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Granzymes and perforin in solid organ transplant
rejection

JC Choy*,1

Rejection of solid organ allografts by the recipient immune system is mediated, to a major extent, by T cell effector mechanisms.
Granzymes and perforin are protein regulators of cytotoxic T lymphocyte-mediated target cell death. In this review, I discuss
clinical data implicating granzymes and perforin in acute and chronic solid organ transplant rejection, as well as data from cell
and animal experiments that support a main role for these effector molecules in allograft rejection.
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Overview of Solid Organ Transplantation

Solid organ transplantation is the most effective treatment for
end-stage organ failure, but the effectiveness of this
procedure continues to be hindered by the rejection of
transplanted organs by the recipient immune system.
Although immunosuppressive drugs are provided to patients
to manage rejection, there remains much room for improve-
ment because the overall half-lives of kidney and heart
transplants (two of the main solid organ transplants per-
formed) are only 12 and 10 years, respectively.1,2 In addition,
the most widely used immunosuppressive drugs, calcineurin
inhibitors (which include cyclosporine and tacrolimus) and
rapamycin, are non-specific and are associated with detri-
mental side effects that include kidney damage, increased risk
of cardiovascular disease, increased susceptibility to certain
malignancies, and increased rate of certain infections.3

Advancements in organ transplant management have
focused on the induction of tolerance, a process in which
immune modulation of the recipient can specifically prevent
detection and/or targeting of the foreign organ. Progress is
being made on the induction of tolerance in humans, although
its widespread clinical use remains to be determined.4–6

To optimize the success of organ transplantation, a better
understanding of the mechanisms by which the immune
system targets allografts is needed. In general, rejection of
allografts involves antibody and T cell responses. In this
review, I discuss specifically the role of granzymes and
perforin, which are the main effector molecules of cytotoxic
T lymphocytes (CTLs), in causing acute and chronic solid
organ transplant rejection.

Granzyme/Perforin Effector Pathways

Cytotoxic T lymphocytes (which include CD8 and some CD4
T cells) and NK cells are involved in the elimination of infected

and foreign cells by the immune system. CD8 T cells are the
best understood CTL population. Resting CD8 T cells differ-
entiate into CTLs after an encounter with foreign peptide–
MHC class I in the context of other activating signals.7 These
CTLs then migrate to sites of immune activation and induce
the death of target cells. In addition to T cells, recognition of
activating receptors and a lack of inhibitory signals triggers the
NK cell-mediated killing of infected or foreign cells.8

One of the most potent death-inducing mechanisms used
by CTLs and NK cells is granule exocytosis. Cytotoxic
granules contain the pore-forming protein, perforin, and serine
proteases named granzymes. The human genome encodes
five granzymes: granzyme (Gr)A and GrB, and the orphan
granzymes GrH, GrK, and GrM. The mouse genome encodes
for granzymes GrA and GrB, and the orphan granzymes GrC,
GrD, GrE, GrF, GrG, GrK, GrM, and GrN, but not for GrH.9 On
lymphocyte recognition of target cells, granule contents are
rapidly released into the lymphocyte–target cell synapse.
Perforin facilitates the entry of granzymes into the target cell
cytoplasm where these serine proteases induce cell death
through a number of pathways.10

GrB is the most extensively studied granzyme that induces
cell death through the activation of caspase-dependent and -
independent pathways (Figure 1a). Specifically, human GrB
can directly cleave the proapoptotic protein Bid, which gener-
ates an active form of Bid that translocates to themitochondria
and induces permeability of this organelle.11,12 This Bcl-2-
regulated pathway has rapid kinetics and causes the release
of cytochrome c, which leads to caspase activation, as well
as the release of SMAC/Diablo, which augments caspase
activation by inactivating the endogenous inhibitors of
caspases.13,14 GrB also acts on the mitochondria by inducing
caspase-independent cell death through the generation of
reactive oxygen species (ROS).15 In addition to acting through
a mitochondrial pathway, GrB induces apoptosis by directly
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cleaving and activating caspase-3.16 In situations in which
caspase activity is blocked, GrB can directly cleave and
inactivate proteins involved in cellular structure and function,
such as nuclear lamins, and in this way contribute to the
dismantling of target cells through a caspase-independent
mechanism.17 In all, GrB induces cell death through several
pathways that may maximize its effectiveness in clearing
pathogens that evolve strategies to evade specific pathways.
GrA is also expressed by CTLs and NK cells. Cell death

induced by this protease is morphologically distinct from
apoptosis and is characterized by cell rounding and cleavage
of DNA into relatively large fragments.18 This trypsin-like
protease induces caspase-independent death in vitro by
triggering the generation of ROS and releasing the endonu-
clease, NM23-H1, from inhibition (Figure 1b).19–21 These
processes lead to the cleavage of DNA into large fragments in
the target cell nucleus. Interestingly, GrA induces the
generation of ROS through direct cleavage of the mitochon-
drial matrix complex I protein, NDUSF3.22 Other granzymes
can also induce cell death in vitro and the specific pathways
are just beginning to be defined.23–25

The physiological roles of perforin and granzymes have been
studied using gene knockout mice. Perforin-deficient mice have

increased susceptibility to certain viruses and develop auto-
immunity secondary to viral infection.26–30 In comparison, GrB
and GrA knockout mice are susceptible to a limited number of
pathogens, although GrA/GrB double knockout mice may
closely resemble perforin knockout mice in their defective
clearance of viral infections.31–33 The immunological defects
observed in GrB and perforin knockout mice are likely a result of
impaired induction of target cell death because perforin-
deficient T cells are unable to kill most cell types in ex vivo
killing assays and GrB-deficient T cells have a significant delay
in their ability to induce target cell death in similar assays.34 The
mechanisms by which GrA contributes to immunity are still
being investigated, but may involve the induction of target cell
death and/or of inflammatory cytokine production. AlthoughGrA
induces cell death in vitro, a recent report questioned the ability
of murine GrA to induce target cell death in vivo and showed
instead that it induces inflammation by stimulating the produc-
tion of IL-1b from monocytes.35

CD8 T Cells and NK Cells in Acute Allograft Rejection

CD8 and CD4 T cells are present in acutely rejecting allografts
along with a small number of NK cells.36,37 Interestingly,
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Figure 1 Granzyme A and B (GrA and GrB)-mediated cell death pathways. On recognition of foreign cells, activated CTLs release granzymes and perforin into the
lymphocyte–target cell synapse. Perforin facilitates the entry of granzymes into the target cell cytoplasm. (a) Once inside the target cell, GrB induces cell death through a
number of mechanisms. GrB-mediated cleavage of Bid results in the generation of an active form of Bid, which causes mitochondrial permeability. Downstream release of
cytochrome c initiates caspase activation. SMAC/Diablo is also released by mitochondrial permeabilization and this molecule augments caspase activity by preventing
caspase inhibition by endogenous inhibitors. GrB also directly cleaves and activates caspase-3. In the absence of caspase activation, GrB can induce cell death through the
induction of ROS from mitochondria as well as through the direct cleavage of structural proteins, such as nuclear lamins. (b) GrA acts directly on mitochondria to induce the
production of ROS. Generation of ROS induces the translocation of the SET complex, which contains the SET protein that binds to and inhibits the endonuclease NM23-H1 in
the nucleus. GrA cleaves and inactivates SET in the nucleus, which allows NM23-H1 to cleave DNA into large fragments. In addition to these death-inducing properties of GrA,
this serine protease induces inflammation through the production of IL-1b through a caspase-1-dependent mechanism
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memory CD8 T cells may be one of the earliest leukocytes to
enter allografts and trigger the rejection process.38 In animal
models of transplantation using complete MHC-mismatched
strains of mice in the absence of immunosuppression,
antibody-mediated depletion of CD8 T cells does not alter
the kinetics of acute cardiac allograft rejection, but does
change the rejection process from one that involves graft
infiltration by mononuclear cells to one characterized by
excessive infiltration by neutrophils and eosinophils.39 As
acute rejection is most often associated with mononuclear cell
infiltration in clinical settings, these data support the involve-
ment of CD8 T cells in acute organ transplant rejection.
In addition, CD8 T cell deficiency prevents the acute rejection
of heart allografts in a minor histocompatibility antigen-
mismatched mouse model.40 In addition to T cells, NK cells
may also contribute to graft rejection because of their ability to
respond to ‘missing-self’, a process by which the absence of
inhibitory signals derived from binding to self peptide–MHC
molecules triggers NK cell activation.41–43 The above studies
establish a role for CTLs and NK cells in causing acute
allograft rejection.

Granzymes and Perforin in Acute Allograft Rejection

Histological studies have shown the abundance of GrA, GrB,
and perforin in many types of acutely rejecting allografts.44–49

In addition, increased expression of granzymes and perforin is
predictive of the development of acute rejection episodes.45,50

Further evidence for a role of GrB in acute transplant rejection
comes from the observation that there are higher levels of the
endogenous GrB inhibitor, PI-9, within the tubular epithelial
cells of kidney allografts with grade IA rejection than in those
with more severe acute rejection as defined by grade IB or
greater.51

Granzyme/perforin pathways are the main mechanisms by
which CTLs induce cell death in allografts, as exemplified by
cell culture studies using cardiac myocytes, renal tubular
epithelial cells, and vascular endothelial cells. Perforin alone
induces cardiac myocyte shortening and destruction in vitro,

and GrA acts in concert with perforin to accelerate myocyte
destruction (Figure 2a).52 Interestingly, the pore-forming
properties of perforin alone may also contribute to myocyte
contractile dysfunction by causing extracellular calcium influx
(Figure 2b). Consistent with these in vitro findings, GrA
expression is correlated with decreased diastolic function in
heart transplant patients.53 With regard to renal allografts,
Miltenburg et al.54 isolated and cultured graft-infiltrating
lymphocytes from kidney biopsy material and showed that
they were cytolytic toward donor tubular epithelial cells from
the same biopsy material but not toward third-party tubular
epithelial cells. The determination that cytolytic activity was
inhibited by blocking MHC class I suggested the involvement
of CD8 T cells. Subsequent studies determined that these
graft-infiltrating CTLs induce allogeneic tubular epithelial cell
death through a perforin-dependent pathway, as cell death
was prevented with concanamycin A but not by inhibition of
the Fas pathway.55 Finally, in the mouse, GrC is involved in
the delayed T cell-mediated killing of allogeneic targets in the
absence of active GrA and GrB,56 and this orphan granzyme
is partly involved in the T cell-mediated cell death of tubular
epithelial cells in an autoimmune model.57 Although the
human genome does not encode GrC, it will be interesting to
determine the role of the related granzyme in humans, GrH, in
allogeneic T cell responses.
Vascular endothelial cells activate allogeneic T cell

responses and are also an important target of CTLs in all
solid organ allografts.58 Endothelial cell-reactive CTLs can be
cultured from endomyocardial biopsies, and immune-
mediated microvascular damage leads to ischemic organ
failure by causing hemorrhage and thrombosis.59 GrB acts in
concert with perforin to induce rapid cell death of human
endothelial cells in vitro, and GrB alone is capable of inducing
endothelial cell death at later time points by proteolyzing
extracellular proteins required for adhesion-mediated cell
survival.60,61 Zheng et al.62 and Kreisel et al.63 investigated
the mechanisms by which CD8 T cells kill human and mouse
vascular endothelial cells, respectively. In both instances,
CD8 T cells induced cell death of allogeneic endothelial cells
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Figure 2 Role of granzymes and perforin in acute rejection. (a) Granzymes/perforin act together to directly induce cell death of allograft parenchymal cells, thereby leading
to organ failure. (b) In heart allografts, the formation of plasma membrane pores by perforin alone may cause cardiac myocyte contractile dysfunction through the dysregulation
of cytoplasmic ion concentrations. (c) Granzyme B (GrB) and perforin act together to induce endothelial cell death within solid organ allografts. The destruction of the graft
microvasculature in this manner leads to hemorrhage and thrombosis, thereby contributing to acute rejection by causing ischemic organ failure
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predominantly through a GrB/perforin pathway and there was
minimal contribution of the FasL pathway. This may be due to
the expression of an endogenous inhibitor of the Fas pathway,
c-FLIP, in endothelial cells.64,65 Using a humanized mouse
model of T cell-mediated endothelial cell injury in which
human endothelial cell engraftment in SCID/beige mice is
followed by the adoptive transfer of allogeneic human T cells,
Zheng et al.66 also determined that human T cell induction of
allogeneic endothelial cell death is inhibited by Bcl-2 in vivo.
Finally, the susceptibility of endothelial cells to GrB/perforin-
mediated injury is likely to be tightly regulated by cytokines
because IFNg signaling in graft cells reduces GrB/perforin-
induced microvascular damage in a mouse model of kidney
transplantation.67

Animal models have been used to determine the role of
granzymes and perforin in acute organ transplant rejection
(Table 1). Although it is clear that CTLs predominantly use
granzyme/perforin pathways to induce allogeneic target cell
death, experiments using complete MHC-mismatched animal
models of organ transplant rejection in the absence of
immunosuppression have failed to identify a requirement for
perforin/granzyme pathways in allograft rejection in this
setting.68,69 Specifically, in these models there is no
difference in cardiac allograft survival (as determined by
palpation) or kidney allograft rejection (as determined by
histology) in perforin or granzyme knockout recipients
compared with wild-type counterparts. This may be explained
by a predominance of antibody-mediated rejection in these
models. Indeed, acute rejection of heterotopic heart trans-
plants that occurs in complete MHC-mismatched recipients
in the absence of immunosuppression is due in large part
to antibody-mediated graft injury.70,71 Clinically, antibody-
mediated rejection is implicated in 5.6–23% of rejecting
ABO-matched kidney allografts, 30–60%of ABO-mismatched
kidney allografts, and 3–28% of heart allografts (although
there was an incidence as high as 52% in one report).72,73

These data indicate that there is a substantial contribution of
T cell-mediated rejection (as reflected by the large proportion
of clinical cases in which antibody-mediated rejection is not
implicated) that may not be accurately reflected in complete
MHC-mismatched mouse models in the absence of immuno-
suppression. CTL cytotoxic effector pathways are likely to be
the main mechanism of rejection in patients undergoing this
type of cellular rejection. In fact, immunosuppression with
cyclosporine might preferentially inhibit humoral immune
responses in some cases,74 potentially resulting in an
increased contribution of CD8 T cell responses to allograft
rejection in the presence of this immunosuppressive drug.
This has been observed in a murine aortic allograft model of
vascular rejection.75 Therefore, in allografts in which antibody-
mediated rejection is implicated, the immune effector path-
ways involved probably include both antibody and T cell-
mediated graft injury, whereas the effector pathways involved
in allografts that are undergoing rejection in the absence of
antibody-mediated graft destruction include mainly T cell
pathways such as CTL and cytokine-mediated graft cell death
and dysfunction. Individual patient differences in the quality of
immune responses and susceptibility to immunosuppressive
drugs may underlie the respective contribution of each
effector pathway in specific patients. Understanding the T
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regulation of both effector pathways is required to optimize
future therapeutic approaches, such as co-stimulatory block-
ade and tolerance induction, that are effective in preventing
both immunological responses.76

Given the contribution of CTL cell effector pathways in
allograft rejection as outlined above, it is important to
understand the role of specific effector molecules in this
process. In a murine heterotopic heart transplant model
across minor histocompatibility antigen-mismatched strains,
which is a situation in which there is minimal antibody-
mediated targeting of allografts, acute heart transplant
rejection is significantly delayed in perforin-deficient recipi-
ents.77,78 Perforin is also required for the acute rejection of
mouse heterotopic heart allografts performed across MHC
class I disparate strains.68 Although these experiments show
that perforin is required for the cellular rejection of solid organ
allografts, there is no difference in the rate of acute cardiac
allograft rejection in GrB cluster-deficient recipients (which
lack GrB and have reduced expression of GrC, GrF, and GrD)
compared with wild-type counterparts.60 This could be due to
redundancy in the granzyme pathways and it will be important
to determine the rejection of cardiac allografts in GrA/GrB
double knockout mice in this model.
In addition to inducing cell death directly, GrA may be pro-

inflammatory in allografts through the induction of IL-1b
production. Neutralization of IL-1 with a soluble receptor
antagonist slightly prolongs heterotopic heart transplant
survival, and blocking IL-1 signaling acts in synergy with
cyclosporine to prolong heart transplant survival.79,80 The
recent identification that murine GrA induces IL-1b production
from monocytes suggests that there may be additional non-
cytotoxic properties of granzymes that may contribute to
organ transplant rejection by increasing leukocyte recruitment
and activation, as well as vascular cell dysfunction.35

Granzymes and Perforin in Chronic Allograft Rejection

To date, advances in immunosuppressive regimens have
decreased graft failure because of acute rejection, but have
had limited impact on chronic rejection.1 This difference in
efficacy could reflect distinctions in the pathological mechan-
isms driving acute and chronic rejection, although there are
clearly similar immunological processes involved. Chronic
rejection is defined as late graft loss because of host anti-graft
immune responses,81 and it is represented mainly by allograft
vasculopathy (AV) and parenchymal fibrosis. AV is a vascular
condition characterized by immune-mediated arterial intimal
thickening and dysfunction. These vascular changes result in
vessel occlusion and resultant ischemic graft failure.82

Fibrosis of the graft parenchyma is observed as a reflection
of chronic rejection in most solid organ allografts and is one of
the structural changes that defines chronic allograft nephro-
pathy (CAN) in kidney allografts. The exact mechanisms
underlying the development of parenchymal fibrosis remain to
be fully defined, but may include early graft damage due
to acute rejection episodes, ischemia resulting from AV,
or production of fibrosis-inducing cytokines by the immune
responses.81

Chronic rejection involves T cell responses. Analysis of
clinical specimens of AV has shown that both CD8 and

CD4 T cells accumulate in allograft arteries.83 There is
also a small number of NK cells that infiltrates the arteries of
heart allografts.84 Intimal thickening of complete MHC-
mismatched aortic allografts does not develop in Rag� and
CD4 T cell-deficient recipient mice.85 Although CD8 T cells do
not seem to be required for the development of intimal
thickening in mouse models of AV that use complete MHC-
mismatched strains of mice in the absence of immunosup-
pression,85 CD8 T cells are required for the development of
AV in a complete MHC-mismatched model that includes the
treatment of mice with a clinically relevant cyclosporine-based
immunosuppressive regimen.75 The mechanisms by which
T cells cause AV involve both the direct cytokine-mediated
dysfunction of graft cells as well as CTL-mediated vascular
cell damage.86,87 The role of CTL responses in AV and CAN
is discussed below, and specific studies are summarized
in Table 2.
Using mechanical injury models of arterial intimal thicken-

ing, Ross et al. initially showed that endothelial injury leads to
an aberrant reparative response in arteries characterized by
rapid smooth muscle cell migration from the media into the
intima, whereupon these cells proliferate rapidly to form
occlusive lesions.88 The signals mediating this type of intimal
thickening involve the production of growth factors by vascular
smooth muscle cells, infiltrating leukocytes, and platelets. As
AV is characterized by similar rapid intimal thickening and
lesions containing large numbers of smooth muscle cells and
leukocytes, immune-mediated endothelial injury could be an
initiating event in the development of this vascular condition.89

In support of this notion, there is extensive endothelial cell
apoptosis in human specimens of AV.90 Interestingly, the
number of apoptotic luminal endothelial cells is highest in
arteries withmild AV (which perhaps resembles an early stage
of AV) and lower at later stages. Extensive endothelial cell
death is also observed in allograft arteries early after
heterotopic heart transplantation in a rat model.91 Separate
studies also showed that infiltrating T cells express perforin in
allograft arteries.92 Many of the observed perforin-expressing
T cells localized to endothelial cells that displayed morpho-
logical characteristics of damage, and perforin-containing
granules were seen to be polarized toward the endothelial
surface.93 Finally, GrB is also abundant in human specimens
of AV and is spatially associated with apoptotic cells. Its
increased abundance in allograft arteries is associated with
increased intimal thickening.94

The above data suggest that CTLs may initiate the
development of AV by inducing endothelial cell death through
a GrB/perforin pathway. To study this experimentally, we
examined the effects of perforin or GrB deficiency on the
development of AV in a mouse heterotopic heart transplant
model in which minor histocompatibility antigen-mismatched
strains of mice were used to prevent early antibody-mediated
graft destruction. There was a significant reduction in AV in
hearts transplanted into perforin knockout recipients com-
pared with wild-type counterparts, and this was related to a
significant reduction in early endothelial cell apoptosis in
coronary arteries of hearts transplanted into perforin knockout
recipients compared with wild-type counterparts.78 Similarly,
in hearts transplanted into GrB cluster knockout recipients,
there was a significant reduction in the extent of intimal
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thickening in allograft coronary arteries compared with hearts
in wild-type recipients.60 However, there was slightly more AV
in allograft arteries in GrB cluster knockout compared with
perforin knockout mice. Taken together, the above studies
indicate that perforin and GrB contribute to the pathogenesis
of AV by causing early endothelial cell death (Figure 3a). In
addition, perforin-dependent but GrB-independent pathways
are involved. The identity of these pathways has not been
determined, but they could involve GrA. Finally, as neither
perforin nor GrA/B deficiency affects intimal thickening in a
mouse kidney allograft model using complete MHC-mis-
matched strains of mice in the absence of immunosuppres-
sion,69 the granzyme/perforin pathway is likely to predominate

in the initiation of AV in allograft arteries that are targeted
mainly by T cell effector responses, whereas antibody-
mediated targeting of allograft arteries also contributes to
AV in grafts in which antibody responses are present.
In addition to the induction of endothelial cell death,

immune-mediated smooth muscle cell death may also
contribute to the development of AV (Figure 3b). Using
mechanical injury models, Reidy et al.95 showed that smooth
muscle cell death can also initiate a response to injury within
the arteries, thereby leading to intimal hyperplasia. Recent
studies using transgenic mice that express diphtheria toxin
receptor on vascular smoothmuscle cells failed to observe the
initiation of widespread intimal thickening in response to high

Table 2 Role of cytotoxic T cells and granule effector molecules on AV in mouse models

Effector cell
or molecule

Experimental method
of effector elimination

Transplanted
tissue/organ

Type of antigen
mismatch in model

Immunosuppression Effect on AV
(reference number)

CD8 Gene knockout Aortic allograft Complete MHC No None85

CD8 Antibody-mediated
elimination

Aortic allograft Complete MHC Yes—cyclosporine Reduced intimal
thickening75

Perforin Gene knockout Kidney Complete MHC No No effect on intimal
thickening69

Perforin Gene knockout Heterotopic
heart

Minor histocompatibility
antigen

No Reduced intimal
thickening78

Granzyme A/B Gene knockout Kidney Complete MHC No No effect on intimal
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Figure 3 Role of granzymes and perforin in AV. (a) Cytotoxic T lymphocytes infiltrating allograft arteries induce cell death of luminal endothelium through a GrB/perforin
pathway. This endothelial destruction induces a response to injury in the artery that involves the production of growth factors, which induce the migration and proliferation of
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levels of smooth muscle cell death under baseline conditions
induced by the administration of diphtheria toxin, perhaps
suggesting that the type of smooth muscle damage may be
important in determining the specific effects on vascular
pathology.96 In the setting of transplantation, CD8 T cell-
mediated smooth muscle cell death has been suggested to
contribute to the development of AV in a clinically relevant
mouse model of AV.97 Consistent with these experimental
data, GrB localizes to apoptotic smooth muscle cells in clinical
specimens of AV and this cytotoxic protease is able to induce
smooth muscle cell death in a perforin-independent manner
by cleaving extracellular matrix proteins in vitro.94,98

Although the above data establish a role for granzymes and
perforin in the pathogenesis of AV and chronic heart allograft
failure, the potential involvement of these effector molecules
in the development of chronic kidney allograft rejection is less
clear. Mouse models have determined that chronic rejec-
tion is reduced in renal allografts that lack MHC expression.99

CD8T cells are observed in biopsies from chronically rejecting
kidneys and this T cell subset is associated with fibrotic
changes in renal allografts.100 However, there do not appear
to be detectable increases in expression of granzymes or
perforin in kidney allografts undergoing chronic rejec-
tion.101,102 Nevertheless, because allograft damage resulting
from acute rejection episodes contributes to the subsequent
development of CAN, early allograft damage through gran-
zyme/perforin-mediated pathways might initiate, in part, the
development of CAN in renal allografts.103 In addition, fibrotic
changes in kidney allografts may be secondary to ischemia
resulting from AV.81 Expression studies that have failed
to identify altered expression of granzymes and perforin
in chronic kidney allograft rejection may not have been able
to properly evaluate changes specifically in allograft arteries.
The potential role of these CTL effector pathways in AV
in kidney allografts requires further investigation.

Granzymes and Perforin as Biomarkers of Allograft
Rejection

Increased GrB and perforin mRNA in peripheral blood
mononuclear cells from kidney allograft recipients is asso-
ciated with acute rejection episodes,104–106 although an
association was not identified in one report.107 In addition to
the examination of granzyme and perforin expression in
isolation, combining their expression analysis with that of
other genes in peripheral blood cells may provide additional
diagnostic power. For instance, increased expression of the
regulatory T cell molecule FoxP3 in peripheral blood cells has
been shown to be the most precise marker of acute kidney
allograft rejection.106 Combining the expression analysis of
this gene with that of granzymes and perforin may provide
additional increases in the sensitivity and specificity of
diagnosis. In addition to peripheral blood cells, analysis of
granzyme and perforin gene expression in urine may be a
useful method to monitor acute kidney transplant rejection.
Detection of perforin mRNA levels above 0.9 fg per mg of total
RNA in urine predicts acute rejection with a sensitivity of 83%
and a specificity of 83%, and detection of GrB mRNA levels
above 0.4 fg per mg of total RNA predicts acute rejection with a
sensitivity of 79% and a specificity of 77%.108 Therefore,

measurement of perforin and/or GrB mRNA levels in urine
may also be useful as a non-invasive biomarker of acute
kidney allograft rejection.
In attempts to develop biomarkers of acute heart transplant

rejection, Schoels et al.109 examined mRNA expression of a
number of immune-related genes in peripheral blood mono-
nuclear cells of heart transplant recipients and determined
that the expression of perforin and GrB, along with six other
genes, was significantly increased in patients undergoing
acute rejection episodes. Combining increased perforin
expression with differential expression of four other immune
genes resulted in the ability to predict acute cardiac rejection
with a sensitivity of 82% and a specificity of 84%. Thus,
analysis of perforin expression in peripheral blood cells may
also be useful in predicting cardiac transplant rejection when
combined with expression of other immune regulatory
genes.110

GrB in Treg Cell Functions

In addition to its role in effector lymphocyte responses, GrB is
also involved in immune suppression by CD4þ Treg cells.
GrB in this T cell subset was found to be required for maximal
suppression of CD4 effector T cell responses in vitro, and this
was surprisingly independent of perforin.111 Further, the
suppressive effect of GrB-expressing Treg cells was attrib-
uted to contact-mediated killing of effector CD4 T cells. In
support of these initial findings, recent studies have shown
that GrB is required for the induction of tolerance in a skin
allograft model and in Treg cell inhibition of tumor
clearance.112,113 With respect to transplantation, tolerance
induced by anti-CD154 and donor-specific transfusion is
reduced in GrB-deficient mice as well as in mice transgeni-
cally overexpressing SPI-6, which is the mouse homolog of
the human GrB inhibitor, PI-9. Treg cells that lack functional
FoxP3 and GrB fail to induce tolerance, whereas Treg cells
that contain a functional gene for either molecule can prolong
graft survival to varying degrees.112

The effect of tolerance induction on granzyme expression
may depend on the type of protocol used. In a rat model of
cardiac transplantation, induction of tolerance by donor-
specific transfusion prevented acute rejection, but did not
diminish the expression of granzymes and perforin within the
graft.114 On the other hand, analysis of T cells from patients
who have undergone a tolerance-inducing protocol involving
bone marrow transplantation and a non-myeloablative pre-
parative regimen showed an increase in the number of FoxP3
T cells and a reduction in GrB-expressing T cells.4 Therefore,
it will be important to understand the expression of GrB within
regulatory and effector T cell subsets in these patients as well
as to reevaluate the usefulness of GrB and FoxP3 as
biomarkers of rejection in individuals who have undergone
tolerance-inducing protocols.

Conclusions

Granzymes and perforin are key effectors of cellular immunity.
A wide array of studies has established these effector
molecules as main mediators of cellular rejection of solid
organ allografts. However, the determination that GrB may
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participate in immunosuppressive functions of Treg cells
highlights the importance of understanding, in detail, the
immunological pathways in which this protease functions to
maximize the success of organ transplantation. A more
advanced understanding of the pathways that the immune
system uses to respond to solid organ allografts may assist in
the optimization of immunosuppressive or tolerizing regimens
in transplantation management.
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