Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Viral-specific adoptive immunotherapy after allo-SCT: the role of multimer-based selection strategies

Abstract

Recipients of hematopoietic SCT undergo a period of profound immunosuppression due to the chemotherapy and/or radiotherapy used for the conditioning and to the graft versus host reaction. SCT patients are highly susceptible to the development of viral infections such as CMV or EBV. The achievement of a competent immunological response, such as viral-specific T cells, is associated with a lower incidence of viral infections. Methods for direct identification of antigen-specific T cells have been based on the functional characteristics of these T cells. Techniques such as proliferation and ELISPOT assays, intracellular cytokine staining and IFN-γ capture have been used to quantitate and obtain viral-specific T cells. Multimers are composed of several MHC molecules loaded with immunodominant peptides joined to a fluorescent molecule, which signal can be quantified by a flow cytometer. Multimer technology together with recent advances in flow cytometry, have facilitated the monitoring and selection of antigen-specific T cells without the need for in vitro cultures and manipulation. This has resulted in a better characterization of the function and phenotype of the different subpopulations of T cells involved in the immune recovery post allogeneic SCT. It is becoming a distinct possibility to isolate individual antigen-specific T cells, without long-term culture techniques, and potentially use them as adoptive immunotherapy in the SCT setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Zaia J, Baden L, Boeckh MJ, Chakrabarti S, Einsele H, Ljungman P et al. Viral disease prevention after hematopoietic cell transplantation. Bone Marrow Transplant 2009; 44: 471–482.

    Article  CAS  Google Scholar 

  2. Winston DJ, Ho WG, Bartoni K, Du Mond C, Ebeling DF, Buhles WC et al. Ganciclovir prophylaxis of cytomegalovirus infection and disease in allogeneic bone marrow transplant recipients. Results of a placebo-controlled, double-blind trial. Ann Intern Med 1993; 118: 179–184.

    Article  CAS  Google Scholar 

  3. Goodrich JM, Bowden RA, Fisher L, Keller C, Schoch G, Meyers JD . Ganciclovir prophylaxis to prevent cytomegalovirus disease after allogeneic marrow transplant. Ann Intern Med 1993; 118: 173–178.

    Article  CAS  Google Scholar 

  4. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD . Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 1992; 257: 238–241.

    Article  CAS  Google Scholar 

  5. Riddell SR, Rabin M, Geballe AP, Britt WJ, Greenberg PD, Class I . MHC-restricted cytotoxic T lymphocyte recognition of cells infected with human cytomegalovirus does not require endogenous viral gene expression. J Immunol 1991; 146: 2795–2804.

    CAS  PubMed  Google Scholar 

  6. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995; 333: 1038–1044.

    Article  CAS  Google Scholar 

  7. Sili U, Huls MH, Davis AR, Gottschalk S, Brenner MK, Heslop HE et al. Large-scale expansion of dendritic cell-primed polyclonal human cytotoxic T-lymphocyte lines using lymphoblastoid cell lines for adoptive immunotherapy. J Immunother 2003; 26: 241–256.

    Article  Google Scholar 

  8. Szmania S, Galloway A, Bruorton M, Musk P, Aubert G, Arthur A et al. Isolation and expansion of cytomegalovirus-specific cytotoxic T lymphocytes to clinical scale from a single blood draw using dendritic cells and HLA-tetramers. Blood 2001; 98: 505–512.

    Article  CAS  Google Scholar 

  9. Einsele H, Roosnek E, Rufer N, Sinzger C, Riegler S, Loffler J et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 2002; 99: 3916–3922.

    Article  CAS  Google Scholar 

  10. Schub A, Schuster IG, Hammerschmidt W, Moosmann A . CMV-specific TCR-transgenic T cells for immunotherapy. J Immunol 2009; 183: 6819–6830.

    Article  CAS  Google Scholar 

  11. Lanzavecchia A, Sallusto F . Progressive differentiation and selection of the fittest in the immune response. Nat Rev Immunol 2002; 2: 982–987.

    Article  CAS  Google Scholar 

  12. Kaech SM, Wherry EJ, Ahmed R . Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2002; 2: 251–262.

    Article  CAS  Google Scholar 

  13. Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, Antia R et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 2003; 4: 225–234.

    Article  CAS  Google Scholar 

  14. Lanzavecchia A, Sallusto F . Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 2000; 290: 92–97.

    Article  CAS  Google Scholar 

  15. Gett AV, Hodgkin PD . Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc Natl Acad Sci USA 1998; 95: 9488–9493.

    Article  CAS  Google Scholar 

  16. Pihlgren M, Dubois PM, Tomkowiak M, Sjogren T, Marvel J . Resting memory CD8+ T cells are hyperreactive to antigenic challenge in vitro. J Exp Med 1996; 184: 2141–2151.

    Article  CAS  Google Scholar 

  17. Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR . Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 2008; 118: 294–305.

    Article  CAS  Google Scholar 

  18. Sallusto F, Geginat J, Lanzavecchia A . Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 2004; 22: 745–763.

    Article  CAS  Google Scholar 

  19. Gattinoni L, Powell DJ, Rosenberg SA, Restifo NP . Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 2006; 6: 383–393.

    Article  CAS  Google Scholar 

  20. Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 2005; 115: 1616–1626.

    Article  CAS  Google Scholar 

  21. Speiser DE, Romero P . Toward improved immunocompetence of adoptively transferred CD8+ T cells. J Clin Invest 2005; 115: 1467–1469.

    Article  CAS  Google Scholar 

  22. Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, Klein MR et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med 1997; 186: 1407–1418.

    Article  CAS  Google Scholar 

  23. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A . Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401: 708–712.

    Article  CAS  Google Scholar 

  24. Scheinberg P, Melenhorst JJ, Brenchley JM, Hill BJ, Hensel NF, Chattopadhyay PK et al. The transfer of adaptive immunity to CMV during hematopoietic stem cell transplantation is dependent on the specificity and phenotype of CMV-specific T cells in the donor. Blood 2009; 114: 5071–5080.

    Article  CAS  Google Scholar 

  25. Luo XH, Huang XJ, Liu KY, Xu LP, Liu DH . Protective immunity transferred by infusion of CMV-specific CD8+ T cells within donor graftsits associations with CMV reactivation following unmanipulated allogeneic hematopoietic stem cell transplantation CMV-specific CD8+ T cells within donor grafts. Biol Blood Marrow Transplant 2010; 16: 994–1004.

    Article  Google Scholar 

  26. Bakker AH, Schumacher TN . MHC multimer technology: current status and future prospects. Curr Opin Immunol 2005; 17: 428–433.

    Article  CAS  Google Scholar 

  27. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996; 274: 94–96.

    Article  CAS  Google Scholar 

  28. Yao J, Bechter C, Wiesneth M, Harter G, Gotz M, Germeroth L et al. Multimer staining of cytomegalovirus phosphoprotein 65-specific T cells for diagnosis and therapeutic purposes: a comparative study. Clin Infect Dis 2008; 46: e96–105.

    Article  CAS  Google Scholar 

  29. Heijnen IA, Barnett D, Arroz MJ, Barry SM, Bonneville M, Brando B et al. Enumeration of antigen-specific CD8+ T lymphocytes by single-platform, HLA tetramer-based flow cytometry: a European multicenter evaluation. Cytometry B Clin Cytom 2004; 62: 1–13.

    Article  Google Scholar 

  30. Maile R, Wang B, Schooler W, Meyer A, Collins EJ, Frelinger JA . Antigen-specific modulation of an immune response by in vivo administration of soluble MHC class I tetramers. J Immunol 2001; 167: 3708–3714.

    Article  CAS  Google Scholar 

  31. Neudorfer J, Schmidt B, Huster KM, Anderl F, Schiemann M, Holzapfel G et al. Reversible HLA multimers (Streptamers) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. J Immunol Methods 2007; 320: 119–131.

    Article  CAS  Google Scholar 

  32. Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, Osman H et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 2005; 202: 379–386.

    Article  CAS  Google Scholar 

  33. Uhlin M, Gertow J, Uzunel M, Okas M, Berglund S, Watz E et al. Rapid salvage treatment with virus-specific T cells for therapy-resistant disease. Clin Infect Dis 2012; 55: 1064–1073.

    Article  CAS  Google Scholar 

  34. Knabel M, Franz TJ, Schiemann M, Wulf A, Villmow B, Schmidt B et al. Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat Med 2002; 8: 631–637.

    Article  CAS  Google Scholar 

  35. Wang X, Simeoni L, Lindquist JA, Saez-Rodriguez J, Ambach A, Gilles ED et al. Dynamics of proximal signaling events after TCR/CD8-mediated induction of proliferation or apoptosis in mature CD8+ T cells. J Immunol 2008; 180: 6703–6712.

    Article  CAS  Google Scholar 

  36. Mackall C, Fry T, Gress R, Peggs K, Storek J, Toubert A . Background to hematopoietic cell transplantation, including post transplant immune recovery. Bone Marrow Transplant 2009; 44: 457–462.

    Article  CAS  Google Scholar 

  37. Hakki M, Riddell SR, Storek J, Carter RA, Stevens-Ayers T, Sudour P et al. Immune reconstitution to cytomegalovirus after allogeneic hematopoietic stem cell transplantation: impact of host factors, drug therapy, and subclinical reactivation. Blood 2003; 102: 3060–3067.

    Article  CAS  Google Scholar 

  38. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 2005; 202: 907–912.

    Article  CAS  Google Scholar 

  39. Pittet MJ, Grimm J, Berger CR, Tamura T, Wojtkiewicz G, Nahrendorf M et al. In vivo imaging of T cell delivery to tumors after adoptive transfer therapy. Proc Natl Acad Sci USA 2007; 104: 12457–12461.

    Article  CAS  Google Scholar 

  40. Brusko TM, Putnam AL, Bluestone JA . Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev 2008; 223: 371–390.

    Article  CAS  Google Scholar 

  41. Rosenberg ES, Billingsley JM, Caliendo AM, Boswell SL, Sax PE, Kalams SA et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 1997; 278: 1447–1450.

    Article  CAS  Google Scholar 

  42. Brodie SJ, Lewinsohn DA, Patterson BK, Jiyamapa D, Krieger J, Corey L et al. In vivo migration and function of transferred HIV-1-specific cytotoxic T cells. Nat Med 1999; 5: 34–41.

    Article  CAS  Google Scholar 

  43. Pourgheysari B, Piper KP, McLarnon A, Arrazi J, Bruton R, Clark F et al. Early reconstitution of effector memory CD4+ CMV-specific T cells protects against CMV reactivation following allogeneic SCT. Bone Marrow Transplant 2009; 43: 853–861.

    Article  CAS  Google Scholar 

  44. Ayyoub M, Dojcinovic D, Pignon P, Raimbaud I, Schmidt J, Luescher I et al. Monitoring of NY-ESO-1 specific CD4+ T cells using molecularly defined MHC class II/His-tag-peptide tetramers. Proc Natl Acad Sci USA 107: 7437–7442.

    Article  CAS  Google Scholar 

  45. Hackett CJ, Sharma OK . Frontiers in peptide-MHC class II multimer technology. Nat Immunol 2002; 3: 887–889.

    Article  CAS  Google Scholar 

  46. Landais E, Romagnoli PA, Corper AL, Shires J, Altman JD, Wilson IA et al. New design of MHC class II tetramers to accommodate fundamental principles of antigen presentation. J Immunol 2009; 183: 7949–7957.

    Article  CAS  Google Scholar 

  47. Wang X, Schmitt A, Chen B, Xu X, Mani J, Linnebacher M et al. Streptamer-based selection of WT1-specific CD8(+) T cells for specific donor lymphocyte infusions. Exp Hematol 2010; 38: 1066–1073.

    Article  CAS  Google Scholar 

  48. Schmitt A, Tonn T, Busch DH, Grigoleit GU, Einsele H, Odendahl M et al. Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion 2011; 51: 591–599.

    Article  CAS  Google Scholar 

  49. Andersen RS, Kvistborg P, Frøsig TM, Pedersen NW, Lyngaa R, Bakker AH et al. Parallel detection of antigen-specific T cell responses by combinatorial encoding of MHC multimers. Nat Protoc 2012; 7: 891–902.

    Article  CAS  Google Scholar 

  50. Domingo E, Moreno C, Sanchez-Ibarrola A, Panizo C, Paramo JA, Merino J . Enhanced sensitivity of flow cytometry for routine assessment of minimal residual disease. Haematologica 95: 691–692.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant (PI10/00136) from the Fondo de Investigaciones Sanitarias del Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Olavarría.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramírez, N., Olavarría, E. Viral-specific adoptive immunotherapy after allo-SCT: the role of multimer-based selection strategies. Bone Marrow Transplant 48, 1265–1270 (2013). https://doi.org/10.1038/bmt.2012.262

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2012.262

Keywords

This article is cited by

Search

Quick links