Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Allo-SCT for myelofibrosis: reversing the chronic phase in the JAK inhibitor era?

Abstract

At present, allo-SCT is the only curative treatment for patients with myelofibrosis (MF). Unfortunately, a significant proportion of candidate patients are considered transplant ineligible due to their poor general condition and advanced age at the time of diagnosis. The approval of the first JAK inhibitor, ruxolitinib, for patients with advanced MF in 2011 has had a qualified impact on the treatment algorithm. The drug affords substantial improvement in MF-associated symptoms and splenomegaly but no major effect on the natural history. There has, therefore, been considerable support for assessing the drug’s candidacy in the peritransplant period. The drug’s precise impact on clinical outcome following allo-SCT is currently not known; nor are the drug’s long-term efficacy and safety known. Considering the rarity of MF and the small proportion of patients who undergo allo-SCT, well designed collaborative efforts are required. In order to address some of the principal challenges, an expert panel of laboratory and clinical experts in this field was established, and an independent workshop held during the 54th American Society of Hematology Annual Meeting in New Orleans, USA on 6 December 2013, and the European Hematology Association's Annual Meeting in Milan, Italy on 13 June 2014. This document summarizes the results of these efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Tefferi A . Myelofibrosis with myeloid metaplasia. N Engl J Med 2000; 342: 1255–1265.

    CAS  PubMed  Google Scholar 

  2. Tefferi A, Vainchenker W . Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol 2011; 29: 573–582.

    CAS  PubMed  Google Scholar 

  3. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–951.

    CAS  PubMed  Google Scholar 

  4. Tefferi A, Thiele J, Vannucchi AM, Barbui T . An overview of CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia 2014; 28: 1407–1413.

    CAS  PubMed  Google Scholar 

  5. Cazzola M, Kralovics R . From Janus kinase 2 to calreticulin: the clinically relevant genomic landscape of myeloproliferative neoplasms. Blood 2014; 123: 3714–3719.

    CAS  PubMed  Google Scholar 

  6. Klampf T, Gisslinger H, Hanutyunyan A, Nivarthi H, Rumi E, Milosevic JD et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013; 369: 2379–2390.

    Google Scholar 

  7. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013; 369: 2391–2405.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mughal TI, Girnius S, Rosen ST, Kumar S, Wiestner A, Abdel-Wahab O et al. Emerging therapeutic paradigms to target the dysregulated Janus kinase/signal transducer and activator of transcription pathway in hematological malignancies. Leuk Lymphoma 2014; 55: 1968–1979.

    PubMed  PubMed Central  Google Scholar 

  9. Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 2010; 363: 1117–1127.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Druker B, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1042.

    CAS  PubMed  Google Scholar 

  11. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012; 366: 799–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012; 366: 787–798.

    CAS  PubMed  Google Scholar 

  13. Mughal TI, Vannucchi AM, Soverini S, Bazeos A, Tibes R, Saglio G et al. Current pre-clinical and clinical advances in the BCR-ABL1-positive and -negative chronic myeloproliferative neoplasms. Haematologica 2014; 99: 797–803.

    PubMed  PubMed Central  Google Scholar 

  14. Guardiola P, Anderson JE, Bandini G, Cervantes F, Runde V, Arcese W et al. Allogeneic stem cell transplantation for agnogenic myeloid metaplasia: a European Group for Blood and Marrow Transplantation, Société Française de Greffe de Moelle, Gruppo Italiano per il Trapianto del Midollo Osseo, and Fred Hutchinson Cancer Research Center Collaborative Study. Blood 1999; 93: 2831–2838.

    CAS  PubMed  Google Scholar 

  15. Kerbauy DM, Gooley TA, Sale GE, Flowers ME, Doney KC, Georges GE et al. Hematopoietic cell transplantation as curative therapy for idiopathic myelofibrosis, advanced polycythemia vera, and essential thrombocythemia. Biol Blood Marrow Transplant 2007; 13: 355–365.

    PubMed  Google Scholar 

  16. Abelsson J, Merup M, Birgegård G, WeisBjerrum O, Brinch L, Brune M et al. The outcome of allo-HSCT for 92 patients with myelofibrosis in the Nordic countries. Bone Marrow Transplant 2012; 47: 380–386.

    CAS  PubMed  Google Scholar 

  17. Nivison-Smith I, Dodds AJ, Butler J, Bradstock KF, Ma DD, Simpson JM et al. Allogeneic hematopoietic cell transplantation for chronic myelofibrosis in Austrelia and New Zeland: older recipients receiving myeloablative conditioning at increased mortality risk. Biol Blood Marrow Transplant 2012; 18: 302–308.

    PubMed  Google Scholar 

  18. Rondelli D, Barosi G, Bacigalupo A, Prchal JT, Popat U, Alessandrino EP et al. Allogeneic hematopoietic stem-cell transplantation with reduced-intensity conditioning in intermediate- or high-risk patients with myelofibrosis with myeloid metaplasia. Blood 2005; 105: 115–119.

    Google Scholar 

  19. Kroger N, Holler E, Kobbe G, Bornhäuser M, Schwerdtfeger R, Baurmann H et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood 2009; 114: 5264–5270.

    PubMed  Google Scholar 

  20. Gupta V, Malone AK, Hari PN, Ahn KW, Hu ZH, Gale RP et al. Reduced-intensity hematopoietic cell transplantation for patients with primary myelofibrosis: a cohort analysis from the center for international blood and marrow transplant research. Biol Blood Marrow Transplant 2014; 20: 89–97.

    PubMed  Google Scholar 

  21. Merup M, Lazarevic V, Nahi H, Andreasson B, Malm C, Nilsson L et al. Different outcome of allogeneic transplantation in myelofibrosis using conventional or reduced-intensity conditioning regimens. Br J Haematol 2006; 135: 367–373.

    CAS  PubMed  Google Scholar 

  22. Thiele J, Kvasnicka HM, Vardiman J . Bone marrow histopathology in the diagnosis of chronic myeloproliferative disorders: a forgotten pearl. Best Pract Res Clin Haematol 2006; 19: 413–437.

    CAS  PubMed  Google Scholar 

  23. Boiocchi L, Mathew S, Gianelli U, Iurlo A, Radice T, Barouk-Fox S et al. Morphologic and cytogenetic differences between post-polycythemic myelofibrosis and primary myelofibrosis in fibrotic stage. Mod Pathol 2013; 26: 1577–1585.

    CAS  PubMed  Google Scholar 

  24. Kuter DJ, Bain B, Mufti G, Bagg A, Hasserjian RP . Bone marrow fibrosis: pathophysiology and clinical significance of increased bone marrow stromal fibres. Br J Haematol 2007; 139: 351–362.

    CAS  PubMed  Google Scholar 

  25. Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, Orazi A . European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica 2005; 90: 1128–1132.

    PubMed  Google Scholar 

  26. Thiele J, Kvasnicka HM, Diehl V . Standardization of bone marrow features—does it work in hematopathology for histological discrimination of different disease patterns? Histol Histopathol 2005; 20: 633–644.

    CAS  PubMed  Google Scholar 

  27. Kvasnicka HM, Thiele J, Orazi A et al. European LeukemiaNet (ELN) consensus criteria for therapy response based on bone marrow features in patients with myelofibrosis. Leukemia 2014 (in press).

  28. Bacher U, Asenova S, Badbaran A, Zander AR, Alchalby H, Fehse B et al. Bone marrow mesenchymal stromal cells remain of recipient origin after allogeneic SCT and do not harbor the JAK2V671F mutation in patients with myelofibrosis. Clin Exp Med 2010; 10: 205–208.

    CAS  PubMed  Google Scholar 

  29. Thiele J, Varus E, Siebolts U, Kvasnicka HM, Wickenhauser C, Metz KA et al. Dualism of mixed chimerism between hematopoiesis and stroma in chronic idiopathic myelofibrosis after allogeneic stem cell transplantation. Histol Histopathol 2007; 22: 365–372.

    CAS  PubMed  Google Scholar 

  30. Ni H, Barosi G, Hoffman R . Quantitative evaluation of bone marrow angiogenesis in idiopathic myelofibrosis. Am J Clin Pathol 2006; 126: 241–247.

    PubMed  Google Scholar 

  31. Sale GE, Deeg HJ, Porter BA . Regression of myelofibrosis and osteosclerosis following hematopoietic cell transplantation assessed by magnetic resonance imaging and histologic grading. Biol Blood Marrow Transplant 2006; 12: 1285–1294.

    PubMed  Google Scholar 

  32. Devine SM, Hoffman R, Verma A, Shah R, Bradlow BA, Stock W et al. Allogeneic blood cell transplantation following reduced-intensity conditioning is effective therapy for older patients with myelofibrosis with myeloid metaplasia. Blood 2002; 99: 2255–2258.

    CAS  PubMed  Google Scholar 

  33. Thiele J, Kvasnicka HM, Dietrich H, Stein G, Hann M, Kaminski A et al. Dynamics of bone marrow changes in patients with chronic idiopathic myelofibrosis following allogeneic stem cell transplantation. Histol Histopathol 2005; 20: 879–889.

    CAS  PubMed  Google Scholar 

  34. Kroger N, Thiele J, Zander A, Schwerdtfeger R, Kobbe G, Bornhäuser M et al. Rapid regression of bone marrow fibrosis after dose-reduced allogeneic stem cell transplantation in patients with primary myelofibrosis. Exp Hematol 2007; 35: 1719–1722.

    PubMed  Google Scholar 

  35. Tanner ML, Hoh CK, Bashey A, Holman P, Sun C, Broome HE et al. FLAG chemotherapy followed by allogenetic stem cell transplant using nonmyeloablative conditioning induces regression of myelofibrosis with myeloid metaplasia. Bone Marrow Transpl 2003; 32: 581–585.

    CAS  Google Scholar 

  36. Shanavas M, Messner HA, Atenafu EG, Kim DH, Kuruvilla J, Lipton JH et al. Allogeneic hematopoietic cell transplantation for myelofibrosis using fludarabine, intravenous busulfan and low dose TBI-based conditioning. Bone Marrow Transplant 2014; 49: 1162–1169.

    CAS  PubMed  Google Scholar 

  37. Kroger N, Zabelina T, Alchalby H, Stübig T, Wolschke C, Ayuk F et al. Dynamic of bone marrow fibrosis regression predicts survival after allogeneic stem cell transplantation for myelofibrosis. Biol Blood Marrow Transplant 2014; 20: 812–815.

    PubMed  Google Scholar 

  38. Tefferi A, Litzow MR, Pardanani A . Long-term outcome of treatment with ruxolitinib in myelofibrosis. N Engl J Med 2011; 365: 1455–1457.

    CAS  PubMed  Google Scholar 

  39. Lussana F, Rambaldi A, Finazzi MC, van Biezen A, Scholten M, Oldani E et al. Allogeneic hematopoietic stem cell transplantation in patients with polycythemia or essential thrombocythemia transformed to myelofibrosis or acute myeloid leukemia: report from MPN subcommittee of the Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation. Haematologica 2014; 99: 916–921.

    PubMed  PubMed Central  Google Scholar 

  40. Ballen KK, Shrestha S, Sobocinski KA, Zhang MJ, Bashey A, Bolwell BJ et al. Outcome of transplantation for myelofibrosis. Biol Blood Marrow Transplant 2010; 16: 358–367.

    PubMed  Google Scholar 

  41. Barbui T, Barosi G, Birgegard G, Cervantes F, Finazzi G, Griesshammer M et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol 2011; 29: 761–770.

    PubMed  PubMed Central  Google Scholar 

  42. Reilly JT, McMullin MF, Beer PA, Butt N, Conneally E, Duncombe AS et al. Use of JAK inhibitors in the management of myelofibrosis: a revision of the British Committee for Standards in Haematology Guidelines for Investigation and Management of Myelofibrosis 2012. Br J Haematol 2014; 167: 418–420.

    CAS  PubMed  Google Scholar 

  43. Hasselbalch HC, Kiladjian JJ, Silver RT . Interferon alfa in the treatment of Philadelphia-negative chronic myeloproliferative neoplasms. J Clin Oncol 2011; 29: 564–565.

    Google Scholar 

  44. Ianotto JC, Boyer-Perrard F, Gyan E, Laribi K, Cony-Makhoul P, Demory JL et al. Efficacy and safety of pegylated interferonα-2a in myelofibrosis: a study by the FIM and GEM French Cooperative Groups. Br J Haematol 2013; 162: 783–791.

    CAS  PubMed  Google Scholar 

  45. Silver RT, Lascu E, Feldman EJ, Ritchie E, Roboz GJ, De Sancho MT et al. Recombinant interferon alfa (rIFN) may retard progression of early myelofibrosis by reducing splenomegaly and by decreasing marrow fibrosis. Blood 2013; 122: 4053.

    Google Scholar 

  46. Kvasnicka HM, Thiele J, Bueso-Ramos C, Sun W, Cortes JE, Kantarjian HM et al. Effects of 5-years of ruxolitinib therapy on bone marrow morphology in patients with myelofibrosis and comparison with best available therapy. Blood 2013; 122: 4055.

    Google Scholar 

  47. Kremyanskaya M, Mascarenhas J, Rampal R, Hoffman R . Development of extramedullary sites of leukemia during ruxolitinib therapy for myelofibrsosis. Br J Haematol 2014; 167: 144–146.

    CAS  PubMed  Google Scholar 

  48. Heine A, Held SA, Daecke SN, Wallner S, Yajnanarayana SP, Kurts C et al. The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood 2013; 122: 1192–1202.

    CAS  PubMed  Google Scholar 

  49. Schonberg K, Rudolph J, Cornez I, Brossart P, Wolf D . The JAK1/JAK2-inihibitor ruxolitinib substantially affects NK cell biology. Blood 2013; 122: 16.

    Google Scholar 

  50. Wysham NG, Sullivan DR, Allada G . An opportunistic infection associated with ruxolitinib, a novel janus kinase 1,2 inhibitor. Chest 2013; 143: 1478–1479.

    PubMed  PubMed Central  Google Scholar 

  51. Spoerl S, Mathew NR, Bscheider M, Schmitt-Graeff A, Chen S, Mueller T et al. Activity of therapeutic JAK1/2 blockade in graft-versus-host disease. Blood 2014; 123: 3832–3842.

    CAS  PubMed  Google Scholar 

  52. Okiyama N, Furumoto Y, Villarroel VA, Linton JT, Tsai WL, Gutermuth J et al. Reversal of CD8 T-cell-mediated mucocutaneous graft-versus-host-like disease by the JAK inhibitor tofacitinib. J Invest Dermatol 2014; 134: 992–1000.

    CAS  PubMed  Google Scholar 

  53. Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A et al. Mutations and prognosis in primary myelofibrosis. Leukemia 2013; 27: 1861–1869.

    CAS  PubMed  Google Scholar 

  54. Bogani C, Ponziani V, Guglielmelli P, Desterke C, Rosti V, Bosi A et al. Hypermethylation of CXCR4 promoter in CD34+ cells from patients with primary myelofibrosis. Stem Cells 2008; 26: 1920–1930.

    CAS  PubMed  Google Scholar 

  55. Nischal S, Bhattacharyya S, Christopeit M, Yu Y, Zhou L, Bhagat TD et al. Methylome profiling reveals distinct alterations in phenotypic and mutational subgroups of myeloproliferative neoplasms. Cancer Res 2013; 73: 1076–1085.

    CAS  PubMed  Google Scholar 

  56. Pérez C, Pascual M, Martín-Subero JI, Bellosillo B, Segura V, Delabesse E et al. Aberrant DNA methylation profile of chronic and transformed classic Philadelphia-negative myeloproliferative neoplasms. Haematologica 2013; 98: 1414–1420.

    PubMed  PubMed Central  Google Scholar 

  57. Wang X, Zhang W, Ishii T, Sozer S, Wang J, Xu M et al. Correction of the abnormal trafficking of primary myelofibrosis CD34+ cells by treatment with chromatin-modifying agents. Cancer Res 2009; 69: 7612–7618.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang X, Zhang W, Tripodi J, Lu M, Xu M, Najfeld V et al. Sequential treatment of CD34+ cells from patients with primary myelofibrosis with chromatin-modifying agents eliminate JAK2V617F-positive NOD/SCID marrow repopulating cells. Blood 2010; 116: 5972–5982.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Quintás-Cardama A, Tong W, Kantarjian H, Thomas D, Ravandi F, Kornblau S et al. A phase II study of 5-azacitidine for patients with primary and post-essential thrombocythemia/polycythemia vera myelofibrosis. Leukemia 2008; 22: 965–970.

    PubMed  PubMed Central  Google Scholar 

  60. Odenike OM, Godwin JE, Van Besien K et al. Phase II trial of low dose, subcutaneous decitabine in myelofibrosis. Blood 2008; 112: 2809.

    Google Scholar 

  61. Rambaldi A, Dellacasa CM, Finazzi G, Carobbio A, Ferrari ML, Guglielmelli P et al. A pilot study of the Histone-Deacetylase inhibitor Givinostat in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Br J Haematol 2010; 150: 446–455.

    CAS  PubMed  Google Scholar 

  62. Quintas-Cardama A, Kantarjian H, Estrov Z, Borthakur G, Cortes J, Verstovsek S . Therapy with the histone deacetylase inhibitor pracinostat for patients with myelofibrosis. Leuk Res 2012; 36: 1124–1127.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mascarenhas J, Lu M, Li T, Petersen B, Hochman T, Najfeld V et al. A phase I study of panobinostat (LBH589) in patients with primary myelofibrosis (PMF) and post-polycythaemia vera/essential thrombocythaemia myelofibrosis (post-PV/ET MF). Br J Haematol 2013; 161: 68–75.

    CAS  PubMed  Google Scholar 

  64. Goodyear O, Agathanggelou A, Novitzky-Basso I, Siddique S, McSkeane T, Ryan G et al. Induction of a CD8+ T cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood 2010; 116: 1908–1918.

    CAS  PubMed  Google Scholar 

  65. Goodyear OC, Dennis M, Jilani NY, Loke J, Siddique S, Ryan G et al. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML). Blood 2012; 119: 3361–3369.

    CAS  PubMed  Google Scholar 

  66. Atanackovic D, Luetkens T, Kloth B, Fuchs G, Cao Y, Hildebrandt Y et al. Cancer-testis antigen expression and its epigenetic modulation in acute myeloid leukemia. Am J Hematol 2011; 86: 918–922.

    CAS  PubMed  Google Scholar 

  67. Baffert F, Evrot E, Ebel N, Roelli C, Andraos R, Qian Z et al. Improved efficacy upon combined JAK1/2 and pan-deacetylase inhibition using ruxolitinib (INC424) and panobinostat (LBH589) in preclinical mouse models of JAK2V617F-driven disease. Blood 2011; 118: 798.

    Google Scholar 

  68. Tabarroki A, Saunthararajah Y, Visconte V, Cinalli T, Colaluca K, Rogers HJ et al. Ruxolitinib in combination with DNA methyltransferase inhibitors; clinical responses in symptomatic myelofibrosis patients with cytopenias and elevated blasts counts. Leuk Lymphoma 2014; 27: 1–3.

    Google Scholar 

  69. Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 2013; 339: 1621–1625.

    CAS  PubMed  Google Scholar 

  70. Wang F, Travins J, DeLaBarre B, Penard-Lacronique V, Schalm S, Hansen E et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 2013; 340: 622–626.

    CAS  PubMed  Google Scholar 

  71. Ellwood-Yen K, Chen Y, Wang F, Lemieux R, Popovici-Muller J, Yang H et al. IDH1 mutant inhibitor induces cellular differentiation and offers a combination benefit with Ara-C in a primary human Idh1 mutant AML xenograft model. Cancer Res 2014; 74: 1194.

    Google Scholar 

  72. Bejar R, Lord A, Stevenson K, Bar-Natan M, Perez-Ladaga A, Zaneveld J et al. TET2 mutations predict response to hypomethylating agents in MDS patients. Blood 2014; 124: 2705–2712.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mughal TI, Barbui T, Abdel-Wahab O, Kralovics R, Jamieson C, Kvasnicka HM et al. Novel insights into the biology and treatment of chronic myeloproliferative neoplasms. Leuk Lymphoma (e-pub ahead of print 19 November 2014; doi:10.3109/10428194.2014.974594).

    Google Scholar 

  74. Dupriez B, Morel P, Demory JL, Lai JL, Simon M, Plantier I et al. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood 1996; 88: 1013–1018.

    CAS  PubMed  Google Scholar 

  75. Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009; 113: 2895–2901.

    CAS  PubMed  Google Scholar 

  76. Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Pereira A et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010; 115: 1703–1708.

    CAS  PubMed  Google Scholar 

  77. Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 2011; 29: 392–397.

    PubMed  Google Scholar 

  78. Scott BL, Gooley TA, Sorror ML, Rezvani AR, Linenberger ML, Grim J et al. The Dynamic International Prognostic Scoring System for myelofibrosis predicts outcomes after hematopoietic cell transplantation. Blood 2012; 119: 2657–2664.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ditschkowski M, Elmaagacli AH, Trenschel R, Gromke T, Steckel NK, Koldehoff M et al. Dynamic International Prognostic Scoring System scores, pretransplant therapy and chronic graft-versus-host disease determine outcome after allogeneic hematopoietic stem cell transplantation for myelofibrosis. Haematologica 2012; 97: 1574–1581.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Alchalby H, Yunus D-R, Zabelina T, Kobbe G, Holler E, Bornhäuser M et al. Risk models predicting survival after reduced-intensity transplantation for myelofibrosis. Br J Haematol 2012; 157: 75–85.

    PubMed  Google Scholar 

  81. Bacigalupo A, Soraru M, Dominietto A, Pozzi S, Geroldi S, Van Lint MT et al. Allogeneic hematopoietic SCT for patients with primary myelofibrosis: a predictive transplant score based on transfusion requirement, spleen size and donor type. Bone Marrow Transplant 2009; 45: 458–463.

    PubMed  Google Scholar 

  82. Gratwohl A, Stern M, Brand R, Apperley J, Baldomero H, de Witte T et al. Risk score for outcome after allogeneic hematopoietic stem cell transplantation: a retrospective analysis. Cancer 2009; 115: 4715–4726.

    PubMed  Google Scholar 

  83. Li Z, Gooley T, Applebaum FR, Deeg HJ . Splenectomy and hemopoietic stem cell transplantation for myelofibrosis. Blood 2001; 97: 2180–2181.

    CAS  PubMed  Google Scholar 

  84. Robin M, Tabrizi R, Mohty M, Furst S, Michallet M, Bay JO et al. Allogeneic hematopoietic stem cell transplantation for myelofibrosis: a report of the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire (SFGM-TC). Br J Haematol 2011; 152: 331–339.

    PubMed  Google Scholar 

  85. Alchalby H, Zabelina T, Stübig T, van Biezen A, Bornhäuser M, Di Bartolomeo P et al. Allogeneic stem cell transpalntation for myelofibrosis with leukemic transformation: a study from the Myeloproliferative Neoplasm Subcommittee of the CMWP of the European Group for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2014; 20: 279–287.

    PubMed  Google Scholar 

  86. Mesa RA, Tibes R . MPN blast phase: clinical challenge and assessing response. Leuk Res 2012; 36: 1496–1497.

    PubMed  Google Scholar 

  87. Bello C, Yu D, Komrokji RS, Zhu W, Wetzstein GA, List AF et al. Outcomes after induction chemotherapy in patients with acute myeloid leukemia arising from myelodysplastic syndrome. Cancer 2011; 117: 1463–1469.

    PubMed  Google Scholar 

  88. Kundranda MN, Tibes R, Mesa RA . Transformation of a chronic myeloproliferative neoplasm to acute myelogenous leukemia: does anything work? Curr Hematol Malig Rep 2012; 7: 78–86.

    PubMed  Google Scholar 

  89. Thepot S, Itzykson R, Seegers V, Raffoux E, Quesnel B, Chait Y et al. Treatment of progression of Philadelphia-negative myeloproliferative neoplasms to myelodysplastic syndrome or acute myeloid leukemia by azacitidine: a report on 54 cases on the behalf of the Groupe Francophone des Myelodysplasies (GFM). Blood 2010; 116: 3735–3742.

    CAS  PubMed  Google Scholar 

  90. Mascarenhas J, Navada S, Malone A, Rodriguez A, Najfeld V, Hoffman R . Therapeutic options for patients with myelofibrosis in blast phase. Leuk Res 2010; 34: 1246–1249.

    PubMed  Google Scholar 

  91. Cherington C, Slack JL, Leis J, Adams RH, Reeder CB, Mikhael JR et al. Allogeneic stem cell transplantation for myeloproliferative neoplasm in blast phase. Leuk Res 2012; 36: 1147–1151.

    PubMed  Google Scholar 

  92. Eghtedar A, Verstovsek S, Estrov Z, Burger J, Cortes J, Bivins C et al. Phase 2 study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias, including postmyeloproliferative neoplasm acute myeloid leukemia. Blood 2012; 119: 4614–4618.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Borthakur GPL, Popplewell L, Kirchbaum MH, Foran JM, Kadia TM, Jabbour E et al. Phase I/II trial of the MEK1/2 inhibitor GSK1120212 (GSK212) in patients (pts) with relapsed/refractory myeloid malignancies: evidence of activity in pts with RAS mutation. J Clin Oncol 2011; 29: abstr 6506.

    Google Scholar 

  94. Tibes R, Bogenberger JM, Geyer HL, Mesa RA . JAK2 inhibitors in the treatment of myeloproliferative neoplasms. Expert Opin Investig Drugs 2012; 21: 1755–1774.

    CAS  PubMed  Google Scholar 

  95. Rondelli D, Goldberg JD, Isola L, Price LS, Shore TB, Boyer M et al. MPD-RC101 prospective study of reduced-intensity allogeneic hematopoietic stem cell transplantation in patients with myelofibrosis. Blood 2014; 124: 1183–1191.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Robin M, Giannotti F, Deconinck E, Mohty M, Michallet M, Sanz G et al. Unrelated cord blood transplantation for patients with primary or secondary myelofibrosis. Biol Blood Marrow Transplant 2014; 20: 1841–1846.

    PubMed  Google Scholar 

  97. Panagiota V, Thol F, Markus B, Fehse B, Alchalby H, Badbaran A et al. Prognostic effect of calreticulin mutations in patients with myelofibrosis after allogeneic hematopoietic stem cell transplantation. Leukemia 2014; 28: 1552–1555.

    CAS  PubMed  Google Scholar 

  98. Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 2014; 28: 1472–1477.

    CAS  PubMed  Google Scholar 

  99. Rumi E, Harutyunyan AS, Pietra D, Milosevic JD, Casetti IC, Bellini M et al. CALR exon 9 mutations are somatically acquired events in familial cases of essential thrombocythemia or primary myelofibrosis. Blood 2014; 123: 2416–2419.

    CAS  PubMed  Google Scholar 

  100. Fauble V, Emanuel RM, Geyer HL, Dueck AC, Kroeger N, Scott BL et al. Myeloproliferative Neoplasm Quality of Life (MPN-QOL) Study Group: observational study of quality of life and symptomatic response in myelofibrosis patients receiving undergoing treatment with conventional therapy, The Measures Trial and Allogeneic Stem Cell Transplant, The Symptoms Trial. Blood 2013; 122: 4090.

    Google Scholar 

  101. Mesa RA, Schwager S, Radia D, Cheville A, Hussein K, Niblack J et al. The Myelofibrosis Symptom Assessment Form (MFSAF): an evidence-based brief inventory to measure quality of life and symptomatic response to treatment in myelofibrosis. Leuk Res 2009; 33: 1199–1203.

    PubMed  PubMed Central  Google Scholar 

  102. Scherber R, Dueck AC, Johansson P, Barbui T, Barosi G, Vannucchi AM et al. The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood 2011; 118: 401–408.

    CAS  PubMed  Google Scholar 

  103. Emanuel RM, Dueck AC, Geyer HL, Kiladjian JJ, Slot S, Zweegman S et al. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol 2012; 30: 4098–4103.

    PubMed  PubMed Central  Google Scholar 

  104. Gupta V, Hari P, Hoffman R . Allogeneic hematopoietic cell transplantation for myelofibrosis in the era of JAK inhibitors. Blood 2012; 120: 1367–1379.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gupta V, Gotlib J, Radich JP, Kröger NM, Rondelli D, Verstovsek S et al. Janus kinase inhibitors and allogeneic stem cell transplantation for myelofibrosis. Biol Blood Marrow Transplant 2014; 20: 1274–1281.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Jaekel N, Behre G, Behning A, Wickenhauser C, Lange T, Niederwieser D et al. Allogeneic hematopoietic cell transplantation for myelofibrosis in patients pretreated with JAK1 and JAK2 inhibitor ruxolitinib. Bone Marrow Transplant 2014; 49: 179–184.

    CAS  PubMed  Google Scholar 

  107. Stübig T, Alchalby H, Ditschkowski M, Wolf D, Wulf G, Zabelina T et al. JAK inhibition with ruxolitinib as pretreatment for allogeneic stem cell transplantation in primary or post ET/PV myelofibrosis. Leukemia 2014; 28: 1736–1738.

    PubMed  Google Scholar 

  108. Kröger N, Alchalby H, Ditschkowski M, Wolf D, Wulf G, Zabelina T et al. Ruxolitinib as pretreatment before allogeneic stem cell transplantation for myelofibrosis. Blood 2013; 122: 392.

    Google Scholar 

  109. Barosi G, Tefferi A, Besses C, Birgegard G, Cervantes F, Finazzi G et al. Clinical endpoints for drug treatment trials in BCR-ABL1-negative classic myeloproliferative neoplasms: consensus statements from European LeukemiaNET (ELN) and International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT). Leukemia 2015; 29: 20–26.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alpine Oncology Foundation, in particular Dr Alpa Parmar, who helped organize the workshop and Incyte Corporation (USA) for their unrestricted educational support.

Author Contributions

RT, TIM and RH designed the outline strategy of the manuscript and analyzed and interpreted the data. RT and TIM wrote the first draft of the manuscript. All authors participated in writing significant sections of the paper and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T I Mughal.

Ethics declarations

Competing interests

VG was a member of the Scientific Advisory Board at Novartis and Incyte, and received research support from Novartis and Incyte. RHa was a member of the Scientific Advisory Board at Incyte. JM received research support from Novartis and Incyte. TIM was a consultant at Novartis and Incyte. OO was a member of the Scientific Advisory Board at Sanofi-Aventis, Incyte, Spectrum Pharmaceuticals, Sunesis Pharmaceuticals and Algeta Pharmaceuticals, and received research support from Eisai Pharmaceuticals and TopoTarget Pharmaceuticals. All other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamari, R., Mughal, T., Rondelli, D. et al. Allo-SCT for myelofibrosis: reversing the chronic phase in the JAK inhibitor era?. Bone Marrow Transplant 50, 628–636 (2015). https://doi.org/10.1038/bmt.2014.323

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2014.323

This article is cited by

Search

Quick links