediterranean region,
with the majority of cases reported in Italy, Turkey and among
Europeans of North African descent.58,67–69 For example, the
W374X mutation of PRF1 is common among patients of
Turkish descent, a frameshift mutation 50delT leading to
premature termination of PRF is virtually unique to patients of
Central African descent70 and the frameshift 1090.91delCT
and 207delC originated from and are unique to South-
Western Japan.67,71 A number of disease incidents were also
reported in other parts of Europe, but many of these patients
were of Mediterranean origin. A significant proportion of the
patients come from consanguineous marriages and as a
result are homozygous for disease-causing mutations. In
contrast to FHL2, FHL3 seems to be ethnicity independent,
whereas FHL4 has been thus far identified only within Turkish
families.68

Within the past generation, the survival from early-onset
FHL has improved significantly, due to an increased under-
standing of the underlying pathophysiology, advances in
supportive care and wide availability of bone marrow
reconstitution through transplantation. As a result, the 5-year
survival has improved to over 50%. The use of cytotoxic drugs
in the acute phase of disease has also markedly improved the
outlook by reducing the numbers of proliferating antigen-
presenting cells directly.60

A91V Polymorphism of Perforin

The A91V allele is the most common variant found in the
Caucasian population, resulting from the nucleotide substitu-
tion C272T in exon 2. It has been reported at a relatively high
frequency of between 3 and 17% in Caucasian subjects.72–74

Interestingly, A91V seems to be at a very low frequency of
0.7% in African-American subjects,72 Sub-Saharan Africans75

and there are no reported cases of the polymorphism in
Japan, thus reinforcing the Mediterranean origin of the
mutation. However, the predicted frequency of A91V homo-
zygosity (B1/700 individuals, on the basis of occurrence of
the homozygotes in various population studies) is vastly in
excess of the frequency of FHL2 cases, that is, 0.002%

(1 : 50 000 live births); this level of occurrence suggests a
neutral polymorphism. Concordantly, A91V homozygosity
has been found in several asymptomatic (at the time of
genotyping) individuals. Nevertheless, several cases of FHL
have been linked to A91V. In most of these patients, A91V
was either inherited in the homozygous state or was the only
functional allele present, as the second allele of PRF1 had
either a frameshift or inactivatingmissensemutation (all these
cases are summarized in Chia et al 10).
Importantly, A91V has also been proposed to predispose to

various types of cancer, including B and T-cell lymphoma,76

acute lymphoblastic leukemia73, anaplastic large cell lympho-
ma (ALL),77 and to Dianzani lymphoproliferative disease.78

Although the numbers of cancer-afflicted individuals were
small, A91V was either inherited in the homozygous state or
more commonly with one wild-type allele. This was an
unexpected observation as it has been well documented that
PRF deficiency leading to serious clinical consequence is an
autosomal recessive event. As a counterbalance to these
findings, a much larger epidemiological study found no
significant difference between the frequency of A91V allele
in ALL patients compared with control subjects, but an
increased incidence of the mutation was found in a small
number of BCR–ABL-positive ALL patients.72 So can A91V
mutation contribute to a disease? This was clearly an
important question, and several research groups went on to
investigate the effect of the mutation in various experimental
systems.
Unusually, for such a controversial area of research,

a consensus has been reached: A91V is a functionally
impaired mutant protein, not a neutral polymorphism. The
A91V mutation affects PRF folding and stability within the
effector cell, and as a result greatly reduces its intrinsic
cytolytic activity.79–81 However, within the environment of
PRF-deficient CTLs, the mutant recovered 30–50% of the
wild-type PRF activity.80 Interestingly, in vitro A91V also
displayed a mild dominant-negative effect.80 This phenom-
enon is potentially very important, as unlike most
other naturally occurring PRF mutants that are almost
completely degraded in the effector cell and cannot inhibit
wild-type PRF function, the steady-state level of A91V
expression is significant. Taken together, the combination of
functional and clinical observations suggests that when
co-inherited with the normal allele, A91V is unlikely to have
a pathological role. However, if expressed in excess of the
wild-type PRF, its negative impact on CL function may
predispose to disease, such as the various hematological
cancers mentioned above.

Perforin Deficiency and Human Cancer

Environmental or common microbial agents are thought to
trigger FHL, typically in infancy.82 However, it has recently
become evident that the first significant incidence of FHL can
also occur in adolescence or adulthood.83,84 The most
detrimental PRF1 mutations associated with minimal or no
protein expression invariably present during early infancy,
with a mean age of onset of 2 months.3,69 If untreated, this
form of FHL is always fatal within a fewmonths or evenweeks.
By contrast, compound heterozygous PRF1 missense muta-
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tions are predominantly detected in older patients3,69 and
encode partially active PRF, which might enable patients to
survive for a significant period of time before developing
FHL.10

We have been interested in addressing the still highly
contentious issue of whether the immune system contributes
to immune surveillance of cancer in humans. Traditional
epidemiological approaches to studying PRF deficiency and
cancer susceptibility are virtually impossible,85 as bi-allelic
PRF1 mutations are extremely rare, and bone marrow
reconstitutions make meaningful follow-up studies on PRF
biology impossible. However, in a breakthrough study,
Clementi et al.76 investigated the presence of PRF mutations
in a group of 29 primary lymphoma patients and found four
individuals with bi-allelic PRF1 mutations, all of who devel-
oped cancer beyond the age of 7 years. As indicated above,
FHL2 onset is bimodal, and some patients with missense
mutations present with the disease in their teens and even
much later in their life.3 However, the mechanisms behind
such a delay remained unknown.
Recently, we assessed mutant PRF function in a cohort

of patients with atypical or delayed FHL.10 Thus, we identified
unrelated clinical cases, in which FHL was delayed for
at least 10 years, or in which the presentation of PRF
dysfunction was other than with FHL. We found that almost
50% presented with B- or T-cell lymphoma or acute or
chronic leukemia, and commonly displayed FHL late
or not at all. The broad range of pathologies strongly
suggested that a common environmental or viral cause was
not responsible for the disease. This frequency of hematolo-
gical cancers was over 100 times higher than what is reported
in the general population, arguing strongly in favor of a critical
role for PRF in the immune surveillance of cancer. Further-
more, as PRF affects only CL function, this strongly suggests
that deficiency in CL function has a critical role in increased
cancer incidence.
Why do cancer-prone carriers of bi-allelic PRF1 mutations

manage to evade FHL early in life? Recently, our own
molecular studies have shed light on this puzzling issue. Our
initial analysis suggested that all but 3 of 17 cancer-and late
FHL-associated PRF mutants had no cytotoxic function when
analyzed in vitro. However we also discovered, through
mapping these mutations onto the predicted three dimension
PRF structure (based on three crystallized MACPF
proteins31–33) that many of the mutants localized to a single
subdomain at the top of the PRF monomer, the part furthest
removed from the membrane-binding domains.10 Intriguingly,
in light of previous studies on A91V,80 this common variant
was also shown to map to the same subdomain and result in
protein misfolding. The predicted similarity between bacterial
CDCs andMACPF proteins strongly suggested that PRF pore
formation would require major conformational changes, which
would only be possible in structurally labile proteins.30 We
therefore hypothesized that cancer-associated mutations,
such as A91V, might predominantly result in misfolding rather
than loss of function per se. Indeed, by reducing the culture
temperature of mutant PRF-expressing cells to 301C to
optimize folding, we showed that the activity of most of the
mutants could be restored to a significant extent. By contrast,
missense mutations that still had unrecoverable function at

this permissive temperature were invariably associated with
the more common and severe FHL2 presentation in early
infancy.10 Hence, it seems that temperature sensitivity of
mutant PRF function can predict the severity and age-of-onset
of FHL2 (Figure 2). In addition, partial PRF deficiency may
unmask a predisposition to hematological cancer by extend-
ing a subject’s lifespan owing to escape from the most serious
consequence, FHL.
A further critical question concerns the significance of

temperature sensitivity of PRF mutants, as many of these
variants seemed to be non-functional at 371C. The answer to
this question may be gleaned from the thermodynamics of
protein folding, in which a correctly folded native polypeptide
acquires the most stable conformation that minimizes its free
energy. In the case of labile proteins such as PRF, it appears
that even subtle structural changes may dictate the adoption
of a correctly folded or misfolded state. Therefore, a reduction
of temperature may increase the chance of a mutated protein
to acquire a native folded state (Figure 3). The fact that every
patient presenting with delayed FHL or an alternative pa-
thology in our study carried at least one temperature-sensitive
mutation further supports this notion. The most important
outcome of our study was that temperature-sensitive PRF
mutants were not truly null, but hypomorphic. Under physio-
logical conditions, the correct folding of a small amount of
protein would provide sufficient cytotoxic activity for survival
beyond infancy and into adolescence. Other diseases have
been described, in which a small amount of correctly folded
mutant protein (or ‘leaky’ phenotype) resulted in milder
symptoms of a disease.86 However, never has such a large
number of naturally occurring mutants been found to be
temperature sensitive as with PRF. Together, these studies
make a strong case for a link between defective PRF-mediated
cytotoxicity and impaired CL function and cancer susceptibility
in humans (Figure 4).

Figure 2 Temperature sensitivity of PRF mutants can predict the severity and
age of onset of disease. At 371C, PRF1 mutations associated with disease result in
a varied range of reduced cytotoxic levels compared with wild-type PRF, with a
complete loss of activity for most mutations. At 301C, mutations consistently
associated with late-onset FHL and/or various hematological cancers show greater
recovery of cytotoxicity, whereas mutations that show no recovery of function are
invariably associated with early-onset FHL. Mutants with intermediate levels of
activity at reduced temperatures are associated both with cases of early and
late-onset FHL
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The Double-Edged Sword of Perforin Function

Although all the evidence provided thus far clearly favors an
essential role for PRF in immune homeostasis and immune
surveillance against viruses and cancer, PRF-dependent
cytotoxicity can also be dangerous if CLs turn against their
host. Type 1 juvenile diabetes is an autoimmune disease in
which CD8þ CTLs eliminate insulin-producing b-cells in the
pancreas. Two independent studies have shown that non-
obese diabetic (NOD) mice on PRF1�/� background had a
markedly delayed onset of diabetes or did not develop the
disease at all. Furthermore, NOD mice bred onto a PRF1�/þ

background were partially resistant to the disease.87,88 On the
other hand, the Fas death pathway is also critically important,
but it seems to play a ‘priming’ role in the NOD model, as
FasL-deficient mice (gld) fail to develop islet-cell inflammation
altogether.89 Therefore, the coordinated action of the Fas and
PRF-dependent pathways is responsible for spontaneous
type 1 diabetes in mice.
Surprisingly, another disease whose manifestations are

augmented by CD8þ CTLs is cerebral malaria. Even though

the exact mechanism that drives CTLs to the brain and
leads to disruption of the blood–brain barrier is yet to be
fully understood, the role of PRF in this process has been
well demonstrated in several independent studies in the
Plasmodium berghei mouse model. The number of brain-
infiltrating activated CTLs was not different between the
wild-type and PRF1�/� mice. However, unlike wild-type mice,
the knockout animals failed to develop vascular leakage in
the brain, resulting in markedly reduced cerebral inflamma-
tion and edema.90,91 Given that cerebral complications are
the main cause of death among malaria-infected children,
designing therapeutic strategies aimed at downregulating
CTL function in the brain may be highly beneficial.
Finally, a potential link between PRF1 mutations and

multiple sclerosis has been recently postulated in a population
study.92 As CTL infiltrates within multiple sclerosis lesions in
the brain are thought to potentially contribute to the onset and
progress of the disease, the downregulation of CL activity
would be expected to moderate, rather than augment the
disease progression. Instead, a higher proportion of patients
with heterozygous A91V mutation, compared with healthy

normal temperatures reduced temperatures

- + - +EndoH

WT mutant

- + - +EndoH
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folded protein
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Figure 3 A proportion of molecules of temperature-sensitive perforin mutants can acquire wild-type conformation, traffic to secretory granules and offer some cytotoxic
function to CL. PRF trafficking can be assessed by estimating EndoH glycosidase resistance of PRF. Such a resistance is the indicator of PRF trafficking through the Golgi
compartment, wherein it acquires EndoH-insensitive complex glycosylation
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controls, were noted. Although the difference wasmodest, yet
statistically significant, it might suggest that poorer clearance
of putative underlying viral infection(s) rather than autoimmu-
nity influences the development of the disease.93

Concluding Remarks

Over the last quarter of a century, some monumental efforts
have been made to understand the biology of CLs, which
evolved to adapt their killing machinery to ever-changing viral
challenges and spontaneous pre-cancerous transformations.
Granzymes, the key inducers of target-cell apoptosis, co-evolved
with these challenges to cover a remarkable range of
cellular substrates and thereby minimizing the chance of
immune escape. By contrast, the fundamentals of PRF
structure and mechanism were not subjected to such
pressure, as its function was uniquely inherited from
primordial ancestors. As such, PRF is a sole guardian of
CLs and themodulation of its function has an immediate effect
on cell function and the surveillance of infections and cancer.
Better understanding and control of function and expression
of PRF and other key granule proteins will widen the
perspective of efficient diagnostics and management of
immune-mediated disease.
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