Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Microbial Issues

Single-cell T-cell receptor-β analysis of HLA-A*2402-restricted CMV- pp65-specific cytotoxic T-cells in allogeneic hematopoietic SCT

Abstract

Cellular immunity is important for the control of CMV infection after allogeneic hematopoietic cell transplantation (Allo-HCT). However, the actual in vivo dynamics of CMV-specific cytotoxic T cell (CMV-CTL) clones are still unclear. We conducted clone monitoring of tetramer+ CMV-CTLs in HLA-A*2402-positive donor–patient pairs, using a direct single-cell analysis that enabled the simultaneous identification and quantification of CTL clones. Clone dynamics were assessed in three cases with or without CMV reactivation. In Case-1 without CMV reactivation, despite the long-term use of systemic steroid, dominant clones of Donor-1 persisted and remained dominant. The CMV-CTLs at 1 year after Allo-HCT included a high proportion of CD45RA+CCR7 effector and CD27CD57+mature T cells. On the other hand, in Cases-2 and -3 with CMV reactivation, novel clones appeared and became dominant during the follow-up. Their CMV-CTLs included more CD27+ immature T cells at 1 year after Allo-HCT. With regard to clonotypes, HLA-A*2402-restricted CMV-CTLs tended to select BV7 and BJ1-1 genes for complementarity-determining region 3 (CDR3) of T-cell receptor (TCR)-β. Specific amino-acid sequences of CDR3 of TCR-β were found in each case. Patterns of clone reconstitution and phenotype would be different according to CMV reactivation. In vivo clone monitoring of CMV-CTLs could provide insight into the mechanism of immunological reconstitution following Allo-HCT.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Stocchi R, Ward KN, Fanin R, Baccarani M, Apperley JF . Management of human cytomegalovirus infection and disease after allogeneic bone marrow transplantation. Haematologica 1999; 84: 71–79.

    CAS  PubMed  Google Scholar 

  2. Mori T, Kato J . Cytomegalovirus infection/disease after hematopoietic stem cell transplantation. Int J Hematol 2010; 91: 588–595.

    Article  PubMed  Google Scholar 

  3. Ljungman P, Engelhard D, Link H, Biron P, Brandt L, Brunet S et al. Treatment of interstitial pneumonitis due to cytomegalovirus with ganciclovir and intravenous immune globulin: experience of European Bone Marrow Transplant Group. Clin Infect Dis 1992; 14: 831–835.

    Article  CAS  PubMed  Google Scholar 

  4. Ljungman P, Brand R, Einsele H, Frassoni F, Niederwieser D, Cordonnier C . Donor CMV serologic status and outcome of CMV-seropositive recipients after unrelated donor stem cell transplantation: an EBMT megafile analysis. Blood 2003; 102: 4255–4260.

    Article  CAS  PubMed  Google Scholar 

  5. Moins-Teisserenc H, Busson M, Scieux C, Bajzik V, Cayuela JM, Clave E et al. Patterns of cytomegalovirus reactivation are associated with distinct evolutive profiles of immune reconstitution after allogeneic hematopoietic stem cell transplantation. J Infect Dis 2008; 198: 818–826.

    Article  PubMed  Google Scholar 

  6. Gamadia LE, Rentenaar RJ, Baars PA, Remmerswaal EB, Surachno S, Weel JF et al. Differentiation of cytomegalovirus-specific CD8(+) T cells in healthy and immunosuppressed virus carriers. Blood 2001; 98: 754–761.

    Article  CAS  PubMed  Google Scholar 

  7. Wynn KK, Fulton Z, Cooper L, Silins SL, Gras S, Archbold JK et al. Impact of clonal competition for peptide-MHC complexes on the CD8+ T-cell repertoire selection in a persistent viral infection. Blood 2008; 111: 4283–4292.

    Article  CAS  PubMed  Google Scholar 

  8. Babel N, Brestrich G, Gondek LP, Sattler A, Wlodarski MW, Poliak N et al. Clonotype analysis of cytomegalovirus-specific cytotoxic T lymphocytes. J Am Soc Nephrol 2009; 20: 344–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Day EK, Carmichael AJ, ten Berge IJ, Waller EC, Sissons JG, Wills MR . Rapid CD8+ T cell repertoire focusing and selection of high-affinity clones into memory following primary infection with a persistent human virus: human cytomegalovirus. J Immunol 2007; 179: 3203–3213.

    Article  CAS  PubMed  Google Scholar 

  10. Peggs K, Verfuerth S, Pizzey A, Ainsworth J, Moss P, Mackinnon S . Characterization of human cytomegalovirus peptide-specific CD8(+) T-cell repertoire diversity following in vitro restimulation by antigen-pulsed dendritic cells. Blood 2002; 99: 213–223.

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka-Harada Y, Kawakami M, Oka Y, Tsuboi A, Katagiri T, Elisseeva OA et al. Biased usage of BV gene families of T-cell receptors of WT1 (Wilms' tumor gene)-specific CD8+ T cells in patients with myeloid malignancies. Cancer Sci 2010; 101: 594–600.

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka Y, Nakasone H, Yamazaki R, Sato K, Sato M, Terasako K et al. Single-cell analysis of T-cell receptor repertoire of HTLV-1 Tax-specific cytotoxic T cells in allogeneic transplant recipients with adult T-cell leukemia/lymphoma. Cancer Res 2010; 70: 6181–6192.

    Article  CAS  PubMed  Google Scholar 

  13. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A . Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401: 708–712.

    Article  CAS  PubMed  Google Scholar 

  14. Koch S, Larbi A, Ozcelik D, Solana R, Gouttefangeas C, Attig S et al. Cytomegalovirus infection: a driving force in human T cell immunosenescence. Ann N Y Acad Sci 2007; 1114: 23–35.

    Article  CAS  PubMed  Google Scholar 

  15. Sallusto F, Geginat J, Lanzavecchia A . Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 2004; 22: 745–763.

    Article  CAS  PubMed  Google Scholar 

  16. Kern F, Khatamzas E, Surel I, Frommel C, Reinke P, Waldrop SL et al. Distribution of human CMV-specific memory T cells among the CD8pos. subsets defined by CD57, CD27, and CD45 isoforms. Eur J Immunol 1999; 29: 2908–2915.

    Article  CAS  PubMed  Google Scholar 

  17. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 2002; 8: 379–385.

    Article  CAS  PubMed  Google Scholar 

  18. Muneta Y, Nagaya H, Minagawa Y, Enomoto C, Matsumoto S, Mori Y . Expression and one-step purification of bovine interleukin-21 (IL-21) in silkworms using a hybrid baculovirus expression system. Biotechnol Lett 2004; 26: 1453–1458.

    Article  CAS  PubMed  Google Scholar 

  19. Sasawatari S, Tadaki T, Isogai M, Takahara M, Nieda M, Kakimi K . Efficient priming and expansion of antigen-specific CD8+ T cells by a novel cell-based artificial APC. Immunol Cell Biol 2006; 84: 512–521.

    Article  CAS  PubMed  Google Scholar 

  20. Motomura Y, Ikuta Y, Kuronuma T, Komori H, Ito M, Tsuchihara M et al. HLA-A2 and -A24-restricted glypican-3-derived peptide vaccine induces specific CTLs: preclinical study using mice. Int J Oncol 2008; 32: 985–990.

    CAS  PubMed  Google Scholar 

  21. Engstrand M, Lidehall AK, Totterman TH, Herrman B, Eriksson BM, Korsgren O . Cellular responses to cytomegalovirus in immunosuppressed patients: circulating CD8+ T cells recognizing CMVpp65 are present but display functional impairment. Clin Exp Immunol 2003; 132: 96–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuzushima K, Hayashi N, Kimura H, Tsurumi T . Efficient identification of HLA-A*2402-restricted cytomegalovirus-specific CD8(+) T-cell epitopes by a computer algorithm and an enzyme-linked immunospot assay. Blood 2001; 98: 1872–1881.

    Article  CAS  PubMed  Google Scholar 

  23. Reusser P, Riddell SR, Meyers JD, Greenberg PD . Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood 1991; 78: 1373–1380.

    CAS  PubMed  Google Scholar 

  24. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995; 333: 1038–1044.

    Article  CAS  PubMed  Google Scholar 

  25. Cwynarski K, Ainsworth J, Cobbold M, Wagner S, Mahendra P, Apperley J et al. Direct visualization of cytomegalovirus-specific T-cell reconstitution after allogeneic stem cell transplantation. Blood 2001; 97: 1232–1240.

    Article  CAS  PubMed  Google Scholar 

  26. Ozdemir E, St John LS, Gillespie G, Rowland-Jones S, Champlin RE, Molldrem JJ et al. Cytomegalovirus reactivation following allogeneic stem cell transplantation is associated with the presence of dysfunctional antigen-specific CD8+ T cells. Blood 2002; 100: 3690–3697.

    Article  CAS  PubMed  Google Scholar 

  27. Lacey SF, Gallez-Hawkins G, Crooks M, Martinez J, Senitzer D, Forman SJ et al. Characterization of cytotoxic function of CMV-pp65-specific CD8+ T-lymphocytes identified by HLA tetramers in recipients and donors of stem-cell transplants. Transplantation 2002; 74: 722–732.

    Article  CAS  PubMed  Google Scholar 

  28. Hebart H, Daginik S, Stevanovic S, Grigoleit U, Dobler A, Baur M et al. Sensitive detection of human cytomegalovirus peptide-specific cytotoxic T-lymphocyte responses by interferon-gamma-enzyme-linked immunospot assay and flow cytometry in healthy individuals and in patients after allogeneic stem cell transplantation. Blood 2002; 99: 3830–3837.

    Article  CAS  PubMed  Google Scholar 

  29. Mohty M, Mohty AM, Blaise D, Faucher C, Bilger K, Isnardon D et al. Cytomegalovirus-specific immune recovery following allogeneic HLA-identical sibling transplantation with reduced-intensity preparative regimen. Bone Marrow Transplant 2004; 33: 839–846.

    Article  CAS  PubMed  Google Scholar 

  30. Scheinberg P, Melenhorst JJ, Brenchley JM, Hill BJ, Hensel NF, Chattopadhyay PK et al. The transfer of adaptive immunity to CMV during hematopoietic stem cell transplantation is dependent on the specificity and phenotype of CMV-specific T cells in the donor. Blood 2009; 114: 5071–5080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moss P, Rickinson A . Cellular immunotherapy for viral infection after HSC transplantation. Nat Rev Immunol 2005; 5: 9–20.

    Article  CAS  PubMed  Google Scholar 

  32. Morita Y, Hosokawa M, Ebisawa M, Sugita T, Miura O, Takaue Y et al. Evaluation of cytomegalovirus-specific cytotoxic T-lymphocytes in patients with the HLA-A*02 or HLA-A*24 phenotype undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant 2005; 36: 803–811.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou J, Dudley ME, Rosenberg SA, Robbins PF . Selective growth, in vitro and in vivo, of individual T cell clones from tumor-infiltrating lymphocytes obtained from patients with melanoma. J Immunol 2004; 173: 7622–7629.

    Article  CAS  PubMed  Google Scholar 

  34. thor Straten P, Kirkin AF, Siim E, Dahlstrom K, Drzewiecki KT, Seremet T et al. Tumor infiltrating lymphocytes in melanoma comprise high numbers of T-cell clonotypes that are lost during in vitro culture. Clin Immunol 2000; 96: 94–99.

    Article  CAS  PubMed  Google Scholar 

  35. Gandhi MK, Wills MR, Okecha G, Day EK, Hicks R, Marcus RE et al. Late diversification in the clonal composition of human cytomegalovirus-specific CD8+ T cells following allogeneic hemopoietic stem cell transplantation. Blood 2003; 102: 3427–3438.

    Article  CAS  PubMed  Google Scholar 

  36. Turner SJ, La Gruta NL, Kedzierska K, Thomas PG, Doherty PC . Functional implications of T cell receptor diversity. Curr Opin Immunol 2009; 21: 286–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Messaoudi I, Guevara Patiño JA, Dyall R, LeMaoult J, Nikolich-Zugich J . Direct link between mhc polymorphism, T cell avidity, and diversity in immune defense. Science 2002; 298: 1797–1800.

    Article  CAS  PubMed  Google Scholar 

  38. La Gruta NL, Thomas PG, Webb AI, Dunstone MA, Cukalac T, Doherty PC et al. Epitope-specific TCR-β repertoire diversity imparts no functional advantage on the CD8+ T cell response to cognate viral peptides. Proc Natl Acad Sci USA 2008; 105: 2034–2039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Merhavi-Shoham E, Haga-Friedman A, Cohen CJ . Genetically modulating T-cell function to target cancer. Semin Cancer Biol 2012; 22: 14–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a Health and Labor Science Research Grant (Research on Allergic Disease and Immunology) from the Ministry of Health, Labour and Welfare of Japan (YK). We would also like to express our appreciation for the support of JKA through its promotion funds from KEIRIN RACE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Kanda.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

HN designed the study, performed the experiments, analyzed data and wrote the manuscript. YT and R Yamazaki, designed the study and gave their advice about the experimental procedures. MS, KT, KS, R Yamasaki, HW, YI, KK, TM, MA, Shun-ichi K, MK, AT, JK, Shinichi K and JN collected data. YK designed the study, analyzed data and wrote the manuscript.

Supplementary Information accompanies this paper on Bone Marrow Transplantation website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakasone, H., Tanaka, Y., Yamazaki, R. et al. Single-cell T-cell receptor-β analysis of HLA-A*2402-restricted CMV- pp65-specific cytotoxic T-cells in allogeneic hematopoietic SCT. Bone Marrow Transplant 49, 87–94 (2014). https://doi.org/10.1038/bmt.2013.122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2013.122

Keywords

This article is cited by

Search

Quick links