Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Graft-versus-host Disease

Apoptotic signaling through Fas and TNF receptors ameliorates GVHD in mobilized peripheral blood grafts

Abstract

Mobilized peripheral blood (mPB) is a prevalent source of hematopoietic progenitors for transplantation; however, allogeneic and haploidentical transplants are often accompanied by severe GVHD. Following the observation that murine GVHD is ameliorated by pretransplant donor cell exposure to Fas-ligand (FasL) without host-specific sensitization, we assessed the susceptibility of mPB cells to spontaneous and receptor-induced apoptosis as a possible approach to GVHD prophylaxis. Short incubation for 4 h resulted in spontaneous apoptosis of 50% of the T and B lymphocytes and 60% myeloid cells. Although expression of Fas and TNF-R1 was proportionate to fractional apoptosis, cell death was dominated by spontaneous apoptosis. Functional assays revealed that the death receptors modulated mPB graft composition as compared with incubation in medium, without detectable quantitative variations. Removal of dead cells increased the frequency of mPB myeloid progenitors (P<0.001 vs medium), and recipients of mPB exposed to death ligands displayed reduced GVHD (P<0.01 vs medium) and improved survival following lipopolysacharide stimulation. mPB grafts exposed to the apoptotic challenge retained SCID reconstituting potential and graft versus tumor activity. These data emphasize that short-term exposure of mPB grafts to an apoptotic challenge is effective in reduction of GVHD effector activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Shlomchik WD . Graft-versus-host disease. Nat Rev Immunol 2007; 7: 340–352.

    Article  CAS  Google Scholar 

  2. Ferrara JL, Levine JE, Reddy P, Holler E . Graft-versus-host disease. Lancet 2009; 373: 1550–1561.

    Article  CAS  Google Scholar 

  3. Ullrich SE . Photoinactivation of T-cell function with psoralen and UVA radiation suppresses the induction of experimental murine graft-versus-host disease across major histocompatibility barriers. J Invest Dermatol 1991; 96: 303–308.

    Article  CAS  Google Scholar 

  4. Grass JA, Wafa T, Reames A, Wages D, Corash L, Ferrara JL et al. Prevention of transfusion-associated graft-versus-host disease by photochemical treatment. Blood 1999; 93: 3140–3147.

    CAS  PubMed  Google Scholar 

  5. Waller EK, Boyer M . New strategies in allogeneic stem cell transplantation: immunotherapy using irradiated allogeneic T cells. Bone Marrow Transplant 2000; 25 (Suppl 2): S20–S24.

    Article  Google Scholar 

  6. Giver CR, Montes RO, Mittelstaedt S, Li JM, Jaye DL, Lonial S et al. Ex vivo fludarabine exposure inhibits graft-versus-host activity of allogeneic T cells while preserving graft-versus-leukemia effects. Biol Blood Marrow Transplant 2003; 9: 616–632.

    Article  CAS  Google Scholar 

  7. Godfrey W1R, Krampf MR, Taylor PA, Blazar BR . Ex vivo depletion of alloreactive cells based on CFSE dye dilution, activation antigen selection, and dendritic cell stimulation. Blood 2004; 103: 1158–1165.

    Article  CAS  Google Scholar 

  8. Matsue H, Matsue K, Kusuhara M, Kumamoto T, Okumura K, Yagita H et al. Immunosuppressive properties of CD95L-transduced ‘killer’ hybrids created by fusing donor- and recipient-derived dendritic cells. Blood 2001; 98: 3465–3472.

    Article  CAS  Google Scholar 

  9. Hartwig UF, Robbers M, Wickenhauser C, Huber C . Murine acute graft-versus-host disease can be prevented by depletion of alloreactive T lymphocytes using activation-induced cell death. Blood 2002; 99: 3041–3049.

    Article  CAS  Google Scholar 

  10. Georgantas RW, Bohana-Kashtan O, Civin CI . Ex vivo soluble fas ligand treatment of donor cells to selectively reduce murine acute graft versus host disease. Transplantation 2006; 82: 471–478.

    Article  CAS  Google Scholar 

  11. Bohana-Kashtan O, Morisot S, Hildreth R, Brayton C, Levitsky HI, Civin CI . Selective reduction of graft-versus-host disease-mediating human T cells by ex vivo treatment with soluble Fas ligand. J Immunol 2009; 183: 696–705.

    Article  CAS  Google Scholar 

  12. Morecki S, Gelfand Y, Yacovlev E, Eizik O, Shabat Y, Sagiv I et al. Selective elimination of alloreactivity in vitro and in vivo while sparing other T-cell-mediated immune responses. Bone Marrow Transplant 2012; 47: 838–845.

    Article  CAS  Google Scholar 

  13. Yarkoni S, Prigozhina TB, Slavin S, Askenasy N . IL-2-targeted therapy ameliorates the severity of graft-versus-host disease: ex vivo selective depletion of host-reactive T cells and in vivo therapy. Biol Blood Marrow Transplant 2012; 18: 523–535.

    Article  CAS  Google Scholar 

  14. Askenasy N, Mizrahi K, Ash S, Askenasy EM, Yaniv I, Stein J . Depletion of naïve lymphocytes with Fas-ligand ex vivo prevents GvHD without impairing T cell support of engraftment or GVT activity. Biol Blood Marrow Transplant 2013; 19: 185–195.

    Article  CAS  Google Scholar 

  15. Pearl-Yafe M, Yolcu ES, Stein J, Kaplan O, Shirwan H, Yaniv I et al. Expression of Fas and Fas-ligand in donor hematopoietic stem and progenitor cells is dissociated from the sensitivity to apoptosis. Exp Hematol 2007; 35: 1601–1612.

    Article  CAS  Google Scholar 

  16. Pearl-Yafe M, Stein J, Yolcu ES, Farkas DL, Shirwan H, Yaniv I et al. Fas transduces dual apoptotic and trophic signals in hematopoietic progenitors. Stem Cells 2007; 25: 3194–3203.

    Article  Google Scholar 

  17. Pearl-Yafe M, Mizrahi K, Stein J, Yolcu ES, Kaplan O, Shirwan H et al. Tumor necrosis factor receptors support murine hematopoietic progenitor function in the early stages of engraftment. Stem Cells 2010; 28: 1270–1280.

    CAS  PubMed  Google Scholar 

  18. Askenasy N, Mizrahi K, Ash S, Askenasy EM, Yaniv I, Stein J . Regulatory functions of TRAIL in hematopoietic progenitors: human umbilical cord blood and murine bone marrow transplantation. Leukemia 2010; 24: 1325–1334.

    Article  Google Scholar 

  19. Mizrahi K, Stein J, Yaniv I, Kaplan O, Askenasy N . TNF-α has tropic rather than apoptotic activity in human hematopoietic progenitors: involvement of TNF receptor-1 and caspase-8. Stem Cells 2013; 31: 156–166.

    Article  CAS  Google Scholar 

  20. Kaminitz A, Yolcu ES, Askenasy EM, Stein J, Yaniv I, Shirwan H et al. Effector and naturally occurring regulatory T cells display no abnormalities in activation induced cell death in NOD mice. PLoS One 2011; 6: e21630.

    Article  CAS  Google Scholar 

  21. Ash S, Gigi V, Askenasy N, Fabian I, Stein J, Yaniv I . Graft versus neuroblastoma reaction is efficiently elicited by allogeneic bone marrow transpl1antation through cytolytic activity in the absence of GVHD. Cancer Immunol Immunother 2009; 58: 2073–2084.

    Article  Google Scholar 

  22. Reuveni D, Halperin D, Fabian I, Tsarfaty G, Askenasy N, Shalit I . Moxifloxacin increases anti-tumor and anti-angiogenic activity of irinotecan in human xenograft tumors. Biochem Pharmacol 2010; 79: 1100–1107.

    Article  CAS  Google Scholar 

  23. Kaminitz A, Askenasy EM, Yaniv I, Stein J, Askenasy N . Apoptosis of purified CD4+ T cell subsets is dominated by cytokine deprivation and absence of other cells in new onset diabetic NOD mice. PLoS One 2010; 5: e15684.

    Article  CAS  Google Scholar 

  24. Peters R, Leyvraz S, Perey L . Apoptotic regulation in primitive hematopoietic precursors. Blood 1998; 92: 2041–2052.

    CAS  PubMed  Google Scholar 

  25. Pyatt DW, Stillman WS, Yang Y, Gross S, Zheng JH, Irons RD . An essential role for NF-{kappa}B in human CD34+ bone marrow cell survival. Blood 1999; 93: 3302–3308.

    CAS  PubMed  Google Scholar 

  26. Maurillo L, Del Poeta G, Venditti A, Buccisano F, Battaglia A, Santinelli S et al. Quantitative analysis of Fas and bcl-2 expression in hematopoietic precursors. Haematologica 2001; 86: 237–243.

    CAS  PubMed  Google Scholar 

  27. Fukuda S, Pelus LM . Regulation of the inhibitor-of-apoptosis family member survivin in normal cord blood and bone marrow CD34 cells by hematopoietic growth factors: implication of survivin expression in normal hematopoiesis. Blood 2001; 98: 2091–2100.

    Article  CAS  Google Scholar 

  28. Kim H, Whartenby KA, Georgantas RW, Wingard J, Civin CI . Human CD34+ hematopoietic stem/progenitor cells express high levels of FLIP and are resistant to Fas-mediated apoptosis. Stem Cells 2002; 20: 174–182.

    Article  CAS  Google Scholar 

  29. Gothot A, van der Loo JCM, Clapp DW, Srour EF . Cell cycle–related changes in repopulating capacity of human mobilized peripheral blood CD34 cells in non-obese diabetic/severe combined immunedeficient mice. Blood 1998; 92: 2641–2649.

    CAS  Google Scholar 

  30. Danet GH, Lee HW, Luongo JL, Simon MC, Bonnet DA . Dissociation between stem cell phenotype and NOD/SCID repopulating activity in human peripheral blood CD34(+) cells after ex vivo expansion. Exp Hematol 2001; 29: 1465–1473.

    Article  CAS  Google Scholar 

  31. Young JC, Lin K, Travis M, Hansteen G, Abitorabi A, Sirenko O et al. Investigation into an engraftment defect induced by culturing primitive hematopoietic cells with cytokines. Cytotherapy 2001; 3: 307–320.

    Article  CAS  Google Scholar 

  32. Iwasaki T, Hamano T, Saheki K, Kuroiwa T, Kataoka Y, Takemoto Y et al. Effect of graft-versus-host disease (GVHD) on host hematopoietic progenitor cells is mediated by Fas-Fas ligand interactions but this does not explain the effect of GVHD on donor cells. Cell Immunol 1999; 197: 30–38.

    Article  CAS  Google Scholar 

  33. Jiang Z, Adams GB, Hanash AM, Scadden DT, Levy RB . The contribution of cytotoxic and noncytotoxic function by donor T-cells that support engraftment after allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 2002; 8: 588–596.

    Article  Google Scholar 

  34. Marks L, Altman NH, Podack ER, Levy RB . Donor T cells lacking Fas ligand and perforin retain the capacity to induce severe GvHD in minor histocompatibility antigen mismatched bone-marrow transplantation recipients. Transplantation 2004; 77: 804–812.

    Article  Google Scholar 

  35. Mayumi H, Good RA . Long-lasting skin allograft tolerance in adult mice induced across fully allogeneic (multimajor H-2 plus multiminor histocompatibility) antigen barriers by a tolerance-inducing method using cyclophosphamide. J Exp Med 1989; 169: 213–238.

    Article  CAS  Google Scholar 

  36. Colson YL, Wren SM, Schuchert MJ, Patrene KD, Johnson PC, Boggs SS et al. A nonlethal conditioning approach to achieve durable multilineage mixed chimerism and tolerance across major, minor, and hematopoietic histocompatibility barriers. J Immunol 1995; 155: 4179–4188.

    CAS  PubMed  Google Scholar 

  37. Truitt RL, Johnson BD, Hanke C, Talib S, Hearst JE . Photochemical treatment with S-59 psoralen and ultraviolet A light to control the fate of naive or primed T lymphocytes in vivo after allogeneic bone marrow transplantation. J Immunol 1999; 163: 5145–5156.

    CAS  PubMed  Google Scholar 

  38. Hannani D, Merlin E, Gabert F, Laurin D, Deméocq F, Chaperot L et al. Photochemotherapy induces a faster apoptosis of alloreactive activated T cells than of nonalloreactive resting T cells in graft versus host disease. Transplantation 2010; 90: 1232–1238.

    Article  Google Scholar 

  39. Morecki S, Yacovlev E, Gelfand Y, Eizik O, Slavin S . Pretransplant treatment of donors with immunomodulators to control graft-versus-host disease (GVHD) in transplant recipients. Exp Hematol 2007; 35: 748–756.

    Article  CAS  Google Scholar 

  40. Morecki S, Yacovlev E, Gelfand Y, Shabat Y, Slavin S . Induction of graft-versus-leukemia (GVL) effect without graft-versus-host disease (GVHD) by pretransplant donor treatment with immunomodulators. Biol Blood Marrow Transplant 2009; 15: 406–415.

    Article  CAS  Google Scholar 

  41. Blazar BR, Carroll SF, Vallera DA . Prevention of murine graft-versus-host disease and bone marrow alloengraftment across the major histocompatibility barrier after donor graft preincubation with anti-LFA1 immunotoxin. Blood 1991; 78: 3093–3102.

    CAS  PubMed  Google Scholar 

  42. Drobyski WR, Majewski D, Ozker K, Hanson G . Ex vivo anti-CD3 antibody-activated donor T cells have a reduced ability to cause lethal murine graft-versus-host disease but retain their ability to facilitate alloengraftment. J Immunol 1998; 161: 2610–2619.

    CAS  PubMed  Google Scholar 

  43. Koh MB, Prentice HG, Corbo M, Morgan M, Cotter FE, Lowdell MW . Alloantigen-specific T-cell depletion in a major histocompatibility complex fully mismatched murine model provides effective graft-versus-host disease prophylaxis in the presence of lymphoid engraftment. Br J Haematol 2002; 118: 108–116.

    Article  CAS  Google Scholar 

  44. Chen HR, Ji SQ, Wang HX, Yan HM, Zhu L, Liu J et al. Humanized anti-CD25 monoclonal antibody for prophylaxis of graft-vs-host disease (GVHD) in haploidentical bone marrow transplantation without ex vivo T-cell depletion. Exp Hematol 2003; 31: 1019–1025.

    Article  CAS  Google Scholar 

  45. Davies JK, Koh MB, Lowdell MW . Antiviral immunity and T-regulatory cell function are retained after selective alloreactive T-cell depletion in both the HLA-identical and HLA-mismatched settings. Biol Blood Marrow Transplant 2004; 10: 259–268.

    Article  CAS  Google Scholar 

  46. Ji SQ, Chen HR, Yan HM, Wang HX, Liu J, Zhu PY et al. Anti-CD25 monoclonal antibody (basiliximab) for prevention of graft-versus-host disease after haploidentical bone marrow transplantation for hematological malignancies. Bone Marrow Transplant 2005; 36: 349–354.

    Article  CAS  Google Scholar 

  47. Bastien JP, Roy J, Roy DC . Selective T-cell depletion for haplotype-mismatched allogeneic stem cell transplantation. Semin Oncol 2012; 39: 674–682.

    Article  CAS  Google Scholar 

  48. Askenasy N, Yolcu ES, Yaniv I, Shirwan H . Induction of tolerance using Fas ligand: a double-edged immunomodulator. Blood 2005; 105: 1396–1404.

    Article  CAS  Google Scholar 

  49. Askenasy N . Hematopoietic transplants for disease suppression and cure in type 1 diabetes. Curr Stem Cell Res Ther 2013; 8: 333–339.

    Article  CAS  Google Scholar 

  50. Ng YY, van Kessel B, Lokhorst HM, Baert MR, van den Burg CM, Bloem AC et al. Gene-expression profiling of CD34+ cells from various hematopoietic stem-cell sources reveal1s functional differences instem-cell activity. J Leukoc Biol 2004; 75: 314–323.

    Article  CAS  Google Scholar 

  51. Huang S, Law P, Young D, Ho AD . Candidate hematopoietic stem cells from fetal tissues, umbilical cord blood vs adult bone marrow and mobilized peripheral blood. Exp Hematol 1998; 26: 1162–1171.

    CAS  PubMed  Google Scholar 

  52. Tanavde VM, Malehorn MT, Lumkul R, Gao Z, Wingard J, Garrett ES et al. Human stem-progenitor cells from neonatal cord blood have greater hematopoietic expansion capacity than those from mobilized adult blood. Exp Hematol 2002; 30: 816–823.

    Article  CAS  Google Scholar 

  53. Srour EF, Bregni M, Traycoff CM, Agüero B, Kosak ST, Hoffman R et al. Long-term hematopoietic culture-initiating cells are more abundant in mobilized peripheral blood grafts than in bone marrow but have a more limited ex vivo expansion potential. Blood Cells Mol Dis 1996; 22: 68–81.

    Article  CAS  Google Scholar 

  54. Lemoli RM, Tafuri A, Fortuna A, Petrucci MT, Ricciardi MR, Catani L et al. Cycling status of CD34+ cells mobilized into peripheral blood of healthy donors by recombinant human granulocyte colony-stimulating factor. Blood 1997; 89: 1189–1196.

    CAS  PubMed  Google Scholar 

  55. Traycoff CM, Orazi A, Ladd AC, Rice S, McMahel J, Srour EF . Proliferation-induced decline of primitive hematopoietic progenitor cell activity is coupled with an increase in apoptosis of ex vivo expanded CD34+ cells. Exp Hematol 1998; 26: 53–62.

    CAS  PubMed  Google Scholar 

  56. Rutella S, Pierelli L, Sica S, Rumi C, Leone G . Transplantation of autologous peripheral blood progenitor cells: impact of CD34-cell selection on immunological reconstitution. Leuk Lymphoma 2001; 42: 1207–1220.

    Article  CAS  Google Scholar 

  57. Chen YB, Cutler CS . Biomarkers for acute GVHD: can we predict the unpredictable? Bone Marrow Transplant 2013; 48: 755–760.

    Article  CAS  Google Scholar 

  58. Paczesny S . Discovery and validation of graft-versus-host disease biomarkers. Blood 2013; 121: 585–594.

    Article  CAS  Google Scholar 

  59. Pidala J, Sarwal M, Roedder S, Lee SJ . Biologic markers of chronic GVHD. Bone Marrow Transplant 2014; 49: 324–331.

    Article  CAS  Google Scholar 

  60. Yolcu ES, Kaminitz A, Mizrahi K, Ash S, Yaniv I, Stein J et al. Immunomodulation with donor regulatory T cells armed with Fas-ligand alleviates graft-versus-host disease. Exp Hematol 2013; 41: 903–911.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Frankel Trust for Experimental Bone Marrow Transplantation. We thank Mrs Ela Zuzovsky and Mrs Ana Zemliansky for their outstanding technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Askenasy.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizrahi, K., Yaniv, I., Ash, S. et al. Apoptotic signaling through Fas and TNF receptors ameliorates GVHD in mobilized peripheral blood grafts. Bone Marrow Transplant 49, 640–648 (2014). https://doi.org/10.1038/bmt.2014.12

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2014.12

Keywords

This article is cited by

Search

Quick links