Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cellular Therapy

Human AdV-specific T cells: persisting in vitro functionality despite lethal irradiation

Abstract

Viral infections caused by human adenovirus (HAdV) or CMV remain life-threatening complications in immunocompromised patients undergoing allogeneic hematopoietic stem cell transplantation. Adoptive immunotherapy with virus-specific T cells showed impressive clinical results without or with only mild GvHD. However, because of high costs and high regulatory barriers, these protocols are accessible to only a few centers. The infusion of unmanipulated donor lymphocytes (DLIs) that contain virus-specific T cells is not feasible because of the risk of GvHD. Reports about three patients treated with irradiated granulocytes or DLIs that potentially comprised virus-specific T cells discussed an active role of virus-specific lymphocytes despite irradiation, but real evidence could not be provided. Therefore, we tested the effect of irradiation on HAdV-specific T cells, which had been expanded in vitro, by stimulating PBMCs with HAdV-peptide pools and IL-15 for 12 days. Cells were then irradiated with 30 Gy, as performed for normal granulocyte concentrates. Cell viability and polyfunctional activity were determined by flow cytometry. Even 48 h after irradiation, 15.6% of expanded HAdV-specific T cells were apparently viable and cytolytically active. Although the in vivo antiviral activity was not tested, these data support earlier assumptions about the potential role of irradiated cells in patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ohrmalm L, Lindblom A, Omar H, Norbeck O, Gustafson I, Lewensohn-Fuchs I et al. Evaluation of a surveillance strategy for early detection of adenovirus by PCR of peripheral blood in hematopoietic SCT recipients: incidence and outcome. Bone Marrow Transplant 2011; 46: 267–272.

    Article  CAS  Google Scholar 

  2. Gooley TA, Chien JW, Pergam SA, Hingorani S, Sorror ML, Boeckh M et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med 2010; 363: 2091–2101.

    Article  CAS  Google Scholar 

  3. Breuer S, Rauch M, Matthes-Martin S, Lion T . Molecular diagnosis and management of viral infections in hematopoietic stem cell transplant recipients. Mol Diagn Ther 2012; 16: 63–77.

    Article  CAS  Google Scholar 

  4. Strauss RG . Therapeutic granulocyte transfusions in 1993. Blood 1993; 81: 1675–1678.

    CAS  PubMed  Google Scholar 

  5. Bishton M, Chopra R . The role of granulocyte transfusions in neutropenic patients. Br J Haematol 2004; 127: 501–508.

    Article  CAS  Google Scholar 

  6. Oza A, Hallemeier C, Goodnough L, Khoury H, Shenoy S, Devine S et al. Granulocyte-colony-stimulating factor-mobilized prophylactic granulocyte transfusions given after allogeneic peripheral blood progenitor cell transplantation result in a modest reduction of febrile days and intravenous antibiotic usage. Transfusion 2006; 46: 14–23.

    Article  CAS  Google Scholar 

  7. Sachs UJ, Reiter A, Walter T, Bein G, Woessmann W . Safety and efficacy of therapeutic early onset granulocyte transfusions in pediatric patients with neutropenia and severe infections. Transfusion 2006; 46: 1909–1914.

    Article  Google Scholar 

  8. Witt V, Fritsch G, Peters C, Matthes-Martin S, Ladenstein R, Gadner H . Resolution of early cytomegalovirus (CMV) infection after leukocyte transfusion therapy from a CMV seropositive donor. Bone Marrow Transplant 1998; 22: 289–292.

    Article  CAS  Google Scholar 

  9. McGuirk JP, Seropian S, Howe G, Smith B, Stoddart L, Cooper DL . Use of rituximab and irradiated donor-derived lymphocytes to control Epstein-Barr virus-associated lymphoproliferation in patients undergoing related haplo-identical stem cell transplantation. Bone Marrow Transplant 1999; 24: 1253–1258.

    Article  CAS  Google Scholar 

  10. Schermann CM, Fischer G, Witt V, Kurz M, Potschger U, Fritsch G . Detection of human cytomegalovirus-specific T lymphocytes in human blood: comparison of two methods. Cytotherapy 2008; 10: 834–841.

    Article  CAS  Google Scholar 

  11. Sukdolak C, Tischer S, Dieks D, Figueiredo C, Goudeva L, Heuft HG et al. CMV-, EBV- and ADV-specific T-cell immunity: Screening and monitoring of potential third-party donors to improve post-transplant outcome. Biol Blood Marrow Transplant 2013; 19: 1480–1492.

    Article  CAS  Google Scholar 

  12. Geyeregger R, Freimuller C, Stevanovic S, Stemberger J, Mester G, Dmytrus J et al. Short-term in-vitro expansion improves monitoring and allows affordable generation of virus-specific T-cells against several viruses for a broad clinical application. PLoS ONE 2013; 8: e59592.

    Article  CAS  Google Scholar 

  13. Dohnal AM, Graffi S, Witt V, Eichstill C, Wagner D, Ul-Haq S et al. Comparative evaluation of techniques for the manufacturing of dendritic cell-based cancer vaccines. J Cell Mol Med 2009; 13: 125–135.

    Article  CAS  Google Scholar 

  14. Fritsch G, Witt V, Spengler HP, Pichler J, Scharner D, Zipperer E et al. Robust multi-parameter single-platform quantification of myeloid and B-lymphoid CD34 progenitor cells in all clinical CD34 cell sources and in thawed PBSC. Pediatr Hematol Oncol 2012; 29: 595–610.

    CAS  PubMed  Google Scholar 

  15. Vermes I, Haanen C, Reutelingsperger C . Flow cytometry of apoptotic cell death. J Immunol Methods 2000; 243: 167–190.

    Article  CAS  Google Scholar 

  16. De Santis D, Foley BA, John E, Senitzer D, Christiansen FT, Witt CS . Rapid, flow cytometric assay for NK alloreactivity reveals exceptions to rules governing alloreactivity. Biol Blood Marrow Transplant 2010; 16: 179–191.

    Article  CAS  Google Scholar 

  17. Inoue S, Unsinger J, Davis CG, Muenzer JT, Ferguson TA, Chang K et al. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis. J Immunol 2010; 184: 1401–1409.

    Article  CAS  Google Scholar 

  18. Badr G, Bedard N, Abdel-Hakeem MS, Trautmann L, Willems B, Villeneuve JP et al. Early interferon therapy for hepatitis C virus infection rescues polyfunctional, long-lived CD8+ memory T cells. J Virol 2008; 82: 10017–10031.

    Article  CAS  Google Scholar 

  19. Hiwarkar P, Gaspar HB, Gilmour K, Jagani M, Chiesa R, Bennett-Rees N et al. Impact of viral reactivations in the era of pre-emptive antiviral drug therapy following allogeneic haematopoietic SCT in paediatric recipients. Bone Marrow Transplant 2012; 48: 803–808.

    Article  Google Scholar 

  20. Matthes-Martin S, Feuchtinger T, Shaw PJ, Engelhard D, Hirsch HH, Cordonnier C et al. European guidelines for diagnosis and treatment of adenovirus infection in leukemia and stem cell transplantation: summary of ECIL-4 (2011). Transpl Infect Dis 2012; 14: 555–563.

    Article  CAS  Google Scholar 

  21. Feuchtinger T, Matthes-Martin S, Richard C, Lion T, Fuhrer M, Hamprecht K et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol 2006; 134: 64–76.

    Article  Google Scholar 

  22. Feuchtinger T, Opherk K, Bethge WA, Topp MS, Schuster FR, Weissinger EM et al. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood 2010; 116: 4360–4367.

    Article  CAS  Google Scholar 

  23. Leen AM, Bollard CM, Mendizabal AM, Shpall EJ, Szabolcs P, Antin JH et al. Multicenter study of banked third party virus-specific T-cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood 2013; 121: 5113–5123.

    Article  CAS  Google Scholar 

  24. Leen AM, Christin A, Myers GD, Liu H, Cruz CR, Hanley PJ et al. Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood 2009; 114: 4283–4292.

    Article  CAS  Google Scholar 

  25. Geyeregger R, Freimüller C, Stemberger J, Artwohl M, Witt v, Lion T et al. First-in-man clinical results with good manufacturing practice (GMP)-compliant polypeptide-expanded adenovirus-specific T-cells after haploidentical hematopoietic stem cell transplantation. J Immunother 2014; 37: 245–249.

    Article  CAS  Google Scholar 

  26. Sellar RS, Peggs KS . The role of virus-specific adoptive T-cell therapy in hematopoietic transplantation. Cytotherapy 2012; 14: 391–400.

    Article  CAS  Google Scholar 

  27. Gerdemann U, Keirnan JM, Katari UL, Yanagisawa R, Christin AS, Huye LE et al. Rapidly generated multivirus-specific cytotoxic T lymphocytes for the prophylaxis and treatment of viral infections. Mol Ther 2012; 20: 1622–1632.

    Article  CAS  Google Scholar 

  28. Choi SJ, Lee JH, Lee JH, Kim S, Lee YS, Seol M et al. Treatment of relapsed acute lymphoblastic leukemia after allogeneic bone marrow transplantation with chemotherapy followed by G-CSF-primed donor leukocyte infusion: a prospective study. Bone Marrow Transplant 2005; 36: 163–169.

    Article  CAS  Google Scholar 

  29. Waller EK, Boyer M . New strategies in allogeneic stem cell transplantation: immunotherapy using irradiated allogeneic T cells. Bone Marrow Transplant 2000; 25: S20–S24.

    Article  Google Scholar 

  30. Barber DL, Wherry EJ, Ahmed R . Cutting edge: rapid in vivo killing by memory CD8 T cells. J Immunol 2003; 171: 27–31.

    Article  CAS  Google Scholar 

  31. Koh S, Shimasaki N, Suwanarusk R, Ho ZZ, Chia A, Banu N et al. A practical approach to immunotherapy of hepatocellular carcinoma using T cells redirected against hepatitis B virus. Molecular therapy. Nucleic acids 2013; 2: e114.

    Article  Google Scholar 

  32. Brodie SJ, Patterson BK, Lewinsohn DA, Diem K, Spach D, Greenberg PD et al. HIV-specific cytotoxic T lymphocytes traffic to lymph nodes and localize at sites of HIV replication and cell death. J Clin Invest 2000; 105: 1407–1417.

    Article  CAS  Google Scholar 

  33. Igietseme JU, Smith K, Simmons A, Rayford PL . Effect of gamma-irradiation on the effector function of T lymphocytes in microbial control. Int J Radiat Biol 1995; 67: 557–564.

    Article  CAS  Google Scholar 

  34. Jurickova I, Waller EK, Yeager AM, Boyer MW . Generation of alloreactive anti-leukemic cytotoxic T lymphocytes with attenuated GVHD properties from haploidentical parents in childhood acute lymphoblastic leukemia. Bone Marrow Transplant 2002; 30: 687–697.

    Article  CAS  Google Scholar 

  35. Boise LH, Minn AJ, June CH, Lindsten T, Thompson CB . Growth factors can enhance lymphocyte survival without committing the cell to undergo cell division. Proc Natl Acad Sci USA 1995; 92: 5491–5495.

    Article  CAS  Google Scholar 

  36. Carloni M, Meschini R, Ovidi L, Palitti F . PHA-induced cell proliferation rescues human peripheral blood lymphocytes from X-ray-induced apoptosis. Mutagenesis 2001; 16: 115–120.

    Article  CAS  Google Scholar 

  37. Lion T, Kosulin K, Landlinger C, Rauch M, Preuner S, Jugovic D et al. Monitoring of adenovirus load in stool by real-time PCR permits early detection of impending invasive infection in patients after allogeneic stem cell transplantation. Leukemia 2010; 24: 706–714.

    Article  CAS  Google Scholar 

  38. Lindemans CA, Leen AM, Boelens JJ . How I treat adenovirus in hematopoietic stem cell transplant recipients. Blood 2010; 116: 5476–5485.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M Zavadil for carefully proofreading and language editing the manuscript. The work was funded by the Children’s Cancer Research Institute (CCRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Geyeregger.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geyeregger, R., Freimüller, C., Stemberger, J. et al. Human AdV-specific T cells: persisting in vitro functionality despite lethal irradiation. Bone Marrow Transplant 49, 934–941 (2014). https://doi.org/10.1038/bmt.2014.86

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2014.86

Search

Quick links