
Redox survival signalling in retina-derived 661W cells
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Reactive oxygen species have been implicated in processes involving cellular damage and subsequent cell death, especially in
organs such as the eye that are constantly exposed to excitatory signals. However, recent studies have shown that oxidant
species can also act as intracellular signalling molecules promoting cell survival, but little is known about this mechanism in the
retina. The present study demonstrates for the first time that hydrogen peroxide (H2O2) is generated rapidly and acts as a pro-
survival signal in response to a variety of apoptotic stimuli in retina-derived 661W cells and in the retinal ganglion cell line RGC-5.
Focussing on 661Ws and serum deprivation, we systematically investigated pro-survival and pro-death pathways and
discovered that the rapid and transient burst of H2O2 activates the AKT survival pathway. Activation of the apoptotic machinery
takes place following the decline of H2O2 to basal levels. To substantiate this proposed pro-survival role of H2O2, we inhibited the
oxidant burst, which exacerbated cell death. Conversely, maintenance of the oxidant signal using exogenous H2O2 enhanced cell
survival. Overall, the results presented in this study provide evidence for a novel role of H2O2 in mediating survival of retinal cells
in response to apoptotic stimuli.
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Reactive oxygen species (ROS) comprise a variety of
molecular entities that are found in normal cells as a result
of oxygen consumption. Among ROS, hydrogen peroxide
(H2O2) is a rather stable molecule that is continuously
generated in the cell during respiration due to the activity of
enzymes such as superoxide dismutase or the NADPH
oxidase system. When an imbalance between cellular
production and elimination of free radical species occurs,
cells undergo oxidative stress.

The traditional view of oxidative stress is that it causes
cellular damage and subsequent cell death. These observa-
tions have led to the association of ROS with pathological
conditions and disease, especially in organs such as the brain
and eye, which are constantly exposed to excitatory signals
and have high oxygen consumption rates. Indeed, high
oxidant levels have been detected in numerous neurological
and retinal disorders.1,2 For example, in the nervous system,
dopamine-derived H2O2 is one of the agents responsible for
the damage observed in the brain of Parkinson’s disease
patients,3 and in Alzheimer’s disease, H2O2 mediates amyloid
b protein toxicity.4 In the eye, it is well established that H2O2 is
the major oxidant contributing to cataract formation5 and is
capable of altering several structures of the eye in disorders,
such as glaucoma1 and age-related macular degeneration.6

Contrary to the traditional concept of oxygen species as a
cell death-triggering force, recent work has shown that ROS

can also act as intracellular signalling molecules.7,8 For
example, oxidant generation is essential to maintain homoeo-
stasis in the cell9 and is involved in regulating gene expression
and modulating enzyme activities.10 Therefore, H2O2 is not
simply a by-product of enzymatic reactions but a highly
specific signalling molecule acting both in the central and in
the peripheral nervous systems under physiological condi-
tions.11–13 However, despite the progress made in under-
standing how H2O2 acts as a signalling molecule in the cell, its
participation in redox-mediated survival signalling in retinal
culture systems has not previously been investigated.

In the present study, we demonstrate for the first time that a
transient increase in H2O2 occurs in retina-derived 661W cells
when they are subjected to the stress of serum withdrawal.
We propose that this oxidant burst, which is due at least in part
to Nox2 activity, has two principle effects: upregulation of the
AKT survival pathway and suppression of the apoptotic
machinery. We demonstrate here that activation of the AKT
survival pathway occurs via oxidation of the protein tyrosine
phosphatase PTEN, which in turn upregulates the PI-3
(phosphatidylinositol-3-OH) kinase/AKT pathway. After 1-h
serum withdrawal, H2O2 levels decline to basal levels, and we
propose that this results in deactivation of survival pathways
and activation of cell death effectors. In corroborative
experiments, we demonstrate that maintaining H2O2 levels
by addition of exogenous H2O2 increases survival of
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serum-deprived 661W cells by enhancing and prolonging
activation of the AKT survival pathway, and by delaying
activation of cell death cascades. Furthermore, we demon-
strate that H2O2 accumulation occurs in response to a variety
of apoptotic stimuli, and this effect is observed in a second cell
type, the retinal ganglion cell line RGC-5. Finally, we show that
retinal explants upregulate p-AKT when treated with a
sublethal dose of H2O2. These preliminary data suggest that
H2O2 may also mediate a survival response in primary retinal
cultures.

Results

Serum withdrawal induces a rapid and transient
increase in H2O2 levels in 661W cone photo-
receptors. To examine ROS production in response to
apoptotic stimuli, we cultured 661W cone photoreceptor cells
in the absence of trophic support. We observed a significant
increase in intracellular H2O2 levels after 5 min of serum
withdrawal, and this increase was sustained for up to 1 h
(Figure 1a). Subsequently, H2O2 levels declined towards
basal levels.

This increase in H2O2 levels was completely abrogated by
the radical scavenger CR-6 (3,4-dihydro-6-hydroxy-7-meth-
oxy-2,2-dimethyl-1(2H)-benzopyran)14,17 (Figure 1b). Furthermore,
H2O2 production was significantly reduced by the Nox inhibitor
diphenyleneiodonium (DPI), suggesting a role for the Nox
system in H2O2 generation. To further investigate the source
of H2O2, we characterized expression of Nox family members
in 661W cells. Immunoblotting analysis and semi-quantitative
PCR revealed that only Nox2 and Nox4 are expressed in
661W cells. Suppression of Nox2 using small interfering RNA
(siRNA) resulted in a significant decrease in H2O2 production
in response to serum starvation compared to control samples
(Figure 1c and d), suggesting that the oxidant burst is at least
partially derived from Nox2 activity.

As H2O2 levels are rapidly and transiently increased in
response to serum withdrawal, we hypothesized that it may
mediate survival signalling. For this reason, we next sought to
examine cell death in response to serum starvation in the
presence of CR-6 and NAC, both antioxidants that scavenge
H2O2. In Figure 1e, cell death upon serum starvation was
significantly increased in samples pretreated with CR-6 and
NAC. Furthermore, pretreatment with the Nox inhibitor,
apocynin, significantly increased cell death compared to
control samples (Figure 1e), demonstrating a role for H2O2

in cell survival. To confirm this, we quantified the number of
apoptotic cells by annexin V labelling. Pretreatment with CR-6
increased the percentage of apoptotic cells from 4±1 to
12±1% (mean±S.D.) (Figure 1f). These results demonstrate
that removal of trophic support induces a rapid and transient
increase in intracellular H2O2 levels and this H2O2 is partially
generated by Nox2.

H2O2 accumulation in serum-deprived 661W cells
promotes upregulation of the AKT pathway. Previous
studies have demonstrated that the generation of H2O2

controls the activity of phosphatases, such as PTEN,
regulating survival signalling.18,19 To examine this theory in

our system, we examined PTEN oxidation in serum-starved
661Ws. In Figure 2a, the presence of the oxidized form
of PTEN was evident 5 min after serum withdrawal, and
pretreatment with CR-6 significantly reduced levels of this
form of the protein. Since PTEN is a negative regulator of the
PI-3 kinase/AKT survival pathway,20,21 we propose that
inactivation of PTEN by oxidation would allow increased AKT
phosphorylation and subsequently, increased survival
signalling. Serum deprivation resulted in a significant
increase in p-AKT after just 5 min, and this was maintained
for 30 min (Figure 2b). Thereafter, p-AKT levels declined
towards basal levels. This result shows that AKT
phosphorylation directly correlates with H2O2 levels in the
cell. To confirm that H2O2 regulates AKT phosphorylation, we
compared AKT phosphorylation status in the presence or
absence of CR-6. As expected, pretreatment with CR-6
prevented an increase in p-AKT levels in serum-deprived
661W cells (Figure 2c).

To confirm an anti-apoptotic role for AKT, we pre-incubated
661W cells with the PI-3 kinase inhibitor LY294002 for 1 h
prior to serum withdrawal. Under these conditions, we
observed a substantial increase in cell death after 24 h as
determined by propidium iodide (PI) uptake (Figure 2d).
Inhibition of the AKT pathway increased cell death to 34±2%
(mean±S.D.). While we propose that H2O2 acts upstream to
mediate activation of the PI-3 kinase pathway, other reports
have suggested that PI-3 kinase can regulate production of
H2O2.22,23 In Figure 2e, we show that pretreatment with
LY294002 does not prevent the increase in H2O2 levels after
15-min serum withdrawal, suggesting that H2O2 generation
lies upstream of the AKT pathway. In summary, serum
starvation results in a burst of H2O2, which correlates with
oxidation of PTEN and activation of the AKT pathway.
Scavenging H2O2 with CR-6 results in decreased cell survival,
and decreased phosphorylation of AKT. We therefore
propose that H2O2 acts as a pro-survival signalling molecule,
possibly by inhibition of PTEN activity.

Detection of early apoptotic events following the decline
of the H2O2 burst. Downregulation of the AKT pathway
following the decline of H2O2 levels suggested that early
apoptotic events might be occurring at this stage.
Mitochondrial permeabilization is an early apoptotic event
and precedes the activation of cell death cascades.24 JC-1
(5,50,6,60-tetrachloro-1,10,3,30-
tetrabenzimidazolecarbocyanine iodide) was used to
examine mitochondrial membrane potential (DCm) in
serum-deprived 661W cells. Figure 3a shows that 1-h
serum starvation produces a substantial shift in the
fluorescence emission, indicating a decrease of DCm. After
4-h serum withdrawal, it was completely restored.

Disruption of mitochondrial functions leads to superoxide
overproduction in the mitochondria. In the eye, both nitric
oxide and superoxide anions are known to mediate retinal
degeneration in vivo.25 Hydroethidine (DHE) was used to
monitor superoxide anion formation. Increased superoxide
formation was not detected until 1 h after serum withdrawal
(Figure 3b), corresponding with DCm collapse. Parallel
monitoring of nitric oxide levels with DAF-FM (4-amino-5-
methylamino-20,70-difluorescein) showed the same pattern
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(Figure 3b). Elevated cytosolic Ca2þ also plays a role in
photoreceptor apoptosis.25,26 Analysis of intracellular Ca2þ

using Fluo3-AM (fluo-3-acetoxymethyl ester) showed a shift in

the fluorescence peak after 2-h treatment, indicating an
increase in the levels of free cytoplasmic Ca2þ (Figure 3c).
Overall, these results demonstrate that early apoptotic events
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Figure 1 Serum starvation induces a rapid and transient production of hydrogen peroxide in 661W cone photoreceptors. (a) Hydrogen peroxide was detected by flow
cytometry using the probe H2DCFDA in 661W cells following serum withdrawal. The dark and light lines in the histograms correspond to control cells and serum-deprived
661W cells, respectively. (b) The NADPH oxidase inhibitor DPI and the radical scavenger CR-6 prevent the increase in hydrogen peroxide concentration in serum-free 661W
cells. Cells were pre-incubated with 10 mM DPI and 50mM CR-6 for 1 h and 15 min, respectively, before serum withdrawal. Hydrogen peroxide levels were measured 15 min
after serum deprivation. Negative and positive controls (untreated and serum-deprived (SS) 661W cells) are represented with a dark and a light line, respectively. DPI- and CR-
6-treated cells are shown by a dotted line. (c) Analysis of Nox2 expression in mock and Nox2 siRNA-transfected 661W cells. Total lysates were analysed by immunoblotting
using an antibody against Nox2 and a-tubulin (loading control). (d) FACS analysis of hydrogen peroxide production in mock and Nox2 siRNA-transfected 661W cells. (e) Cells
pretreated with CR-6, NAC or apocynin (Apo) were maintained in complete media or serum-starved for 24 h. Cell death was quantified by flow cytometry using PI. Results are
mean±S.D. (standard deviation) (n¼ 3). Results are representative of three independent experiments. (f) Apoptosis was determined by annexin V versus PI staining of
661W cells cultured in serum-free medium for 24 h. Annexin Vþ /PI� population (early stages of apoptosis) is represented in the lower right quadrant, whereas annexin Vþ /
PIþ (late apoptotic or secondary necrotic cells) is shown in the upper right quadrant. All results are representative of at least three independent experiments
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are detectable following the decline in the H2O2 burst.
This strengthens our hypothesis that H2O2 acts rapidly to
promote cell survival in response to serum starvation in our
system.

Activation of apoptotic proteases following decline of
the oxidant burst. Previously, we demonstrated parallel
activation of caspases and calpains in 661W cells following
24-h serum depletion.26 Yet mitochondrial permeabilization
occurs after 1 h of serum withdrawal. Therefore, we
investigated whether caspase activation occurs at an
earlier time point than previously demonstrated. Figure 4a
shows that caspase-3 is active after 2-h serum deprivation.
Moreover, immunoblotting for the caspase-3 substrate PARP
(poly(ADP-ribose)polymerase), demonstrated that PARP
was also cleaved at this time point (Figure 4b).

Calpains are calcium-dependent proteases, which undergo
autocleavage and become active following an increase in
Ca2þ . Consistent with increased levels of free cytoplasmic
Ca2þ observed following 2-h serum deprivation (Figure 3c),
calpain cleavage was clearly evident at the same time point
(Figure 4c). Besides caspases and calpains, endolysosomal
cathepsin D also plays an important role both in in vitro and
in vivo models of retinal apoptosis.27,28 Figure 4d shows
cathepsin D processing from its 52-kDa inactive form to its
32-kDa mature isoform after 2 h of serum starvation. To
further confirm that apoptosis is occurring within hours after
initiation of serum starvation, we measured apoptosis using
fluorescein isothiocyanate (FITC)-conjugated annexin
V. Figure 4e shows that after 4-h serum deprivation, the
percentage of annexin V-positive cells increased from 2 to
8%. These data indicate that activation of apoptotic effectors
and apoptosis is evident as early as 2 h after serum withdrawal
in 661W cells.

Sublethal doses of H2O2 increase cell survival. On the
basis of time course of H2O2 burst and initiation of apoptotic
events, we propose that levels of H2O2 must first decline
before death effectors can become active. To investigate this
hypothesis, we exogenously added H2O2 to serum-deprived
661W cells and examined cell viability and PARP cleavage.
Figure 5a shows the susceptibility of 661W cells to H2O2 in
a concentration-dependent manner in the presence and
absence of serum over 24 h. Concentrations up to 200 mM
were not toxic under normal conditions, but following serum
withdrawal H2O2 began to show toxic effects at 50 mM.
However, Figure 5b shows that following 1-h serum
withdrawal, addition of 25 mM H2O2 can significantly
increase viability of serum-deprived 661W cells. Lower
concentrations of H2O2 did not provide protection, while
higher concentrations showed either no effect or increased
cell death.

We next investigated downstream effects in response to
exogenous H2O2 addition. We examined p-AKT levels and
PARP cleavage and compared those to serum-deprived
661W cells not supplemented with H2O2 (Figure 5c). Addition
of 25 mM H2O2 after 1-h serum withdrawal significantly
increased p-AKT levels. Accordingly, PARP cleavage was
not detected after 2- or 4-h serum deprivation in 661W cells
supplemented with H2O2 (Figure 5d). We then examined the
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effects of high/low concentrations of H2O2 on PARP cleavage,
and p-AKT levels (Figure 5e). Following serum withdrawal,
10 mM H2O2 did not prevent PARP cleavage while 200mM
H2O2 increased cleavage of the 116 kDa PARP band over
control levels as expected (Figure 5e). These data correlate

with results shown in Figure 5a. H2O2 also increased p-AKT
levels at both concentrations tested. However, we have
demonstrated 200mM H2O2 is toxic under serum withdrawal
conditions and this correlates with increased PARP cleavage
following 4-h serum withdrawal (Figure 5e).
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medium for 1 h. Cells were maintained in serum-free media for a further 23 h, and viable cells were quantified by crystal violet staining. Results represent the mean±S.D.
(n¼ 3), *Po0.05. (c) Following serum withdrawal for 1 h, supplemented with or without 25 mM H2O2, whole cell lysates were obtained and resolved by SDS-PAGE. Blots were
probed with phospho-AKT (Thr308) and b-actin as a loading control. (d) Following serum withdrawal for 2 and 4 h, supplemented with or without 25 mM H2O2, whole cell
lysates were obtained and resolved by SDS-PAGE. Blots were probed with PARP antibody, and a-tubulin levels were used as a loading control. Results are representative of
at least three independent experiments. (e) Western blot analysis following 4 h serum withdrawal, supplemented with or without 10 or 200mM H2O2, whole cell lysates were
obtained and resolved by SDS-PAGE. Blots were probed with PARP and phospho-AKT (308) antibody. b-actin levels were used as a loading control. Results are
representative of three independent experiments. (f) Caspase-3 activity in 661W S-100 cytosol fractions was assessed by cleavage of the colorimetric peptide substrate Ac-
DEVD-pNA (Abs 405 nm). Apoptosis was induced by addition of cytochrome c and dATP in samples that had or had not been pretreated with 25mM H2O2 or 50mM z-VAD-fmk
for 1 h. S-100 cytosol without cytochrome c addition and substrate alone were used as controls. Data represent mean±S.D. (n¼ 3)
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To confirm that H2O2 was not directly acting on caspases to
inhibit their activity, cell-free assays were performed in which
caspase activity was measured in the presence and absence
of H2O2, or the pan-caspase inhibitor z-VAD-fmk as a positive
control. In samples pretreated with 25 mM H2O2, caspase
activity was not inhibited following induction of apoptosis with
cytochrome c compared to samples pretreated with zVAD
(Figure 5f). On the basis of these data, we propose that
prolonging the transient increase in H2O2 levels following
serum starvation by exogenous addition of H2O2 enhances
cell survival by increasing p-AKT levels and preventing the
activation of cell death effectors.

Different apoptotic stimuli induce an early burst of H2O2

in 661W and RGC-5 cells. To investigate whether the H2O2

burst was a phenomenon exclusively associated with the
removal of trophic support, we exposed 661W cells to other
stress stimuli; namely the nitric oxide donor sodium
nitroprusside (SNP); the tyrosine kinase inhibitor
staurosporine (STS); the genotoxic agent etoposide (VP16)
and UV radiation. Following 15-min exposure, all stimuli
induced a substantial increase in H2O2 concentration,
suggesting that the early oxidant burst is stimulus
independent. Pretreatment with 1 mM NAC before
stimulation prevented H2O2 accumulation in all cases
(Figure 6a).

To determine whether H2O2 levels increase in response to
stress in another cell type, we examined the response of the
rat RGC-5 line to the same stimuli. As observed for 661W
cells, H2O2 levels increased rapidly after initiation of stress in
RGC-5 cells. Similarly, NAC prevented the oxidant burst in
RGC-5 cells in response to all stimuli (Figure 6b). The effect of
the H2O2 burst on cell survival was evaluated in 661W and
RGC-5 cells (Figure 6c and d) by quantifying the percentage
of apoptotic cells after stress in the presence or absence of
NAC. Inhibition of H2O2 production with NAC increased the
death rate in those cells that had been treated with an
oxidative stress inducer but not VP16 or STS. Taken together,
these results strengthen our hypothesis that the oxidant burst
mediates cell survival signalling under stress conditions.

Exogenous H2O2 increase AKT levels in mouse retinal
explant cultures. To investigate the possibility that H2O2

could promote cell survival via upregulation of the AKT
pathway in vitro/ex vivo, we employed mouse retinal explant
cultures. A previous publication demonstrated that 200 mM
H2O2 is toxic to primary cultured mouse RGCs,29 while
600mM H2O2 is required to induce apoptosis in retinal
explant cultures.30 Therefore, we decided to examine a
range of concentrations of H2O2 on retinal explants to
determine a concentration that was not toxic and that could
be used in further experiments. Figure 7a shows terminal
deoxynucleotidyl transferase-mediated biotinylated UTP nick
end labelling (TUNEL) staining of P10 mouse retinal explant
sections subjected to increasing concentrations of H2O2 for
24 h. We found 50 mM H2O2 did not increase the number of
TUNEL-positive nuclei in the outer nuclear layer (ONL)
where photoreceptors are located or the ganglion cell layer
(GCL) where RGCs are found, above untreated control levels
over 24 h. However, 150, 300 and 600mM H2O2 steadily

increased the number of TUNEL-positive nuclei in both the
ONL and the GCL in a concentration-dependent manner over
24 h. Interestingly, this study shows an increased sensitivity
of retinal explant cultures to H2O2 compared to the 661W
photoreceptor cell line and the RGC-5 line (Figure 7b and c).
Having established a concentration that was not toxic to
retinal explant cultures, we next sought to examine if adding
exogenous H2O2 could activate the AKT pathway as
previously demonstrated in 661W cells (Figure 5b). Retinal
explants were maintained in culture for 24 h before addition
of H2O2 was carried out. Addition of 50 mM H2O2 to explant
cultures resulted in a significant increase in p-AKT levels
after 1 h (Figure 7d). The increase in p-AKT levels detected in
retinal explants correlates with those observed in 661W cells
(Figure 5c) and therefore may also be a survival mechanism
employed by retinal explants. This is the first step towards
validating our results in primary tissue.

Discussion

In the retina, previous studies have described a pro-apoptotic
role for H2O2 in pathological conditions.1,5,6 Furthermore, it is
well established that exogenous addition of high doses of
H2O2 triggers apoptosis.31,32 It has been proposed, however,
that the diverse outcomes of H2O2 production in the cell could
be the result of subtle differences in the level and duration of
the oxidant burst.9 We hypothesize that the transient increase
in H2O2 concentration observed in response to serum
starvation of 661W cells (Figure 1a) is connected to cell
survival rather than cell death. To address this, we inhibited
H2O2 generation using CR-6 and analysed the effect on cell
death (Figure 1b). We observed increased apoptosis in cells
pretreated with CR-6, NAC and apopcynin (Figure 1e and f),
suggesting that transient H2O2 accumulation serves as a
survival signal. Partial inhibition of the oxidant burst with DPI
suggested a link between the Nox system and H2O2

generation (Figure 1b). Studies using siRNA identified Nox2
as one of the enzymes responsible for H2O2 production
(Figure 1c and d).

Once we had demonstrated that the H2O2 burst might be
pro-survival, we sought to determine how this effect was
mediated. H2O2 generation has been linked to the activity of
the PI-3 kinase/AKT pathway.22,23,33 One mechanism by
which H2O2 can promote activation of survival pathways is by
regulating the activity of protein tyrosine phosphatases, such
as PTEN, through oxidation of catalytic cysteine residues.19,34

Indeed, our results strongly suggest that stress-induced H2O2

production plays a key role in activating the PI-3 kinase/AKT
pathway through the reversible oxidation and inactivation of
PTEN (Figure 2a and b). The connection between the oxidant
burst and the activation of AKT was reinforced by the studies
with CR-6. Suppression of H2O2 production with CR-6
prevented AKT phosphorylation (Figure 2).

PI-3 kinase/AKT activation has been linked to inactivation of
pro-apoptotic proteins. For example, AKT phosphorylation can
inactivate BAD and caspase-9, suppressing apoptosis.35,36

Therefore, we investigated if the decrease in p-AKT levels 1 h
after serum withdrawal led to activation of cell death
cascades. Analysis of mitochondrial membrane potential
demonstrated DCm collapse after 1 h treatment (Figure 3a),
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and activation of caspase-3 2 h after treatment (Figure 4a and
b). Only after decline of p-AKT levels, did we observe an
increase in superoxide, nitric oxide and cytoplasmatic Ca2þ

concentration (Figure 3b and c). Therefore, elevated nitric
oxide levels following 1-h serum deprivation might be
responsible for mitochondrial dysfunction, increased
production of superoxide and the activation of cell death
mechanisms.37

Activation of the apoptotic machinery following the drop in
the pro-survival pathways led us to question when proteases
become activated in this model. Previous studies by our
laboratory demonstrated that photoreceptor apoptosis
involves the participation of multiple death pathways,27

including calpains and caspases.26 The present study
corroborates previous observations but, additionally,

demonstrates the activation of proteases as early as 2 h after
initiation of serum starvation (Figure 4). We also observed that
cathepsin D participates in serum withdrawal-induced apop-
tosis in 661W cells 2 h after treatment correlating with caspase
and calpain activation (Figure 4d). These results highlight the
complexity of the apoptotic machinery in photoreceptor cells.
However, despite the multiplicity of death pathways, we
propose that their activity is regulated, at least in part, by the
initial oxidant burst.

To confirm a role for H2O2 in mediating survival, we added a
sublethal concentration of H2O2 to serum-deprived 661W
cells. Wang et al.38 showed that AKT is activated in response
to submillimolar concentrations of H2O2 in several cell
systems, whereas preconditioning with low concentrations
of H2O2 enhances resistance of PC12 cells to apoptosis.39,40
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In agreement with previous observations and with our
hypothesis, addition of 25 mM H2O2 to serum-deprived 661W
cells significantly increased cell survival by enhancement of
p-AKT levels and prevention of PARP cleavage (Figure 5b and d).
We also demonstrated that increased survival and prevention
of PARP cleavage was not due to direct inhibition of capase-3
activity by H2O2 (Figure 5f). H2O2 concentrations higher than
25mM either showed similar effects or increased cell death,
while lower concentrations did not protect against cell death
(Figure 5e). H2O2 was added 1 h after serum withdrawal, to
boost peroxide concentration at the point where it begins to
decline towards basal levels, and before activation of the
apoptotic cascades. Following 2-h serum starvation, supple-
mentation with 25 mM H2O2 did not enhance cell survival.
Therefore, it appears that H2O2 cannot halt the process once it
has been initiated.

We appreciate that the window of efficacy is narrow and that
different concentrations of H2O2 might be required to elicit the
same effects in primary explant cultures versus cell lines.
Indeed, we demonstrate that while 600mM H2O2 induces
significant apoptosis in photoreceptors of retinal explants
(similar to 661W cells), survival effects are mediated by the
slightly higher concentration of 50 mM H2O2. This suggests
that while the principle of H2O2 as a survival mediator may
carry over from cell lines to explant cultures the effective range
appears to be different.

Finally, our study demonstrated that an oxidant burst occurs
in response to several different apoptotic stimuli, and was also
observed in a second cell type the RGC line (Figure 6). A
variety of apoptotic inducers, including SNP, UV, STS and
VP16, provoked a rapid and transient increase in H2O2 levels.
However, the H2O2 pro-survival role seems to be associated
only with oxidative stress-related stimuli, SNP and UV, and
not with STS and VP16. Although STS elicited a H2O2 burst, it
is a protein kinase inhibitor; therefore, a survival signal evoked
by H2O2 mediated by kinases may not be functional in STS-
treated cells. Furthermore, treatment with topoisomerase II
inhibitor VP16 produced a burst of H2O2 that did not appear to
be pro-survival. The reason for this remains unclear but it does
suggest that H2O2 is acting as a survival signal only in certain
cases (Figure 8).

In this study, we present the novel finding that two retinal
cell lines, treated with various apoptotic stimuli produce a
rapid and transient increase in H2O2, which acts as a pro-
survival signal, by oxidizing PTEN and increasing p-AKT.
Therefore, we hypothesize that H2O2 can be a pro-survival
molecule in retinal cell lines and preliminary data suggest that
H2O2 may have a similar role in photoreceptors of retinal
explant cultures. However, further work is required to
establish a model of endogenous H2O2 production in this
system.

Materials and Methods
Drugs, reagents and antibodies. H2O2, DPI (diphenyleneiodonium),
hexamethylpararosaniline chloride (crystal violet), cytochrome c, dATP, SNP,
STS, VP16 and N-acetyl-L-cysteine (NAC) were purchased from Sigma (Dublin,
Ireland). The pan-caspase inhibitor z-VAD-fmk was purchased from Bachem
(Saffron Walden, UK). Apocynin was obtained from Calbiochem (Nottingham, UK).
The synthesis of CR-6 has been described elsewhere.14 Cell Signalling Technology
(Hertfordshire, UK) provided the following antibodies: PTEN (no. 9552), PARP

(no. 9542) and phospho-AKT (Thr308) (no. 9275). Nox2 antibody (anti-gp91-phox,
no. 07-024) was obtained from Upstate (Dublin, Ireland). Calpain-2 antibody
(no. 208755) was purchased from Calbiochem. Cathepsin D antibody (no. sc-6486)
was obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA) and a-tubulin
(no. T-5168) and b-actin (no. A-5441) from Sigma. Peroxidase-conjugated anti-
rabbit and anti-mouse secondary antibodies were obtained from Dako (Glostrup,
Denmark). Caspase-3 chromogenic substrate Ac-DEVD-pNA (acetyl-Asp-Glu-Val-
Asp-p-nitroanilide) was provided by Alexis Biochemicals (Läufefingen, Switzerland).
The PI-3 kinase inhibitor LY294002 was obtained from Calbiochem.

Cell culture. The 661W photoreceptor cell line was generously provided by Dr.
Muayyad Al-Ubaidi (Department of Cell Biology, University of Oklahoma Health
Sciences Center, Oklahoma City, OK, USA). The RGC-5 line was a kind gift from Dr.
Neeraj Agarwal (Fort Worth, TX, USA). These cells were routinely grown in
Dulbecco’s modified Eagle’s medium supplemented with 10% heat-inactivated fetal
calf serum (both from Sigma) and 1% penicillin/streptomycin, at 371C in a humidified
atmosphere with 5% CO2. To induce apoptosis, 75 000 cells per well were seeded
onto tissue culture six-well plates (NalgeNUNC International, Hereford, UK) and
allowed to attach for 24 h. Cells were then washed twice with phosphate-buffered
saline (PBS, pH 7.4), and serum-free medium was added to each well. Pretreatment
with CR-6 was performed for 15 min, while pretreatment with NAC and apocynin
was performed for 1 h, respectively, at 371C. H2O2 was added to a final
concentration of 25mM unless otherwise indicated after 1-h incubation in serum-free
medium. After incubation for the indicated times, cells were detached with a trypsin-
EDTA solution (Sigma) and, together with their supernatants, were washed once
with ice-cold PBS.

Measurement of H2O2 levels. H2O2 production was monitored as
previously described.15 Briefly, following treatment, 100mM H2DCFDA (20,70-
dichlorodihydrofluorescein diacetate; Molecular Probes, Leiden, The Netherlands)
was added and samples were incubated for 15 min at 371C before analysis on a
FACScan flow cytometer (Becton Dickinson, Oxford, UK). H2O2 production was
measured at FL-1 (530 nm) with excitation at 488 nm. CellQuest software (Becton
Dickinson) was used for data analysis and 10 000 events per sample were acquired.

siRNA transfection. Cells (661W) were plated 24 h before transfection in a
six-well plate (12 000 cells per well). The transfection reagent, RNAifect (Qiagen,
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Figure 8 Schematic diagram illustrating the proposed survival role of H2O2 in
661W photoreceptor cells. Serum starvation of 661W cells results in a rapid and
transient burst of H2O2. Nox2 has been identified as one of the enzymes responsible
for H2O2 production. We propose that, once generated, H2O2, promotes activation
of the AKT survival pathway by regulating the activity of the protein tyrosine
phosphatase, PTEN. H2O2 reversibly oxidizes and inactivates PTEN, which in turn
stimulates AKT phosphorylation and promotes survival. We suggest that return of
H2O2 to basal level results in activation of PTEN, followed by decreased AKT
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Crawley, UK), was used according to the manufacturer’s protocol to transfect
negative control siRNA (no.1027310; Qiagen) or Silencers pre-designed siRNA
against murine Nox2 (ID 160437, 50-GCCUUGGCUGAAACUCUCAtt-30; Ambion,
Warrington, UK) at a final concentration of 100 nM. Assays were performed 48 and
72 h post-transfection.

Cell death measurements: PI uptake and annexin V staining. Cell
viability was assessed by PI (Sigma) uptake on a FACScan flow cytometer at
590 nm (FL-2). The criteria for cell death were based on changes in the light
scattering properties of dead cells due to shrinkage and increased granularity as
well as increased permeability to PI. Following treatments, cells were collected as
described above, washed once with ice-cold PBS and resuspended to a final
concentration of 1� 105 cells/ml. PI was added to a final concentration of 50mg/ml
and samples were immediately analysed. Double staining with FITC-conjugated
annexin V and PI was performed for quantification of apoptotic cells. Cells were
harvested, washed once with ice-cold PBS and resuspended in 100ml of Ca2þ -
binding buffer (10 mM HEPES pH 7.4, 140 mM NaCl, 2.5 mM CaCl2) containing
1 : 10 annexin V-FITC solution (IQ Products, Groningen, The Netherlands). After
15-min incubation in the dark at a room temperature (RT) of 201C, 400ml of binding
buffer with PI was added to each sample immediately before flow cytometry
analysis. Samples were analysed in a FACScan flow cytometer using the software
CellQuest for data analysis. A total of 10 000 events per sample were acquired.

Western blotting. Cells (8� 105 per flask) were plated in 75 cm2 flasks
(Sarstedt AG & Co.) and allowed to attach overnight. Apoptosis was induced by
replacing the routine medium with serum-free medium. After the appropriate
incubation times, whole cell extracts were obtained and resolved by denaturing
sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Briefly,
cells were scraped and, together with supernatant, washed twice with ice-cold PBS
followed by resuspension in cell lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl,
1 mM Na3VO4, 1 mM NaF, 1 mM EGTA, 1% Nonidet P-40 (NP40), 0.25% sodium
deoxycholate) containing the cocktail of protein inhibitors antipain (1mg/ml),
aprotinin (1mg/ml), chymostatin (1 mg/ml), leupeptin (0.1mg/ml), pepstatin (1mg/ml)
and 0.2 mM AEBSF. After incubation on ice for 20 min, debris was removed by
centrifugation (10 000� g) at 41C and protein concentration was quantified by Bio-
Rad (Hemel Hempstead, UK) assay, using bovine serum albumin as a standard.
Proteins (20–40mg) were diluted in 2� sample buffer (10% SDS, 100 mM
dithiothreitol (DTT), glycerol, bromophenol blue, Tris-HCl) and resolved on 6–12%
SDS-PAGE gels. In the case of non-reducing SDS-PAGE, cell lysates were
prepared with the above-described lysis buffer containing 50 mM Tris-HCl pH 8.0
and 50 nM N-ethylmaleimide to block free sulphhydryl groups. Gels were run in
the absence of DTT. Proteins were transferred onto nitrocellulose membranes
(Schleicher & Schuell, Whatman, Dassel, Germany) and blots were blocked with 5%
(w/v) non-fat dry milk in Tris-buffered saline/0.1% Tween-20 (TBS/T), for 1 h at RT.
Membranes were incubated at 41C overnight, with the appropriate dilution of
primary antibody (1 : 400 anti-cathepsin D, 1 : 500 PTEN and p-AKT, 1 : 1000 all
others). After three 5-min washes with TBS/T, blots were incubated with the
corresponding peroxidase-conjugated secondary antibody (dilution 1 : 1000) for 1 h
at RT. They were then washed again three times with TBS/T, rinsed briefly with PBS
and developed with the enhanced chemiluminescence reagents (ECL; Amersham
Biosciences, Buckinghamshire, UK). Detection of a-tubulin or b-actin (both 1 : 5000)
was used as a control for equal loading of protein.

Analysis of nitric oxide levels. Nitric oxide levels were quantified using the
probe DAF-FMMolecular Probes). After trypsinization, cells were washed once with
ice-cold PBS and resuspended in 200ml of fresh buffer containing 10mM DAF-FM.
After 30-min incubation in the dark at 371C, cells were washed in PBS to remove
excess of probe. Fresh buffer was added and cells were incubated for an additional
15 min at 371C. Fluorescence was measured in a FACScan flow cytometer FL-1
(515 nm) with excitation at 495 nm. A total of 10 000 events per sample were
acquired.

Analysis of superoxide anion generation. Measurement of superoxide
anion levels was carried out as previously described.16 Briefly, cells were loaded
with 10mM DHE (Molecular Probes) for 15 min at 371C. Superoxide anion oxidizes
DHE intracellularly to produce ethidium bromide, which fluoresces upon interaction
with DNA. Fluorescence due to ethidium bromide was monitored in a Becton
Dickinson FACScan flow cytometer with excitation and emission at 488 and 590 nm,

respectively. CellQuest software was used for data analysis, and 10 000 events per
sample were acquired.

Analysis of mitochondrial membrane depolarization. Mitochondrial
membrane depolarization was analysed using the probe JC-1 (Molecular Probes).
Cells were washed twice with ice-cold PBS before incubation with JC-1 (5 mg/ml) in
darkness for 15 min at 371C. At high DCm, JC-1 forms J-aggregates, which
fluoresce at 590 nm (measured in FL-2). At least 10 000 events per sample were
acquired, using FACScan flow cytometer and CellQuest software.

Measurement of cytosolic-free Ca2þ levels. Cytosolic Ca2þ levels
were determined using the intracellular Ca2þ probe, Fluo3-AM (Molecular Probes),
which binds Ca2þ with a 1 : 1 stoichiometry. After trypsinization, cells were washed
once with PBS and resuspended in fresh buffer. Cells were incubated in the
darkness with Fluo-3 (250 nM) for 30 min at 371C. Fluorescence was measured at
FL-1 (530 nm) in a Becton Dickinson FACScan flow cytometer with excitation at
488 nm. At least 10 000 events per sample were acquired.

Caspase activity assay. Pellets from 8� 105 untreated or serum-
deprived 661W cells were resuspended in 50–100ml chilled lysis buffer (50 mM
HEPES pH 7.4, 100 mM NaCl, 0.1% 3-[(3-cholamidopropyl)dimethylammonio]-1-
propanesulphonate, 1 mM DTT, 100mM EDTA and 0.1% NP40) and incubated on
ice for 10 min. Following a 20-s sonication, cell lysates were centrifuged at 4 1C for
10 min (10 000� g). An equal quantity of protein (50 mg) was loaded onto each well
of a microtitre plate and the final volume was made up to 90ml with assay buffer (as
lysis buffer, minus 1% NP40). The reaction was initiated by addition of caspase-3-
pNA substrate to a final concentration of 200mM, from a 10 mM stock solution in
dimethyl sulphoxide. After 1-, 2- and 4-h incubation at 371C, cleavage of the peptide
substrate DEVD-pNA was monitored by liberation of the chromogenic pNA in a
SpectraMax-340 plate reader (Molecular Devices, Menlo Park, CA) by measuring
absorption at 405 nm.

Preparation of cell-free extracts and cell-free reactions. Cell-free
extracts were prepared from 661W cells as follows: cells were plated and incubated
overnight. Cells were then scraped, washed in PBS, resuspended in 150ml of cell
extraction buffer (CEB) and transferred to a 2 ml dounce homogenizer (CEB; 20 mM
HEPES-KOH, pH 7.5, 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM
DTT, 100mM AEBSF, 10 mg/ml leupeptin, 2 mg/ml aprotinin). Cells were incubated
for 15 min on ice, disrupted with 20 strokes of the pestle and incubated on ice for
another 15 min. Lysates were centrifuged at 14 000 r.p.m. for 15 min at 41C. The
supernatant was then removed and further centrifuged at 100 000� g for 1 h to
obtain S-100 cytosols. The total amount of protein was determined by Bio-Rad
protein assay (Bio-Rad), as previously. For cell-free reactions, 60 mg of protein was
diluted to a final volume of 90ml in caspase activity assay buffer per well of a
microtitre plate. Samples were then incubated with either 25 mM H2O2 or 50mM
z-VAD-fmk for 1 h at RT. Apoptosis was induced by addition of bovine heart
cytochrome c and dATP at final concentrations of 50 mg/ml and 1 mM, respectively.
Samples were then incubated at 371C for 1 h to initiate apoptosis before analysis of
caspase-3 activity, as previously described.

Viability assay: crystal violet assay. Following treatment, cells were fixed
with 96% ethanol for 10 min. Then, cells were stained with a 0.05% crystal violet
solution in 20% ethanol for 30-min. After three washes with H2O, cell-associated dye
was dissolved in a 0.1% acetic acid solution in 50% ethanol. Absorbance (585 nm)
was measured in a microtitre plate reader (SpectraMax-340; Molecular Devices).

Retinal explant culture. All experiments were performed in accordance with
the ARVO Statement for Use of Animals in Ophthalmic and Vision Research.
C57BL/6 mice were obtained from Harlan UK (Bicester, UK). Briefly, C57BL/6 mice
were decapitated at P10 and the eyes were removed. The anterior segment,
vitreous body and sclera were removed and the retina was mounted on
nitrocellulose inserts (Millicell; Millipore, Billerica, MA, USA) with photoreceptor
facing down. Explants were cultured without retinal pigment epithelium in 1.2 ml of
R16 medium (from Dr. PA Ekstrom, Wallenberg Retina Centre, Lund University,
Lund, Sweden) without additional serum. Treated explants were cultured in media
containing 50, 150, 300 or 600mM H2O2 for the indicated times. Explants were then
subjected to western blotting as previously described (see western blotting).
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TUNEL. Retinal explants were fixed in 10% neutral-buffered formalin overnight at
41C, followed by cryoprotection in 25% sucrose overnight at 41C. Frozen sections
(7mm) were incubated with terminal deoxynucleotidyl transferase (MSC, Dublin,
Republic of Ireland) and fluorescein-12-dUTP (Roche, Lewes, UK) according to the
manufacturer’s instructions at 371C for 1 h. Nuclei were counterstained (Hoechst
33342; Sigma). Sections were mounted and viewed under a fluorescence
microscope (Leica DM LB; Leica, Nussloch, Germany) using an FITC filter.
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