Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pediatric Transplants

Attenuation of resting energy expenditure following hematopoietic SCT in children

Abstract

Children undergoing hematopoietic SCT (HSCT) typically receive parenteral nutrition (PN) due to gastrointestinal toxicities. Accurate determination of resting energy expenditure (REE) may facilitate optimal energy provision and help avoid unintended overfeeding or underfeeding. A multicenter, prospective cohort study of children undergoing allogeneic HSCT was performed, in which REE was measured by indirect calorimetry at baseline and twice weekly until 30 days after transplantation. Change in percent predicted REE over time from admission was analyzed using repeated measures regression analysis. In all, 26 children (14 females) with a mean (s.d.) age of 14.9 (4.2) years who underwent an HLA-matched sibling or unrelated donor transplantation were enrolled. Mean (s.d.) percent predicted REE at baseline was 92.4 (15.2). Baseline REE was highly correlated with lean body mass measured by dual energy X-ray absorptiometry (r=0.78, P<0.0001). REE decreased significantly over time, following a quadratic curve to a nadir of 79% predicted at 14 days post transplantation (P<0.001) and returned to near baseline by day 30. Children undergoing HSCT exhibit a significant reduction in REE in the early weeks after transplantation, a phenomenon that places them at risk for overfeeding. Serial measurements of REE or reductions in energy intake should be considered when PN is the primary mode of nutrition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Muscaritoli M, Grieco G, Capria S, Paola Iori A, Rossi Fanelli F . Nutritional and metabolic support in patients undergoing bone marrow transplantation. Am J Clin Nutr 2002; 75: 183–190.

    Article  CAS  PubMed  Google Scholar 

  2. Weisdorf S, Hofland C, Sharp H, Teasley K, Schissel K, McGlave P et al. Total parenteral nutrition in bone marrow transplantation: a clinical evaluation. J Pediatr Gastroenterol Nutr 1984; 3: 95–100.

    Article  CAS  PubMed  Google Scholar 

  3. Weisdorf S, Lysne J, Wind D, Haake R, Sharp H, Goldman A et al. Positive effect of prophylactic total parenteral nutrition on long-term outcome of bone marrow transplantation. Transplantation 1987; 43: 833–838.

    Article  CAS  PubMed  Google Scholar 

  4. Kerner Jr JA, Hurwitz M . Parenteral nutrition. In: Duggan C, Watkins J, Walker WA (eds). Nutrition in Pediatrics: Basic Science and Clinical Applications, 4th edn. BC Decker: Hamilton Ontario, 2008, pp 777–793.

    Google Scholar 

  5. Charuhas PM, Fosberg KL, Bruemmer B, Aker SN, Leisenring W, Seidel K et al. A double-blind randomized trial comparing outpatient parenteral nutrition with intravenous hydration: effect on resumption of oral intake after marrow transplantation. JPEN 1997; 21: 157–161.

    Article  CAS  Google Scholar 

  6. Taveroff A, McArdle AH, Rybka WB . Reducing parenteral energy and protein intake improves metabolic homeostasis after bone marrow transplantation. Am J Clin Nutr 1991; 54: 1087–1092.

    Article  CAS  PubMed  Google Scholar 

  7. Duggan C, Bechard L, Donovan K, Vangel M, O’Leary A, Holmes C et al. Changes in resting energy expenditure among children undergoing allogeneic stem cell transplantation. Am J Clin Nutr 2003; 78: 104–109.

    Article  CAS  PubMed  Google Scholar 

  8. Leibel RL, Rosenbaum M, Hirsch J . Changes in energy expenditure resulting from altered body weight. N Engl J Med 1995; 332: 621–628.

    Article  CAS  PubMed  Google Scholar 

  9. Schwartz A, Doucet E . Relative changes in resting energy expenditure during weight loss: a systematic review. Obes Rev 2010; 11: 531–547.

    Article  CAS  PubMed  Google Scholar 

  10. Major GC, Doucet E, Trayhurn P, Astrup A, Tremblay A . Clinical significance of adaptive thermogenesis. Int J Obes (Lond) 2007; 31: 204–212.

    Article  CAS  Google Scholar 

  11. Dulloo AG, Jacquet J . Adaptive reduction in basal metabolic rate in response to food deprivation in humans: a role for feedback signals from fat stores. Am J Clin Nutr 1998; 68: 599–606.

    Article  CAS  PubMed  Google Scholar 

  12. Schofield W . Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 1985; 39C (Supp 1): 5–41.

    Google Scholar 

  13. Bechard LJ, Feldman HA, Gordon C, Gura K, Sonis A, Leung K et al. A multi-center, randomized, controlled trial of parenteral nutrition titrated to resting energy expenditure in children undergoing hematopoietic stem cell transplantation (‘PNTREE’): rationale and design. Contemp Clin Trials 2010; 31: 157–164.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sharma TS, Bechard LJ, Feldman HA, Venick R, Gura K, Gordon C et al. Effect of titrated parenteral nutrition on body composition after hematopoietic stem cell transplantation in children: a blinded, randomized, multi-center trial. Am J Clin Nutr 2012; 95: 342–351.

    Article  CAS  PubMed  Google Scholar 

  15. Thornley I, Lehmann LE, Sung L, Holmes C, Spear JM, Brennan L et al. A multiagent strategy to decrease regimen-related toxicity in children undergoing allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2004; 10: 635–644.

    Article  CAS  PubMed  Google Scholar 

  16. Schwarzenberg S, Weisdorf-Schindele S . Cancer Treatment. In: Walker W, Watkins JB, Duggan C (eds). Nutrition in Pediatrics: Basic Science and Clinical Applications. BC Decker Inc: Hamilton, Ontario, 2003.

    Google Scholar 

  17. Noel R, Udall J . Parenteral nutrition. In: Walker W, Watkins JB (eds). Nutrition in Pediatrics: Basic Science and Clinical Applications, 2nd edn. BC Decker: Hamilton, Ontario, 1996, pp 734–746.

    Google Scholar 

  18. Weir JB . New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 1949; 109: 1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Matarese LE . Indirect calorimetry: technical aspects. J Am Diet Assoc 1997; 97 (Suppl 2): S154–S160.

    Article  CAS  PubMed  Google Scholar 

  20. Zemel BS, Leonard MB, Kalkwarf HJ, Specker BL, Moyer-Mileur LJ, Shepherd JA et al. Reference data for the whole body, lumbar spine, and proximal femur for American children relative to age, gender, and body size. J Bone Miner Res 2004; 1S: 231.

    Google Scholar 

  21. Ruppert D, Wand MP, Carroll RJ . Semiparametric Regression. Cambridge University Press: Cambridge, UK, 2003.

    Book  Google Scholar 

  22. Hutchinson ML, Clemans GW, Springmeyer SC, Flournoy N . Energy expenditure estimation in recipients of marrow transplants. Cancer 1984; 54: 1734–1738.

    Article  CAS  PubMed  Google Scholar 

  23. Chamouard Cogoluenhes V, Chambrier C, Michallet M, Gordiani B, Ranchere JY, Combret D et al. Energy expenditure during allogeneic and autologous bone marrow transplantation. Clin Nutr 1998; 17: 253–257.

    Article  CAS  PubMed  Google Scholar 

  24. Yamanaka H, Takeda E, Takata K, Syutou E, Miyamoto K, Watanabe T et al. Total parenteral nutrition on energy metabolism in children undergoing autologous peripheral blood stem cell transplantation. J Med Invest 1998; 44: 199–203.

    CAS  PubMed  Google Scholar 

  25. Ringwald-Smith KA, Heslop HE, Krance RA, Mackert PW, Hancock ML, Stricklin LM et al. Energy expenditure in children undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant 2002; 30: 125–130.

    Article  CAS  PubMed  Google Scholar 

  26. Taskinen M, Saarinen-Pihkala UM . Evaluation of muscle protein mass in children with solid tumors by muscle thickness measurement with ultrasonography, as compared with anthropometric methods and visceral protein concentrations. Eur J Clin Nutr 1998; 52: 402–406.

    Article  CAS  PubMed  Google Scholar 

  27. Delbecque-Boussard L, Gottrand F, Ategbo S, Nelken B, Mazingue F, Vic P et al. Nutritional status of children with acute lymphoblastic leukemia: a longitudinal study. Am J Clin Nutr 1997; 65: 95–100.

    Article  CAS  PubMed  Google Scholar 

  28. Szeluga DJ, Stuart RK, Brookmeyer R, Utermohlen V, Santos GW . Energy requirements of parenterally fed bone marrow transplant recipients. JPEN J Parenter Enteral Nutr 1985; 9: 139–143.

    Article  CAS  PubMed  Google Scholar 

  29. Szeluga D, Stuart R, Brookmeyer R, Utermohlen V, Santos G . Nutritional support of bone marrow transplant recipients: a prospective, randomized clinical trial comparing total parenteral nutrition to an enteral feeding program. Cancer Res 1987; 47: 3309–3316.

    CAS  PubMed  Google Scholar 

  30. Oosterveld MJ, Van Der Kuip M, De Meer K, De Greef HJ, Gemke RJ . Energy expenditure and balance following pediatric intensive care unit admission: a longitudinal study of critically ill children. Pediatr Crit Care Med 2006; 7: 147–153.

    Article  PubMed  Google Scholar 

  31. Murphy AJ, White M, Davies PSW . Body composition of children with cancer. Am J Clin Nutr 2010; 92: 55–60.

    Article  CAS  PubMed  Google Scholar 

  32. Murphy AJ, Wells JCK, Williams JE, Fewtrell MS, Davies PSW, Webb DK . Body composition in children in remission from acute lymphoblastic leukemia. Am J Clin Nutr 2006; 83: 70–74.

    Article  CAS  PubMed  Google Scholar 

  33. Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 2006; 355: 1572–1582.

    Article  CAS  PubMed  Google Scholar 

  34. Oeffinger KC, Mertens AC, Sklar CA, Yasui Y, Fears T, Stovall M et al. Obesity in adult survivors of childhood acute lymphoblastic leukemia: a report from the childhood cancer survivor study. J Clin Oncol 2003; 21: 1359–1365.

    Article  PubMed  Google Scholar 

  35. Taskinen M, Saarinen-Pihkala U, Hovi L, Lipsanen-Nyman M . Impaired glucose tolerance and dyslipidemia as late effects after bone marrow transplantation in childhood. Lancet 2000; 356: 993–997.

    Article  CAS  PubMed  Google Scholar 

  36. Framson CM, LeLeiko NS, Dallal GE, Roubenoff R, Snelling LK, Dwyer JT . Energy expenditure in critically ill children. Pediatr Crit Care Med 2007; 8: 264–267.

    Article  PubMed  Google Scholar 

  37. Mehta NM, Bechard LJ, Leavitt K, Duggan C . Cumulative energy imbalance in the pediatric intensive care unit: role of targeted indirect calorimetry. JPEN J Parenter Enteral Nutr 2009; 33: 336–344.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jaksic T, Shew SB, Keshen TH, Dzakovic A, Jahoor F . Do critically ill surgical neonates have increased energy expenditure? J Pediatr Surg 2001; 36: 63–67.

    Article  CAS  PubMed  Google Scholar 

  39. Mehta NM, Compher C . ASPEN Clinical guidelines: nutrition support of the critically ill child. JPEN J Parenter Enteral Nutr 2009; 33: 260–276.

    Article  PubMed  Google Scholar 

  40. McClave S, Spain D, Skolnick J, Lowen C, Kleber M, Wickerham P et al. Achievement of steady state optimizes results when performing indirect calorimetry. JPEN 2003; 27: 16–20.

    Article  Google Scholar 

  41. Krishnan JA, Parce PB, Martinez A, Diette GB, Brower RG . Caloric intake in medical ICU patients: consistency of care with guidelines and relationship to clinical outcomes. Chest 2003; 124: 297–305.

    Article  PubMed  Google Scholar 

  42. Arabi YM, Tamim HM, Dhar GS, Al-Dawood A, Al-Sultan M, Sakkijha MH et al. Permissive underfeeding and intensive insulin therapy in critically ill patients: a randomized controlled trial. Am J Clin Nutr 2011; 93: 569–577.

    Article  CAS  PubMed  Google Scholar 

  43. Dickerson RN . Optimal caloric intake for critically ill patients: first, do no harm. Nutr Clin Pract 2011; 26: 48–54.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the dedication and support of all the participants, and the helpful assistance of Nicolle Quinn, MS, RD, LDN and Patricia Jardack, MS, RD. This project was supported by the Massachusetts Vitamin Litigation Grant; grant M01-RR02172 from the NCRR, the NIH to Children's Hospital, Boston GCRC; grant UL1 RR025758-01 to the Harvard Catalyst CTSA 1; grant M01-RR00865 to the General Clinical Research Centers Program at UCLA; and NIH K24 HD 058795 (CD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L J Bechard.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechard, L., Feldman, H., Venick, R. et al. Attenuation of resting energy expenditure following hematopoietic SCT in children. Bone Marrow Transplant 47, 1301–1306 (2012). https://doi.org/10.1038/bmt.2012.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2012.19

Keywords

This article is cited by

Search

Quick links