Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Conditioning Regimens

Population pharmacokinetics of cyclophosphamide in patients with thalassemia major undergoing HSCT

Abstract

CY in combination with BU is a widely used conditioning regimen for haematopoietic SCT (HSCT). The aim of this study was to evaluate the pharmacokinetics (PK) of CY and its major metabolite 4-hydroxyCY (HCY) in patients with thalassemia undergoing HSCT. A total of 55 patients received BU (16 mg/kg) followed by CY (160–200 mg/kg) both over 4 days before HSCT. A population PK model was developed to describe the disposition of CY and HCY and the inter-individual (IIV) and inter-occasion variability (IOV). The model was also used to determine the effects covariates including: demographics, Lucarelli classification and polymorphisms in enzymes involved in the metabolism or biotransformation of CY had on CY and HCY disposition. Overall, 17–114% IIV and 12–103% IOV in CY and HCY PK parameters were observed. Body weight and age were the main covariates, which explained the largest portion of the IIV. In addition, CYP2C9*2 explained a significant portion of the IIV in the clearance (P<0.002) and thus the area under the concentration curve (P<0.05) of CY. This covariate model may be used to design and plan targeted dose therapy in this group of pediatric patients, if clinical outcome association with CY PK are proved and target range established.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Santos GW . The development of busulfan/cyclophosphamide preparative regimens. Semin Oncol 1993; 20: 12–16 quiz 17.

    CAS  PubMed  Google Scholar 

  2. Porcellini A, Manna A, Moretti L, Carotenuto M, Greco MM, Bodenizza C . Busulfan and cyclophosphamide as conditioning regimen for autologous BMT in acute lymphoblastic leukemia. Bone Marrow Transplant 1989; 4: 331–333.

    CAS  PubMed  Google Scholar 

  3. Lucarelli G, Polchi G, Izzi T, Manna M, Delfini C, Galimberti M et al. Marrow transplantation for thalassemia after treatment with busulfan and cyclophosphamide. Ann NY Acad Sci 1985; 445: 428–431.

    Article  CAS  PubMed  Google Scholar 

  4. Gooley TA, Chien JW, Pergam SA, Hingorani S, Sorror ML, Boeckh M et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med 2010; 363: 2091–2101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kersey JH . The role of allogeneic-cell transplantation in leukemia. N Engl J Med 2010; 363: 2158–2159.

    Article  CAS  PubMed  Google Scholar 

  6. McDonald GB, Sharma P, Matthews DE, Shulman HM, Thomas ED . Venocclusive disease of the liver after bone marrow transplantation: diagnosis, incidence and predisposing factors. Hepatology 1984; 4: 116–122.

    Article  CAS  PubMed  Google Scholar 

  7. Brock N, Stekar J, Pohl J, Niemeyer U, Scheffler G . Acrolein, the causative factor of urotoxic side-effects of cyclophosphamide, ifosfamide, trofosfamide and sufosfamide. Arzneimittelforschung 1979; 29: 659–661.

    CAS  PubMed  Google Scholar 

  8. Poonkuzhali B, Srivastava A, Quernin MH, Dennison D, Aigrain EJ, Kanagasabapathy AS et al. Pharmacokinetics of oral busulphan in children with beta thalassaemia major undergoing allogeneic bone marrow transplantation. Bone Marrow Transplant 1999; 24: 5–11.

    Article  CAS  PubMed  Google Scholar 

  9. Chandy M, Balasubramanian P, Ramachandran SV, Mathews V, George B, Dennison D et al. Randomized trial of two different conditioning regimens for bone marrow transplantation in thalassemia--the role of busulfan pharmacokinetics in determining outcome. Bone Marrow Transplant 2005; 36: 839–845.

    Article  CAS  PubMed  Google Scholar 

  10. Srivastava A, Poonkuzhali B, Shaji RV, George B, Mathews V, Chandy M et al. Glutathione S-transferase M1 polymorphism: a risk factor for hepatic venoocclusive disease in bone marrow transplantation. Blood 2004; 104: 1574–1577.

    Article  CAS  PubMed  Google Scholar 

  11. Chinnaswamy G, Errington J, Foot A, Boddy AV, Veal GJ, Cole M . Pharmacokinetics of cyclophosphamide and its metabolites in paediatric patients receiving high-dose myeloablative therapy. Eur J Cancer 2011; 47: 1556–1563.

    Article  CAS  PubMed  Google Scholar 

  12. McCune JS, Salinger DH, Vicini P, Oglesby C, Blough DK, Park JR . Population pharmacokinetics of cyclophosphamide and metabolites in children with neuroblastoma: a report from the Children's Oncology Group. J Clin Pharmacol 2009; 49: 88–102.

    Article  CAS  PubMed  Google Scholar 

  13. McDonald GB, Slattery JT, Bouvier ME, Ren S, Batchelder AL, Kalhorn TF et al. Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation. Blood 2003; 101: 2043–2048.

    Article  CAS  PubMed  Google Scholar 

  14. Al-Rawithi S, El-Yazigi A, Ernst P, Al-Fiar F, Nicholls PJ . Urinary excretion and pharmacokinetics of acrolein and its parent drug cyclophosphamide in bone marrow transplant patients. Bone Marrow Transplant 1998; 22: 485–490.

    Article  CAS  PubMed  Google Scholar 

  15. de Jonge ME, Huitema AD, Beijnen JH, Rodenhuis S . High exposures to bioactivated cyclophosphamide are related to the occurrence of veno-occlusive disease of the liver following high-dose chemotherapy. Br J Cancer 2006; 94: 1226–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ayash LJ, Wright JE, Tretyakov O, Gonin R, Elias A, Wheeler C et al. Cyclophosphamide pharmacokinetics: correlation with cardiac toxicity and tumor response. J Clin Oncol 1992; 10: 995–1000.

    Article  CAS  PubMed  Google Scholar 

  17. McCune JS, Batchelder A, Deeg HJ, Gooley T, Cole S, Phillips B et al. Cyclophosphamide following targeted oral busulfan as conditioning for hematopoietic cell transplantation: pharmacokinetics, liver toxicity, and mortality. Biol Blood Marrow Transplant 2007; 13: 853–862.

    Article  CAS  PubMed  Google Scholar 

  18. de Jonge ME, Huitema AD, Rodenhuis S, Beijnen JH . Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 2005; 44: 1135–1164.

    Article  CAS  PubMed  Google Scholar 

  19. Slattery JT, Kalhorn TF, McDonald GB, Lambert K, Buckner CD, Bensinger WI et al. Conditioning regimen-dependent disposition of cyclophosphamide and hydroxycyclophosphamide in human marrow transplantation patients. J Clin Oncol 1996; 14: 1484–1494.

    Article  CAS  PubMed  Google Scholar 

  20. Hassan M, Ljungman P, Ringdén O, Hassan Z, Oberg G, Nilsson C et al. The effect of busulphan on the pharmacokinetics of cyclophosphamide and its 4-hydroxy metabolite: time interval influence on therapeutic efficacy and therapy-related toxicity. Bone Marrow Transplant 2000; 25: 915–924.

    Article  CAS  PubMed  Google Scholar 

  21. Ren S, Kalhorn TF, McDonald GB, Anasetti C, Appelbaum FR, Slattery JT . Pharmacokinetics of cyclophosphamide and its metabolites in bone marrow transplantation patients. Clin Pharmacol Ther 1998; 64: 289–301.

    Article  CAS  PubMed  Google Scholar 

  22. Slattery JT, Sanders JE, Buckner CD, Schaffer RL, Lambert KW, Langer FP et al. Graft-rejection and toxicity following bone marrow transplantation in relation to busulfan pharmacokinetics. Bone Marrow Transplant 1995; 16: 31–42.

    CAS  PubMed  Google Scholar 

  23. Borch RF, Millard JA . The mechanism of activation of 4-hydroxycyclophosphamide. J Med Chem 1987; 30: 427–431.

    Article  CAS  PubMed  Google Scholar 

  24. Hassan M, Svensson US, Ljungman P, Björkstrand B, Olsson H, Bielenstein M et al. A mechanism-based pharmacokinetic-enzyme model for cyclophosphamide autoinduction in breast cancer patients. Br J Clin Pharmacol 1999; 48: 669–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schuler U, Ehninger G, Wagner T . Repeated high-dose cyclophosphamide administration in bone marrow transplantation: exposure to activated metabolites. Cancer Chemother Pharmacol 1987; 20: 248–252.

    Article  CAS  PubMed  Google Scholar 

  26. Socie G, Clift RA, Blaise D, Devergie A, Ringden O, Martin PJ et al. Busulfan plus cyclophosphamide compared with total-body irradiation plus cyclophosphamide before marrow transplantation for myeloid leukemia: long-term follow-up of 4 randomized studies. Blood 2001; 98: 3569–3574.

    Article  CAS  PubMed  Google Scholar 

  27. Ferry C, Socie G . Busulfan-cyclophosphamide versus total body irradiation-cyclophosphamide as preparative regimen before allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia: what have we learned? Exp Hematol 2003; 31: 1182–1186.

    Article  CAS  PubMed  Google Scholar 

  28. Ringden O, Labopin M, Tura S, Arcese W, Iriondo A, Zittoun R et al. A comparison of busulphan versus total body irradiation combined with cyclophosphamide as conditioning for autograft or allograft bone marrow transplantation in patients with acute leukaemia. Acute Leukaemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Br J Haematol 1996; 93: 637–645.

    Article  CAS  PubMed  Google Scholar 

  29. Ette EI, Williams PJ . Population pharmacokinetics I: background, concepts, and models. Ann Pharmacother 2004; 38: 1702–1706.

    Article  PubMed  Google Scholar 

  30. Qiu R, Yao A, Vicini P, McDonald GB, Batchelder AL, Bouvier ME et al. Diminishing the risk of nonrelapse mortality in hematopoietic stem cell transplantation: Prediction of exposure to the cyclophosphamide metabolite carboxyethylphosphoramide mustard. Clin Pharmacol Ther 2004; 76: 270–280.

    Article  CAS  PubMed  Google Scholar 

  31. de Jonge ME, Huitema AD, van Dam SM, Rodenhuis S, Beijnen JH . Population pharmacokinetics of cyclophosphamide and its metabolites 4-hydroxycyclophosphamide, 2-dechloroethylcyclophosphamide, and phosphoramide mustard in a high-dose combination with Thiotepa and Carboplatin. Ther Drug Monit 2005; 27: 756–765.

    Article  CAS  PubMed  Google Scholar 

  32. Salinger DH, Vicini P, Blough DK, O’Donnell PV, Pawlikowski MA, McCune JS et al. Development of a population pharmacokinetics-based sampling schedule to target daily intravenous busulfan for outpatient clinic administration. J Clin Pharmacol 2010; 50: 1292–1300.

    Article  CAS  PubMed  Google Scholar 

  33. Lucarelli G, Galimberti M, Polchi P, Angelucci E, Baronciani D, Giardini C et al. Bone marrow transplantation in patients with thalassemia. N Engl J Med 1990; 322: 417–421.

    Article  CAS  PubMed  Google Scholar 

  34. Hows JM, Mehta A, Ward L, Woods K, Perez R, Gordon MY et al. Comparison of mesna with forced diuresis to prevent cyclophosphamide induced haemorrhagic cystitis in marrow transplantation: a prospective randomised study. Br J Cancer 1984; 50: 753–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ekhart C, Doodeman VD, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD . Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet Genomics 2008; 18: 515–523.

    Article  CAS  PubMed  Google Scholar 

  36. Larson RR, Khazaeli MB, Dillon HK . Development of an HPLC method for simultaneous analysis of five antineoplastic agents. Appl Occup Environ Hyg 2003; 18: 109–119.

    Article  CAS  PubMed  Google Scholar 

  37. Griskevicius L, Meurling L, Hassan M . Simple method based on fluorescent detection for the determination of 4-hydroxycyclophosphamide in plasma. Ther Drug Monit 2002; 24: 405–409.

    Article  CAS  PubMed  Google Scholar 

  38. Steimer JL, Mallet A, Golmard JL, Boisvieux JF . Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model. Drug Metab Rev 1984; 15: 265–292.

    Article  CAS  PubMed  Google Scholar 

  39. Powis G, Reece P, Ahmann DL, Ingle JN . Effect of body weight on the pharmacokinetics of cyclophosphamide in breast cancer patients. Cancer Chemother Pharmacol 1987; 20: 219–222.

    Article  CAS  PubMed  Google Scholar 

  40. Batey MA, Wright JG, Azzabi A, Newell DR, Lind MJ, Calvert AH et al. Population pharmacokinetics of adjuvant cyclophosphamide, methotrexate and 5-fluorouracil (CMF). Eur J Cancer 2002; 38: 1081–1089.

    Article  CAS  PubMed  Google Scholar 

  41. Yule SM, Price L, Pearson AD, Boddy AV . Cyclophosphamide and ifosfamide metabolites in the cerebrospinal fluid of children. Clin Cancer Res 1997; 3: 1985–1992.

    CAS  PubMed  Google Scholar 

  42. Yule SM, Price L, McMahon AD, Pearson AD, Boddy AV . Cyclophosphamide metabolism in children with non-Hodgkin's lymphoma. Clin Cancer Res 2004; 10: 455–460.

    Article  CAS  PubMed  Google Scholar 

  43. Yule SM, Boddy AV, Cole M, Price L, Wyllie R, Tasso MJ et al. Cyclophosphamide pharmacokinetics in children. Br J Clin Pharmacol 1996; 41: 13–19.

    Article  CAS  PubMed  Google Scholar 

  44. Wagner T, Heydrich D, Bartels H, Hohorst HJ . Effect of damaged liver parenchyma, renal insufficiency and hemodialysis on the pharmacokinetics of cyclophosphamide and its activated metabolites]. Arzneimittelforschung 1980; 30: 1588–1592.

    CAS  PubMed  Google Scholar 

  45. Yule SM, Price L, Cole M, Pearson AD, Boddy AV . Cyclophosphamide metabolism in children with Fanconi's anaemia. Bone Marrow Transplant 1999; 24: 123–128.

    Article  CAS  PubMed  Google Scholar 

  46. Xie H, Griskevicius L, Ståhle L, Hassan Z, Yasar U, Rane A et al. Pharmacogenetics of cyclophosphamide in patients with hematological malignancies. Eur J Pharm Sci 2006; 27: 54–61.

    Article  CAS  PubMed  Google Scholar 

  47. Juma FD . Effect of liver failure on the pharmacokinetics of cyclophosphamide. Eur J Clin Pharmacol 1984; 26: 591–593.

    Article  CAS  PubMed  Google Scholar 

  48. Vesell ES . Clinical pharmacology: a personal perspective. Clin Pharmacol Ther 1985; 38: 603–612.

    Article  CAS  PubMed  Google Scholar 

  49. Fasola G, Lo Greco P, Calori E, Zilli M, Verlicchi F, Motta MR et al. Pharmacokinetics of high-dose cyclophosphamide for bone marrow transplantation. Haematologica 1991; 76: 120–125.

    CAS  PubMed  Google Scholar 

  50. Grochow LB, Colvin M . Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 1979; 4: 380–394.

    Article  CAS  PubMed  Google Scholar 

  51. Bouligand J, Le Maitre A, Valteau-Couanet D, Grill J, Drouard-Troalen L, Paci A et al. Elevated plasma ferritin and busulfan pharmacodynamics during high-dose chemotherapy regimens in children with malignant solid tumors. Clin Pharmacol Ther 2007; 82: 402–409.

    Article  CAS  PubMed  Google Scholar 

  52. Koren G, Beatty K, Seto A, Einarson TR, Lishner M . The effects of impaired liver function on the elimination of antineoplastic agents. Ann Pharmacother 1992; 26: 363–371.

    Article  CAS  PubMed  Google Scholar 

  53. Moore MJ, Erlichman C, Thiessen JJ, Bunting PS, Hardy R, Kerr I et al. Variability in the pharmacokinetics of cyclophosphamide, methotrexate and 5-fluorouracil in women receiving adjuvant treatment for breast cancer. Cancer Chemother Pharmacol 1994; 33: 472–476.

    Article  CAS  PubMed  Google Scholar 

  54. Pinto N, Ludeman SM, Dolan ME . Drug focus: Pharmacogenetic studies related to cyclophosphamide-based therapy. Pharmacogenomics 2009; 10: 1897–1903.

    Article  CAS  PubMed  Google Scholar 

  55. Ekhart C, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD . Relations between polymorphisms in drug-metabolising enzymes and toxicity of chemotherapy with cyclophosphamide, thiotepa and carboplatin. Pharmacogenet Genomics 2008; 18: 1009–1015.

    Article  CAS  PubMed  Google Scholar 

  56. Timm R, Kaiser R, Lötsch J, Heider U, Sezer O, Weisz K et al. Association of cyclophosphamide pharmacokinetics to polymorphic cytochrome P450 2C19. Pharmacogenomics J 2005; 5: 365–373.

    Article  CAS  PubMed  Google Scholar 

  57. Poonkuzhali B, Panetta JC, Desire S, Velayudhan SR, Mathews V, George B et al. Population pharmacokinetics of cyclophosphamide in patients with Thalassaemia major undergoing HSCT shows body weight, CYP450, GST and ALDH polymorphisms as covariates explaining inter-individual variation. Blood 2009; 114: 1182a.

    Google Scholar 

  58. Poonkuzhali B, Desire S, Mathews V, Lakshmi KM, Velayudhan SR, George B et al. Polymorphisms in the CYP450 genes influences regimen related toxicity and outcome in patients with beta thalassaemia major undergoing HSCT. Blood 2009; 114: 869a.

    Google Scholar 

  59. Dasgupta RK, Adamson PJ, Davies FE, Rollinson S, Roddam PL, John Ashcroft A et al. Polymorphic variation in GSTP1 modulates outcome following therapy for multiple myeloma. Blood 2003; 102: 2345–2350.

    Article  CAS  PubMed  Google Scholar 

  60. Zhong S, Huang M, Yang X, Liang L, Wang Y, Romkes M et al. Relationship of glutathione S-transferase genotypes with side-effects of pulsed cyclophosphamide therapy in patients with systemic lupus erythematosus. Br J Clin Pharmacol 2006; 62: 457–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Allan JM, Wild CP, Rollinson S, Willett EV, Moorman AV, Dovey GJ et al. Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci USA 2001; 98: 11592–11597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Indo-French center for the promotion of advanced research (IFCPAR) grant no. 2403-2 and the Department of Biotechnology, India, grant no. BT/PR7596/MED/12/291/2006. We also acknowledge Prof. Jeannine McCune, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, USA for kindly providing PK data for comparison and her grant support (R21- CA162059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Balasubramanian.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Bone Marrow Transplantation website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balasubramanian, P., Desire, S., Panetta, J. et al. Population pharmacokinetics of cyclophosphamide in patients with thalassemia major undergoing HSCT. Bone Marrow Transplant 47, 1178–1185 (2012). https://doi.org/10.1038/bmt.2011.254

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2011.254

Keywords

This article is cited by

Search

Quick links