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Vb in the regulation of cancer cell metabolism by Bcl-2
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Bcl-2 has been shown to promote survival of cancer cells by maintaining a slight pro-oxidant state through elevated
mitochondrial respiration during basal conditions. On oxidative stress, Bcl-2 moderates mitochondrial respiration through
cytochrome c oxidase (COX) activity to prevent an excessive buildup of reactive oxygen species (ROS) by-production from
electron transport activities. However, the underlying molecular mechanism(s) of Bcl-2-mediated ROS regulation and its impact
on carcinogenesis remain unclear. In this study, we show that Bcl-2 expression positively influences the targeting of nuclear-
encoded COX Va and Vb to the mitochondria of cancer cells. In addition, evidence is presented in support of a protein–protein
interaction between COX Va and Bcl-2, involving the BH2 domain of Bcl-2. Interestingly, episodes of serum withdrawal, glucose
deprivation or hypoxia aimed at inducing early oxidative stress triggered Bcl-2-overexpressing cells to preserve mitochondrial
levels of COX Va while depressing COX Vb, whereas the reverse was observed in mock-transfected cells. The unique manner
in which Bcl-2 adjusted COX subunits during these physiological stress triggers had a profound impact on the resultant
decrease in COX activity and maintenance of mitochondrial ROS levels, thus delineating a novel mechanism for the homeostatic
role of Bcl-2 in the redox biology and metabolism of cancer cells.
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Introduction

The onset and maintenance of the cancer pheno-
type is orchestrated by a combination of dysregulated
cellular pathways that contribute to a resistant environ-
ment favorable for cancer cells to thrive in. Recent literature
has expounded on the intricate controls behind cancer
metabolism, ranging from the emerging nontranscriptional
role of p53 to the expanding reach of HIF-1 involvement in
the field.1,2 Despite their multiple roles, the stark similarity
lies in their connection to cytochrome c oxidase (COX)
and its regulation, signaling the dawn of the Warburg
effect-revisited era.
Cytochrome c oxidase is the terminal complex of the

electron transport chain and is located in the inner mitochon-
drial membrane. COX exists as a dimer, consisting of
13-subunit monomers. The core subunits of COX (subunits
I, II and III) are encoded by the mitochondrial genome. The
remaining 10 subunits are encoded by the nuclear genome.
The nuclear-encoded subunits that surround the catalytic core
of COX were shown to be involved in the assembly, stability
and dimerization of the enzyme.3,4 In yeast, the expression of
COX IV and VI was shown to be aerobically regulated,
whereby the amount of fully assembled COX decreases with
decreasing oxygen concentration.5–8 In the mammalian
system, these COX subunits are designated as COX Vb

and Va, respectively. During the assembly of COX in
mammalian cells, COX Va is incorporated, followed by COX
Vb, suggesting that COX Va may determine the integration of
COX Vb and that the subsequent addition of COX Vb may
have a vital role in COX enzymatic activity.9,10

Interestingly, recent studies have demonstrated an upre-

gulation and an increased involvement of COX Va and Vb in a

variety of cancers, such as colorectal cancer, squamous cell

cancer of the larynx, intraductal carcinoma of the breast and

prostate cancer.11–16 In addition, upregulation of COX Vb has

been observed in energy-demanding cell types and healthy

tissues; is shown to inhibit apoptosis in intestinal epithelial

cells; and is associated with an increase in COX activity in

cervical (HeLa) and lung carcinoma cells (A549).12,17,18

Although the precise regulatory mechanisms and functional

roles of these COX subunits in oncogenesis have yet to be

elucidated, extensive studies from their yeast homologs, as

well as their physiological roles in normal mammalian cells,

may suggest similar functions in the mitochondria of cancer

cells by enhancing the availability and stability of the final

enzyme, thus exerting profound effects on the resultant

activity. COX activity influences the overall rates of mitochon-

drial respiration and electron transport, processes that are not

completely efficient, resulting in the generation of superoxide

(O2
�) as a by-product and creating a pro-oxidant milieu to
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facilitate an extensive array of downstream reactive oxygen
species (ROS)-mediated signaling pathways.19–21

Bcl-2 is an anti-apoptotic protein, first discovered as a
reciprocal gene translocation in chromosome 14 and 18 of
follicular lymphomas. Its main site of action and localization
lies on the outer mitochondrial membrane and its protective
mechanisms center on preserving mitochondrial membrane
integrity, preventing cytochrome c release and sequestrating
pro-apoptotic proteins such as Bax and Bak.22,23

We previously reported that overexpression of Bcl-2 was
associated with a slight increase in intracellular O2

� produc-
tion, and reduction of O2

� sensitized Bcl-2-overexpressing
cells to apoptotic stimuli.20 More recently, we reported a novel,
noncanonical role of Bcl-2 in amplifying mitochondrial
respiration and COX activity in tumor cells, which is linked to
the slight pro-oxidant activity of Bcl-2.19,20,24,25 Intriguingly,
Bcl-2 has also been shown to maintain the slight pro-oxidant
state during periods of stress through metabolic adaptations
by regulating COX activity and mitochondrial respiration,
suggesting a novel anti-apoptotic role of Bcl-2 in conferring
resistance to cancer cells.25 In this study, we tested the
hypothesis that Bcl-2 regulation of COX activity was mediated
by COX Va and Vb. Indeed, we report an increase in COX Va
and Vb localization in the mitochondria of Bcl-2-overexpres-
sing CEM cells during normal conditions and alterations in the
composition of these subunits within the mitochondria during
bouts of oxidative stress.

Results

Bcl-2 increases O2
� production through increased

mitochondrial respiration in cancer cells. Similar to our
earlier reports, we detected consistently higher levels of
intracellular O2

� in Bcl-2-overexpressing CEM cells (1.27±

0.08-fold) compared with CEM/Neo cells (Figure 1a).
Similarly, using a fluorescent probe for mitochondrial O2

�

(MitoSOX), higher levels of O2
� were detected in the

mitochondria of CEM/Bcl-2 cells compared with CEM/Neo
cells, which was corroborated by the lucigenin-based assay
performed on isolated mitochondria from both cell lines
(Bcl-24 Neo by 1.71±0.01-fold) (Figure 1b, c). In agreement
with our recent findings, CEM/Bcl-2 cells showed a higher
COX activity than did CEM/Neo cells by 2.49±1.04-fold,
suggesting that mitochondrial respiration could be involved
in the pro-oxidant state of Bcl-2-overexpressing cells
(Figure 1d). The relationship between mitochondrial O2

� pro-
duction and mitochondrial respiration has also been shown in
HeLa cells from our previous study25 (Supplementary Figure
S1a, b). To ascertain that our observation was not exclusive to
CEM cells, we tested our hypothesis in three other cancer cell
lines, namely HK-1 and C666-1 (nasopharyngeal car-
cinoma) and HCT116 colorectal carcinoma. It is noteworthy
that the levels of Bcl-2 expressed in the respective cell lines
corresponded with levels of mitochondrial O2

� (HK-1,
227.5±10.6 relative light units (RLUs)/s per mg protein;
C666-1, 17.5±3.54 RLU/s per mg protein; HCT116, 115±

49.5 RLU/s per mg protein) and COX activity (HK-1, 1; C666-1,
0.20±0.16; HCT116, 0.24±0.04) (Figure 1e–g). There was
no significant difference in citrate synthase activity in all three

cell lines (Supplementary Figure S4b). These data provide
strong evidence that the effect by Bcl-2 over-
expression on mitochondrial respiration and COX activity
was not a function of enforced expression, but indeed a true
reflection of the effect of Bcl-2 on mitochondrial physiology.

Bcl-2 interacts with the nuclear-encoded subunit Va of
COX. Having established the fact that Bcl-2 expression
resulted in increased COX activity and mitochondrial
respiration, we investigated the possibility of a physical
association between Bcl-2 and COX. Using DaliLite Pairwise
comparison software (www.ebi.ac.uk/DaliLite/), human Bcl-2
was compared against all subunits of bovine COX enzyme
on the basis of structures available from PDB. Of the 13 COX
subunits, only COX Va produced a significant z-score,
suggesting a structural homology between the two proteins
(Figure 2a). Despite considerable primary structural
differences between bovine and human COX Va, further
analysis using BLAST revealed that the region of COX Va
bearing a structural homology with Bcl-2 was conserved in
both species. Using this information, coimmunoprecipitation
studies were performed. A protein–protein interaction was
identified between Bcl-2 and COX Va but not with COX Vb
(Figure 2b, c, Supplementary Figure S6b). Interaction
between COX Va and Bcl-2 seems to be fairly specific, as
COX Va did not interact with Bcl-xL, Bax or Bak, members of
the Bcl-2 family of proteins (Figure 2d). Using an
immunocapture kit (MitoSciences, Eugene, OR, USA) to
isolate intact COX, interaction between Bcl-2 and the
respiratory enzyme was conclusively demonstrated
(Figure 2e). Capitalizing on the distinctly different
endogenous Bcl-2 expression in HK-1 and C666-1 cells,
coimmunoprecipitation experiments yielded similar results to
those from CEM cell lines, suggesting the physical
association between Bcl-2 and COX Va but not COX Vb
(Figure 2f).

A high Bcl-2 expression leads to an enhanced
localization of COX Va to the mitochondria without
affecting its expression. To delineate the functional
relevance of Bcl-2 interaction with COX Va, isolation of
intact mitochondria and subfractionation into its inner mito-
chondrial fraction were carried out using 20 mg/ml proteinase
K to remove the outer mitochondrial membrane. Localization
of COX Va in the whole mitochondria and inner mitochondrial
fractions was enhanced in CEM/Bcl-2 cells when compared
with CEM/Neo cells (Figure 3a, Supplementary Figure S6a).
Fractionation of CEM cells into respective subcellular com-
ponents revealed an increased localization of COX Va in the
mitochondria over the nuclear fraction in CEM/Bcl-2 cells
(Figure 3a). The reverse was observed in CEM/Neo cells
(Figure 3a). Differences in the localization of COX
Va observed by western blot analysis were correspondingly
quantified by densitometry analysis (Figure 3a). Seren-
dipitously, overexpression of Bcl-2 also resulted in an
improved localization of COX Vb into the inner
mitochondria of these cells (Figure 3a). An increased
localization of COX Vb into the inner mitochondria may
have an unprecedented role in regulating COX activity, thus
contributing to a pro-oxidant state in CEM/Bcl-2 cells during
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normal conditions. More importantly, Bcl-2 overexpression-
mediated COX activity was not a function of changing COX
Va and Vb expression but that of improved targeting of
nuclear-encoded mitochondrial proteins (Figure 3a, Supple-
mentary Figure S6a).
To verify ourmitochondrial isolation technique, we repeated

the experiment this time using an established protocol for the
isolation of mitochondria.26 Again, COX Va was more
prominently localized to the mitochondria of Bcl-2-over-
expressing CEM cells (Supplementary Figure S2a). Further-
more, to ensure that our mitochondrial fractions were free
from cytosolic contamination, we loaded increasing amounts
of mitochondrial proteins and did not detect a correspon-
ding increase in CuZn SOD, a faithful cytosolic protein
marker, compared with COX Va and prohibitin (Supplemen-
tary Figure S2b).
Transient overexpression and knockdown of Bcl-2 by

siRNA were performed to investigate whether the phenom-

enon observed in CEM/Neo and CEM/Bcl-2 cells could be
reversed. Indeed, the overexpression of Bcl-2 in CEM cells
increased the localization of COX Va from the nucleus to the
mitochondria and the silencing of Bcl-2 in CEM/Bcl-2 cells
reversed the effect (Figure 3b). Repeating earlier experiments
using HK-1 and C666-1 cells with inherently contrasting levels
of Bcl-2 expression corroborated our previous findings with
CEM cells (Figure 3c). Similarly, Bcl-2 silencing with siRNA
reverted the observations in HK-1 cells to that akin to C666-1
cells (Figure 3d). Further reinforcing the role of Bcl-2 in
promoting the localization of COX Va to the mitochondria in
transformed cells, lymphoma samples from three different
patients reaffirmed this aspect of Bcl-2 (Figure 3e).
In addition, immunofluorescence confocal microscopy

showed the colocalization of COX Va and Bcl-2 (Figure 3f).
Furthermore, an overexpression of Bcl-2 correlated with the
intracellular localization of COX Va in a concentrated manner
as opposed to the dispersed localization of COX Va in
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Figure 1 CEM cells overexpressing Bcl-2 have higher levels of O2
� and COX activity. (a) Using lucigenin-based chemiluminescence assay, intracellular O2

� production was
quantified in CEM/Neo and CEM/Bcl-2 cells. Overexpression of Bcl-2 is evident from western blot analysis. (b) Using MitoSOX Red probe, mitochondrial O2

� was determined
by flow cytometry. (c) Mitochondrial O2

� from CEM/Neo and CEM/Bcl-2 cells was similarly measured as in panel a. (d) COX activity in both cells lines was determined
spectrophotometrically using reduced cytochrome c. (e) Expression of mitochondrial-localized Bcl-2 was determined in HK-1, C666-1 and HCT116116 cell lines. VDAC was
probed as a mitochondrial control marker. (f, g) Corresponding levels of mitochondrial O2

� and COX activity were assayed in HK-1, C666-1 and HCT116 cell lines. The error
bars in panels a, c, d, f and g represent the mean±S.D. (n¼ 3)
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nontransfected cells (Figure 3f). Confocal microscopy ima-
ging provided evidence indicating significantly higher COX Va
localization to the mitochondria of CEM/Bcl-2 cells compared
with CEM/Neo cells (Figure3g).
Taken together, these results reiterate the functional

relevance of Bcl-2 interaction with COX Va in terms of
promoting COX Va incorporation into the mitochondria. It is
plausible that overexpression of Bcl-2 might increase COX
activity by improving COX Va distribution to mitochondria
without affecting its expression.

Bcl-2 modulates mitochondrial respiration during
stress states by stabilizing COX Va and decreasing
COX Vb in the mitochondria. To further our understan-
ding of the regulatory role of Bcl-2 in mitochondrial
respiration and COX activity for the maintenance of redox
status in the face of oxidative insults, we subjected CEM/Neo
and Bcl-2 cells to physiological stress states aimed at the
early induction of oxidative insult. Induction of mitochondrial
oxidative stress by 5mg/ml antimycin for 1 h did not alter
the global expression of COX Va and Vb (Figure 4a).

Interestingly, western blot analysis of isolated inner mito-
chondria from CEM/Bcl-2 cells treated similarly indicated
a slight upregulation of COX Va and a downregulation
of COX Vb (Figure 4b). The reverse was observed in CEM/
Neo cells (Figure 4b). A combined treatment for 1 h with
20 ng/ml leptomycin B, a nuclear export inhibitor, did not
affect the respective observations, but exacerbated the
antimycin-treated conditions, suggesting that the nuclear
export machinery may not be responsible for the alterations
in the targeting of COX subunits to the mitochondria
on oxidative stress in CEM cells. Next, CEM/Neo and Bcl-2
cells were subjected to serum deprivation in a dose-depen-
dent manner for 24 h. From 5 to 0.5% serum, isolated inner
mitochondria from CEM/Bcl-2 cells showed a sustained
presence of COX Va and a gradual removal of COX Vb,
whereas CEM/Neo samples stabilized COX Vb and
degraded COX Va (Figure 4c). The expression level of
these proteins in both cell lines remained comparable in
the nuclear fractions, although 0.5% serum seemingly
increased the COX Vb expression in CEM/Neo cells
(Figure 4c).
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sample. (e) Association of Bcl-2 with the COX enzyme was confirmed by the COX immunocapture kit from MitoSciences. Isolation of intact COX was performed as
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CEM/Neo and Bcl-2 cells were subjected to various
oxidative stress-inducing conditions that included glucose
withdrawal and hypoxia. All three conditions maintained over
3 h resulted in the stabilization of COX Va and in the
downregulation of COX Vb in the isolated inner mitochondria
of CEM/Bcl-2 cells and vice versa in CEM/Neo samples,
although to a varying extent (Figure 4d).

Mitochondrial oxidative stress stimulates Bcl-2-
overexpressing tumor cells to downregulate COX

activity, maintaining mitochondrial redox status,
transmembrane potential and ATP levels. Indeed,
induction of hypoxia for 10min, as well as glucose
deprivation or serum deprivation for 30min, was sufficient
to induce early mitochondrial oxidative burst in the form of O2

�

in both CEM cell lines (Neo: B1.8- to 2.6-fold, Bcl-2: B1.7-
to 2.0-fold) (Figure 5a, Supplementary Figure S3a). In terms
of functionality, a subsequent maintenance of the respective
stress conditions over 3 h resulted in a further increase in
mitochondrial O2

� in CEM/Neo cells by B1.9- to 4.5-fold,
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whereas the levels of the species were stabilized in their
CEM/Bcl-2 counterparts, which could be a function of
the downregulation in COX activity (450%) and vice versa
in CEM/Neo cells, suggesting that fluctuations in COX Va
and Vb distribution within the mitochondria might have a
role in defining the level of COX activity (Figure 5b, c,
Supplementary Figure S3b, c). In addition, hypoxia, serum
withdrawal and glucose deprivation did not alter the
transmembrane potential and mitochondrial ATP production
in CEM/Bcl-2 cells (Figure 5d, e). In contrast, all three
conditions resulted in a depolarization of the transmembrane
potential and in slight increases in mitochondrial ATP
production in CEM/Neo cells (Figure 5d, e). However,
untreated and treated CEM/Bcl-2 cells consistently
produced more mitochondrial ATP than did CEM/Neo
under all conditions (Figure 5e). The basal mitochondrial
transmembrane potential was also slightly higher in
CEM/Bcl-2 cells than in CEM/Neo cells (Figure 5d).
Moreover, the effect on COX exerted by these physio-
logical stress conditions did not involve complex I, II, III and
citrate synthase (Supplementary Figure S4a, b).

Bcl-2 interaction with COX Va is predominantly
mediated by the BH2 domain and C-terminal region of

Bcl-2. Finally, we sought to address the interacting domains
of Bcl-2 with COX Va. On the basis of DaliLite Pairwise
comparison software and using site-directed mutagenesis,
we generated a BH4 domain mutant (R26K), a C-terminal
region mutant (A234G) and a BH2 domain mutant harboring
a single mutation at the BH2 domain and multiple
mutations at its flanking upstream and downstream regions
(Figure 6a). The protein–protein interaction between Bcl-2
and COX Va was significantly reduced in CEM/Neo cells
overexpressing the BH2 domain mutant (Figure 6b).
Similarly, the C-terminal region mutant showed a slightly
reduced association with COX Va (Figure 6b). In contrast,
mutation at the BH4 domain failed to disrupt Bcl-2 binding to
COX Va on the basis of coimmunoprecipitation studies
(Figure 6b). A reduced interaction between C-terminal and
BH2 mutants with COX Va resulted in a corresponding
decrease in the mitochondrial localization of COX Va and
COX activity to the basal levels of CEM/Neo cells, which, in
turn, exerted a likely consequential effect on the by-
production of O2

� through decreased mitochondrial
respiration, affecting the overall redox status in these cells
(Figure 6b–d). In contrast, the overexpression of Bcl-2
mutated at the BH4 domain in CEM/Neo cells restored
COX Va mitochondrial localization, COX activity and the
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corresponding O2
� levels to that of CEM/Bcl-2 cells, sugges-

ting the noninvolvement of the BH4 domain in this unique role
of Bcl-2 in regulating mitochondrial respiration through COX
activity (Figure 6b–d). There was no considerable difference
in citrate synthase activity to confound our COX activity
measurements (Supplementary Figure S4b).

Discussion

In this study, we showed that Bcl-2-mediated increase in COX
activity is due to the enhanced presence of COX Va and Vb in
the mitochondria, indicative of a more complete and stable
COX enzyme. Our results showed that an increase in mito-
chondrial Bcl-2 as a result of an intrinsic high expression or

overexpression directly promotes the translocation of nuclear-
encoded COX Va to the mitochondria through a physical
interaction, without affecting its expression. The increased
presence of mitochondrial COX Va is not due to an increase
in the formation of the initial COX intermediate, as the level
of mitochondrial-encoded COX I has been shown to be
unaffected in Bcl-2-overexpressing tumor cells previously.25

Indeed, using COX I as a marker, one-dimensional BN-PAGE
revealed more partially assembled COX subcomplexes in
CEM/Neo compared with CEM/Bcl-2 cells, further confirming
the lower amounts of mitochondrial COX Va in cells with a
lower Bcl-2 expression (Supplementary Figure S5). Further-
more, taking into consideration the fact that both Bcl-2 and
COX Va are nuclear-encoded, mitochondria-targeted
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proteins, we propose Bcl-2 as a likely chaperone to COX Va,
facilitating its targeting to the mitochondria, resulting in a more
inclusive COX, capable of greater enzymatic activity. On the
other hand, an increased COX Vb presence in the inner
mitochondrial membrane, despite no physical association
with Bcl-2, could be a collateral effect of Bcl-2 insertion at the
outer mitochondrial membrane and a subsequent alteration of
membrane dynamics, allowing more COX Vb to traverse
across membranes. Furthermore, the yeast analog of COX
Vb, COX IV, has been shown to be post-transcriptionally
regulated by the cardiolipin content of the mitochondria.27 The
likelihood of Bcl-2 affecting COX Vb localization to the outer
mitochondrial membrane is ruled out, as total COX Vb from
the intact mitochondria fraction is the same in CEM/Neo and
Bcl-2 cells, suggesting that Bcl-2-mediated COX Vb translo-
cation across mitochondrial membranes may be linked to the
enhanced localization of COX Va. One possible explanation
would be that COX assembly is a multistep process and COX
Va is upstream of COX Vb in the assembly hierarchy;
increased COX Va-assembled intermediates may promote
the downstream incorporation of COX Vb, which has been
harboring at the outer mitochondrial membrane, waiting for
translocation into the inner mitochondrial membrane to form
COX. Alternatively, Bcl-2 and the yeast homolog COX IV
(COXVb) have also been shown to interact with mitochondrial
import protein Tom20 in Saccharomyces cerevisiae, an
implication that Bcl-2 may similarly promote the import of

COX Vb across mitochondrial membranes through Tom20 in
the mammalian system.28,29

Increased COX Va and Vb in the inner mitochondrial
compartment of high Bcl-2-expressing tumor cells reflects the
greater capacity of these cells to carry out oxidative
phosphorylation and mitochondrial respiration, encouraging
ATP production. In parallel, by-production of O2

� is augmen-
ted, resulting in the pro-oxidant state reported in tumor cells
with a high Bcl-2 expression20,25 (Figure 7a). Our study
suggests that despite tumor cells preferentially utilizing
glycolysis instead of oxidative phosphorylation as the primary
source of energy production as postulated by Warburg, anti-
apoptotic proteins such as Bcl-2 may exert dual functions in its
protective role: the first is the canonical inhibition of pro-
apoptotic proteins and the safeguard of mitochondrial
membrane integrity to prevent the execution of apoptosis;
the second is the nonclassical optimization of mitochondrial
respiration and the prevention of the excessive compromise of
mitochondrial respiration in tumor cells to boost ATP produc-
tion and a level of ROS most suited for pro-survival signaling.
Indeed, this novel function of Bcl-2 seems to be dependent on
its BH2 domain, the mutation of which affects its binding to
Bax without affecting its homodimerization, accounting for the
death-repressive activity of Bcl-2.30 This may explain the
dominant-negative effect of BH2-mutated Bcl-2 on COX
activity over nontransfected control. The overexpression of
mutant BH2-Bcl-2, in addition to its ability to inhibit the
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interaction between COX Va and Bcl-2, may also homo-
dimerize (with the resident Bcl-2) and neutralize any COX Va-
binding ability of basal Bcl-2. In the absence of Bcl-2, tumor
cells rely predominantly on glycolysis for energy and inhibit
mitochondrial functions to a level below that of normal cells to
prevent the onset of the death programme. Thus, it is
conceivable that cancer cells may seek to preserve their
mitochondrial functions through this novel role of anti-
apoptotic Bcl-2 to increase the chances of survival and
invasion.
The ability of Bcl-2 to fine-tune COX activity by adjusting the

distribution of COX Va and Vb in the mitochondria throughout
different stress conditions reflects the importance of the
composition of subunits in COX during metabolic reprogram-
ming for cancer cells (Figure 7a). Many studies have
established the expression of yeast homologs COX IV and
VI (COX Vb and Va) as being aerobically regulated, whereby
the expression is positively correlated to the oxygen con-
tent.5–8 Furthermore, yeast COX VI is repressed by glu-
cose.31,32 In this respect, our results indicate that regulation of
COX subunits during metabolic adaptation may be controlled
by oncoproteins such as Bcl-2. During hypoxia, overexpres-
sion of Bcl-2 stabilized COX Va and reduced the COX Vb

mitochondrial presence, whereas the reverse was detected in
the absence of Bcl-2 overexpression. These cells responded
similarly under a glucose-deprived condition. In light of this,
we demonstrated for the first time that adaptations in tumor
metabolism are intrinsically different from physiological
adaptations in the yeast model in response to oxygen and
glucose tensions, further distinguished by the ability of Bcl-2 to
alter the responses of COX Va to oxygen and glucose.
In addition, our results suggest that during oxidative stress,

COX Vb may replace COX Va in increasing COX activity,
whereas COX Va may have a regulatory role in keeping COX
activity in check. This is evident from our observation that on
oxidative stress, lack of COX Va in the presence of COX Vb
resulted in a significant upregulation of COX activity in CEM/
Neo cells, whereas the stable presence of COX Va in the
absence of COX Vb resulted in the downregulation of COX
activity in CEM/Bcl-2 cells. This is in addition to the role that
COX Va has during normal conditions in which increased
mitochondrial COX Va leads to higher COX activity. Collec-
tively, these results suggest that COX subunits may exhibit
interchangeable roles to determine COX activity, depending
on the microenvironment of tumor cells; and Bcl-2 may be
central to this regulation (Figure 7a, b). Our study highlights
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the importance of the regulation behind the incorporation of
these subunits to form COX and the resultant impact on COX
activity during basal tumor metabolism and adjustments to
oxidative stress.
Downregulation of mitochondrial respiration and mainte-

nance of mitochondrial O2
� production in the face of potentially

deleterious conditions reflect the plasticity of tumor metabo-
lism, fine-tuned by Bcl-2 with respect to COX. Cancer cells are
often saddled with various stress conditions, and this may
reflect a novel function of Bcl-2 in aiding these cells to
overcome the treacherous barriers faced during metastasis,
while maintaining the redox milieu and energy production
necessary for survival. A more important implication in terms
of cancer therapeutics could suggest that certain tumors with
an intrinsically high Bcl-2 expression may render them more
refractory to ROS-based treatments compared with other
tumors with a low basal Bcl-2 expression, corresponding to
better prognosis. In this study, we provide an additional
mechanism to Bcl-2-induced chemoresistance through the
mitochondrial respiratory pathway, as well as reiterate the
importance of Bcl-2-targeted therapies and the significance of
COX Va and Vb as cancer markers.

Materials and Methods
Cell culture. CEM human leukemia cells stably transfected with the control
vector (CEM/Neo) or Bcl-2 (CEM/Bcl-2) were maintained in RPMI 1640
supplemented with 2 mM L-glutamine, 1% streptomycin–penicillin (v/v) and 5%
FBS (v/v). G418 disulfate salt solution was added as a selective antibiotic for the
maintenance of stable transfectants. HK-1 and C666-1 cell lines were derived from
nasopharyngeal carcinoma, which was maintained in RPMI 1640 supplemented
with the constituent mentioned previously and 10% FBS (v/v), without G418
antibiotic. HCT116 is a colon carcinoma cell line maintained in McCoy’s 5A medium
similarly supplemented as that for HK-1 and C666-1. All cell lines were cultured in a
humidified incubator at 371C and 5% CO2.

Isolation of nuclear fraction. Cells were harvested and washed with ice-
cold 1� PBS and spun down by centrifugation at 1500� g for 3 min at 41C.
The resultant pellets were resuspended in 400ml Buffer A (10 mM HEPES, 10 mM
KCL, 0.1 mM EDTA and 0.1 mM EGTA at pH 7.9) and were left to swell for 15 min
on ice. Thereafter, 25ml of 10% NP-40 was added before vortexing for 10 s. The
insoluble nuclear fraction was collected by centrifugation at 14 000 r.p.m. for 30 s at
41C. The nuclear fraction pellet was further resuspended in 50 ml Buffer C (20 mM
HEPES, 0.4 mM NaCl, 1 mM EDTA and 1 mM EGTA at pH 7.9) and rocked
vigorously for 15 min at 41C. The resultant supernatant containing the nuclear
proteins is obtained by centrifugation at 14000 r.p.m. for 5 min at 41C.

Measurement of mitochondrial ATP. To inhibit glycolytic ATP
production, cells were precultured in medium supplemented with 2-deoxy-glucose
and 2 mM pyruvate in place of normal glucose on an equimolar basis, before being
subjected to various stress conditions. The level of ATP was quantified using the
ATP bioluminescent somatic cell assay kit (Sigma-Aldrich, St. Louis, MO, USA) and
was carried out according to instructions from the manufacturer.

Isolation of intact mitochondria. Cells were harvested and washed once
with ice-cold 1� PBS and spun down by centrifugation at 1200 r.p.m. for 5 min at
41C. The pellet was resuspended in 10 volumes of extraction buffer (200 mM
mannitol, 68 mM sucrose, 50 mM Pipes-KOH pH 7.4, 50 mM KCL, 5 mM EGTA,
2 mM MgCl2, 1 mM DTT) containing various protease inhibitors (1 mM PMSF,
10mg/ml aprotinin, 20mg/ml pepstatin A and 10mg/ml leupeptin) and incubated on
ice for 20 min. After incubation, the cells were homogenized with a dounce
homogenizer and passaged for 30 strokes before being centrifuged at 2000 g for
3 min at 41C. Thereafter, the supernatant was centrifuged again at 13000 g for
10 min at 41C as described elsewhere.33 The pellet contains the intact mitochondria
fraction. To obtain mitochondria devoid of the outer mitochondrial membrane,
purified mitochondria were treated with 20 mg/ml proteinase K for 25 min on ice.
Phenylmethylsulfonyl fluoride was then added to a final concentration of 2 mM and
the samples were further incubated for another 10 min on ice as described
elsewhere.33,34 The samples were subjected to centrifugation as described before
to obtain isolated mitochondria. A second protocol for the isolation of mitochondria
was also performed as described previously to validate our results obtained from the
first technique.26

Complex I, II, II-III and citrate synthase activity
measurements. Complex I activity was determined using the Complex I
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Enzyme Activity Microplate Assay Kit (MitoSciences) on the basis of recommended
protocol and settings described by the manufacturer. Complex II and II-III activity
was quantified on the basis of established protocols described in previous
studies.35,36 Citrate synthase activity was measured using the citrate synthase
assay kit (Sigma-Aldrich) and was carried out according to instructions from the
vendor.

COX isolation and activity. Cells were dissolved in 2 ml of COX buffer
(250 mM sucrose, 2 mM HEPES and 0.1 mM EGTA at pH 7.4) before being
centrifuged at 330� g for 10 min at 41C. The cells were then resuspended with 1 ml
of COX buffer and incubated for 10 min at 41C before being subjected to
homogenization for 10 passages; thereafter, the cell lysate was spun at 600� g for
10 min at 41C. The supernatant was then centrifuged at 14 400� g for 10 min at
41C. The resultant pellet is the purified mitochondria fraction, containing COX. The
pellet was dissolved in 100ml of prewarmed potassium phosphate buffer at pH 7.2
and was incubated at RT for 3 min. COX activity was measured by monitoring the
oxidation of reduced cytochrome c by spectrophotometric analysis at 550 nm for
2 min at 371C using a BioSpec-1601 spectrophotometer (Shimadzu, Kyoto, Japan).
COX activity was determined by measuring the decrease in absorbance of
ferrocytochrome c caused by its oxidation to ferricytochrome c by COX.

Transient transfection. Transient transfection of CEM/Neo cells was
performed using SuperFect Transfection Reagent from QIAGEN GmbH (Hilden,
Germany). Briefly, 3 mg of pIRES (empty vector), pcDNA3-Bcl-2 or mutant Bcl-2
plasmids was added to 20ml of the SuperFect Transfection Reagent and trans-
fection was carried out as recommended by the vendor. Bcl-2 expression was
detected from cell lysates at various posttransfection time points by western blotting
using a primary mouse monoclonal anti-Bcl-2 antibody at 1 : 1000 dilution (Santa
Cruz Biotechnology, Santa Cruz, CA, USA) and a secondary HRP-conjugated goat
anti-mouse IgG at 1 : 5000 dilution (Pierce, Illinois, IL, USA).

RNA interference. CEM/Bcl-2 cells were transfected 48 h and 72 h before
experiments with 0.2mM Bcl-2-specific siRNA (QIAGEN GmbH, Germany) or
scrambled siRNA duplexes using Oligofectamine reagent according to the
manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA). The expression level
of Bcl-2 was confirmed by western blotting using antibodies as described previously
for the detection of Bcl-2.

O2
� measurement by lucigenin. A lucigenin-based chemiluminescence

assay was used for measuring intracellular O2
� as described previously.19

Chemiluminescence was monitored using a Berthold Sirius Luminometer (Berthold
detection systems GmbH, Bleichstrabe, Pforzheim, Germany). The assay was also
used to detect the O2

� level in isolated mitochondria in some instances. Data are
described as RLUs/s per mg of protein.

O2
� measurement by MitoSOX Red. The O2

� production from
mitochondria was also specifically monitored by MitoSOX Red (Invitrogen), which
is a fluorescent probe targeted to the mitochondria and highly susceptible to
oxidation by O2

�. Briefly, 1� 106 cells were incubated with 10 mM MitoSOX Red
reagent for 15 min at 371C. The cells were washed twice with 1� PBS and
immediately analyzed in Epic Profile flow cytometer (Beckman Coulter Inc.,
Fullerton, CA, USA) with excitation set at 510 nm. Data were analyzed for 10 000
events using WinMDI software (http://facs.scripps.edu/software.html).

Mitochondrial transmembrane potential determination. Potential-
sensitive probe 3,30dihexyloxacarbocyanine iodide (DiOC6) was used to measure
mitochondrial transmembrane potential as described previously.37 Briefly, 1� 106

cells were incubated with 40 nM DiOC6 for 15 min at 371C. At least 10 000 events
were analyzed by flow cytometry with excitation set at 488 nm.

Coimmunofluorescence using confocal microscopy. The
MitoTracker probe was added at 1 : 2000 dilution to live cells for the identification
of mitochondria (Invitrogen). The cells were incubated for 20 min at RT and were
washed thrice with PBS. The cells were fixed with 4% (v/v) paraformaldehyde for
20 min at RT and washed thrice with PBS before being permeabilized with 0.2%
(v/v) Triton X-100 for 10 min at RT. The fixed and permeabilized cells were then
washed thrice with PBS before being blocked with 1% (w/v) BSA for 30 min at RT.
The cells were again washed thrice to remove excess blocking buffer. Primary anti-
bodies in blocking buffer (1% (w/v) BSA in 1� PBS) were added to both CEM/Neo

and CEM/Bcl-2 cells at 1 : 50–1 : 200 dilution to a final concentration of 1–5mg/ml.
The cells were incubated for 1 h at RT. Thereafter, the cells were washed thrice with
PBS to remove excess antibodies before being added to secondary antibodies
conjugated with either Rhodamine Red (Molecular Probes, Invitrogen, Carlsbad,
CA, USA) or FITC (Dako, Glostrup, Denmark) at 1 : 1000 or 1 : 50 dilution, respectively.
The cells were incubated for 1 h at RT and washed thrice with PBS to remove excess
antibodies. Each sample was then mounted onto a microscope glass slide
(Livingstone, Rosbery, New South Wales, Australia) with 10ml of FluorSave
Reagent (Calbiochem, Merck KGaA, Darmstadt, Germany). The fluorochromes
were subjected to excitation wavelengths of 488 nm at 1 mW HeNe Green and 543 nm
at 40 mW argon for FITC and Rhodamine Red, respectively, using an Olympus IX81
FluoView 500 confocal microscope (Hamburg, Germany).

Coimmunoprecipitation and western blotting. Cells were lysed with
2 ml co-IP buffer (1% (v/v) NP40, 50 mM Tris, 150 mM NaCl at pH 7.4) and
incubated on ice for 30 min with occasional mixing. The lysate was then centrifuged
at 10 000� g for 10 min at 41C. Protein determination assay was carried out. An
equal amount of protein was used for each sample, which was then added with BSA
to reduce nonspecific binding, and subsequently added with 2 mg antibody targeting
the bait. The samples were incubated overnight at 41C with rocking. Thereafter,
30ml of Protein A-Agarose beads was added (Santa Cruz Biotechnology) and
incubated for 2 h at 41C. The samples were centrifuged at 10 000� g for 75 s at 41C
and the beads were washed with 1 ml co-IP buffer and centrifuged as described
previously. Washing was repeated thrice. The pull-down fractions were then added
with 40ml of loading buffer. Proteins were analyzed and resolved on a 12% (v/v)
acrylamide resolving gel, subjected to SDS-PAGE. The resolved proteins were then
transferred onto a polyvinyl difluoride membrane by the semi-dry transfer method
using the Hoefer TE 77 semi-dry transfer unit (Amersham Biosciences, Piscataway,
NJ, USA). The membrane was subsequently blocked with 5% (w/v) fat-free milk in
Tris-buffered saline containing 0.05% (v/v) Tween 20 (TBST) for 1 h. After three
washes with TBST to remove excess milk, the membrane was probed for the protein
of interest with the relevant primary antibody in 5% (w/v) BSA in TBST at 41C for
1–2 h. The membrane was subsequently subjected to three washes with TBST to
remove unbound primary antibody and probed again with the appropriate HRP-
conjugated secondary antibody in TBST containing 1% (w/v) fat-free milk for 1 h at
RT. After three washes with TBST to remove any excess unbound secondary
antibody, the desired proteins were detected with a Kodak Biomax MR X-ray film
(Sigma-Aldrich) by enhanced chemiluminescence using the SuperSignal
Chemiluminescent Substrate (Pierce). The primary and secondary antibodies
used for detection by western blot analysis were applied at 1 : 1000 and 1 : 5000
dilutions, respectively.

Blue Native PAGE. For immunoblot analysis of one-dimensional native gels,
mitochondrial fractions were solubilized with n-dodecyl-b-D-maltoside or digitonin
found in the NativePAGE Sample Prep Kit (Invitrogen) and carried out as described
by the vendor and subsequently resolved on blue native 4–16% Bis–Tris
polyacrylamide gels (Invitrogen). Electroblotting and immunodetection were
routinely performed as described earlier.

Bioinformatics and mutagenesis. Structural homology analysis was
carried out using the DaliLite server available on the web. Mutagenesis of bcl-2 was
performed using the Quikchange Site-Directed Mutagenesis Kit (Stratagene, La
Jolla, CA, USA). Point mutants and the domain mutant of Bcl-2 were generated as
recommended by the vendor. Briefly, forward and reverse primers harboring the
sequence for the respective point mutation were generated. Using the nonstrand-
displacing action of PfuTurbo DNA polymerase, these mutagenic primers were then
used in a PCR reaction, together with the plasmid containing the target gene and the
intended site of mutation. The methylated, nonmutated parental DNA template was
subsequently digested with Dpn I, leaving behind the daughter plasmid incorporated
with the desired mutation of the target gene. Mutations were confirmed by
sequencing, after transformation, selection and restriction digest.
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