Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pediatric Transplants

Stem cell source-dependent reconstitution of FOXP3+ T cells after pediatric SCT and the association with allo-reactive disease

Abstract

In adult patients, regulatory CD4+FOXP3+ T cells are suggested to have a role in the control of allo-reactive disease after hematopoietic SCT (HSCT). We compared CD4+FOXP3+ T-cell reconstitution after unrelated cord blood (UCB), matched unrelated donor (MUD) and matched sibling donor (MSD) HSCT in children, starting as early as 1 week after transplantation, and analyzed the association with allo-reactive disease. A total of 30 children were included who underwent a myeloablative-conditioning regimen followed by UCB (12/30), MUD (7/30) or MSD (11/30) HSCT. These three patient groups showed significant differences in FOXP3+ T-cell reconstitution pattern. Early after UCB and MSD, but not after MUD, HSCT a peak in FOXP3+ T cells was observed. There were significant differences in activation status and Ki67 expression of the FOXP3+ T cells after UCB and MSD, respectively. FOXP3+ T-cell proportions early after HSCT and in the graft were inversely correlated with allo-reactivity. This study indicates that FOXP3 reconstitution after HSCT is dependent on the type of graft used. Furthermore, in children evaluation of FOXP3+ T-cell numbers early after HSCT and in the graft may be used to judge the risk of developing allo-reactivity after HSCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Atkinson K, Turner J, Biggs JC, Dodds A, Concannon A . An acute pulmonary syndrome possibly representing acute graft-versus-host disease involving the lung interstitium. Bone Marrow Transplant 1991; 8: 231–234.

    CAS  PubMed  Google Scholar 

  2. Morris ES, Hill GR . Advances in the understanding of acute graft-versus-host disease. Br J Haematol 2007; 137: 3–19.

    Article  CAS  Google Scholar 

  3. Shlomchik WD . Graft-versus-host disease. Nat Rev Immunol 2007; 7: 340–352.

    Article  CAS  Google Scholar 

  4. Ferrara JL, Levine JE . Graft-versus-host disease in the 21st century: new perspectives on an old problem. Semin Hematol 2006; 43: 1–2.

    Article  Google Scholar 

  5. Rezvani K, Mielke S, Ahmadzadeh M, Kilical Y, Savani BN, Zeilah J et al. High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood 2006; 108: 1291–1297.

    Article  CAS  Google Scholar 

  6. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S . Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 2002; 196: 389–399.

    Article  CAS  Google Scholar 

  7. Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL . CD4(+)CD25(+) immunoregulatory T cells: new therapeutics for graft-versus-host disease. J Exp Med 2002; 196: 401–406.

    Article  CAS  Google Scholar 

  8. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27: 20–21.

    Article  CAS  Google Scholar 

  9. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.

    Article  CAS  Google Scholar 

  10. Fontenot JD, Gavin MA, Rudensky AY . Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4: 330–336.

    Article  CAS  Google Scholar 

  11. Tang Q, Bluestone JA . The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 2008; 9: 239–244.

    Article  CAS  Google Scholar 

  12. Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 2003; 9: 1144–1150.

    Article  CAS  Google Scholar 

  13. Taylor PA, Lees CJ, Blazar BR . The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 2002; 99: 3493–3499.

    Article  CAS  Google Scholar 

  14. Koreth J, Matsuoka K, Kim HT, McDonough SM, Bindra B, Alyea EP et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med 2011; 365: 2055–2066.

    Article  CAS  Google Scholar 

  15. Goulmy E, Schipper R, Pool J, Blokland E, Falkenburg JH, Vossen J et al. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N Engl J Med 1996; 334: 281–285.

    Article  CAS  Google Scholar 

  16. Gaziev J, Isgro A, Marziali M, Daniele N, Gallucci C, Sodani P et al. Higher CD3(+) and CD34(+) cell doses in the graft increase the incidence of acute GVHD in children receiving BMT for thalassemia. Bone Marrow Transplant 2012; 47: 107–114.

    Article  CAS  Google Scholar 

  17. Matthews K, Lim Z, Afzali B, Pearce L, Abdallah A, Kordasti S et al. Imbalance of effector and regulatory CD4 T cells is associated with graft-versus-host disease after hematopoietic stem cell transplantation using a reduced intensity conditioning regimen and alemtuzumab. Haematologica 2009; 94: 956–966.

    Article  CAS  Google Scholar 

  18. Fondi C, Nozzoli C, Benemei S, Baroni G, Saccardi R, Guidi S et al. Increase in FOXP3+ regulatory T cells in GVHD skin biopsies is associated with lower disease severity and treatment response. Biol Blood Marrow Transplant 2009; 15: 938–947.

    Article  Google Scholar 

  19. Matsuoka K, Kim HT, McDonough S, Bascug G, Warshauer B, Koreth J et al. Altered regulatory T cell homeostasis in patients with CD4+ lymphopenia following allogeneic hematopoietic stem cell transplantation. J Clin Invest 2010; 120: 1479–1493.

    Article  CAS  Google Scholar 

  20. Magenau JM, Qin X, Tawara I, Rogers CE, Kitko C, Schlough M et al. Frequency of CD4(+)CD25(hi)FOXP3(+) regulatory T cells has diagnostic and prognostic value as a biomarker for acute graft-versus-host-disease. Biol Blood Marrow Transplant 2010; 16: 907–914.

    Article  Google Scholar 

  21. Pastore D, Delia M, Mestice A, Carluccio P, Perrone T, Gaudio F et al. CD3(+)/Tregs ratio in donor grafts is linked to acute graft-versus-host disease and immunologic recovery after allogeneic peripheral blood stem cell transplantation. Biol Blood Marrow Transplant 2011; 18: 887–893.

    Article  Google Scholar 

  22. Olkinuora H, Talvensaari K, Kaartinen T, Siitonen S, Saarinen-Pihkala U, Partanen J et al. T cell regeneration in pediatric allogeneic stem cell transplantation. Bone Marrow Transplant 2007; 39: 149–156.

    Article  CAS  Google Scholar 

  23. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation 1974; 18: 295–304.

    Article  CAS  Google Scholar 

  24. Clark JG, Hansen JA, Hertz MI, Parkman R, Jensen L, Peavy HH . NHLBI workshop summary. Idiopathic pneumonia syndrome after bone marrow transplantation. Am Rev Respir Dis 1993; 147: 1601–1606.

    Article  CAS  Google Scholar 

  25. Tiercy JM . Molecular basis of HLA polymorphism: implications in clinical transplantation. Transpl Immunol 2002; 9: 173–180.

    Article  CAS  Google Scholar 

  26. Schnizlein-Bick CT, Spritzler J, Wilkening CL, Nicholson JK, O'Gorman MR . Evaluation of TruCount absolute-count tubes for determining CD4 and CD8 cell numbers in human immunodeficiency virus-positive adults. Site Investigators and The NIAID DAIDS New Technologies Evaluation Group. Clin Diagn Lab Immunol 2000; 7: 336–343.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Komanduri KV, John LS, de LM, McMannis J, Rosinski S, McNiece I et al. Delayed immune reconstitution after cord blood transplantation is characterized by impaired thymopoiesis and late memory T-cell skewing. Blood 2007; 110: 4543–4551.

    Article  CAS  Google Scholar 

  28. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H . Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 1984; 133: 1710–1715.

    CAS  Google Scholar 

  29. Zorn E, Kim HT, Lee SJ, Floyd BH, Litsa D, Arumugarajah S et al. Reduced frequency of FOXP3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood 2005; 106: 2903–2911.

    Article  CAS  Google Scholar 

  30. Szabolcs P, Niedzwiecki D . Immune reconstitution after unrelated cord blood transplantation. Cytotherapy 2007; 9: 111–122.

    Article  CAS  Google Scholar 

  31. Geddes M, Storek J . Immune reconstitution following hematopoietic stem-cell transplantation. Best Pract Res Clin Haematol 2007; 20: 329–348.

    Article  CAS  Google Scholar 

  32. Tran DQ, Ramsey H, Shevach EM . Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 2007; 110: 2983–2990.

    Article  CAS  Google Scholar 

  33. De Roock S, Hoeks SB, Meurs L, Steur A, Hoekstra MO, Prakken BJ et al. Critical role for programmed death 1 signaling and protein kinase B in augmented regulatory T-cell induction in cord blood. J Allergy Clin Immunol 2011; 128: 1369–1371.

    Article  CAS  Google Scholar 

  34. Miyagawa Y, Kiyokawa N, Ochiai N, Imadome K, Horiuchi Y, Onda K et al. Ex vivo expanded cord blood CD4 T lymphocytes exhibit a distinct expression profile of cytokine-related genes from those of peripheral blood origin. Immunology 2009; 128: 405–419.

    Article  CAS  Google Scholar 

  35. de Kleer I, Vastert B, Klein M, Teklenburg G, Arkesteijn G, Yung GP et al. Autologous stem cell transplantation for autoimmunity induces immunologic self-tolerance by reprogramming autoreactive T cells and restoring the CD4+CD25+ immune regulatory network. Blood 2006; 107: 1696–1702.

    Article  CAS  Google Scholar 

  36. Apostolou I, Sarukhan A, Klein L, von BH . Origin of regulatory T cells with known specificity for antigen. Nat Immunol 2002; 3: 756–763.

    Article  CAS  Google Scholar 

  37. Cozzo C, Larkin J, Caton AJ . Cutting edge: self-peptides drive the peripheral expansion of CD4+CD25+ regulatory T cells. J Immunol 2003; 171: 5678–5682.

    Article  CAS  Google Scholar 

  38. Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001; 2: 301–306.

    Article  CAS  Google Scholar 

  39. Selvaraj RK, Geiger TL . A kinetic and dynamic analysis of Foxp3 induced in T cells by TGF-beta. J Immunol 2007; 178: 7667–7677.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ismé M de Kleer is supported by a Marie Curie International European Fellowships grant (IEF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I M de Kleer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reubsaet, L., de Pagter, A., van Baarle, D. et al. Stem cell source-dependent reconstitution of FOXP3+ T cells after pediatric SCT and the association with allo-reactive disease. Bone Marrow Transplant 48, 502–507 (2013). https://doi.org/10.1038/bmt.2012.174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2012.174

Keywords

Search

Quick links