Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Graft-Versus-Tumor Effects

Lack of IL-21 signal attenuates graft-versus-leukemia effect in the absence of CD8 T-cells

Abstract

Previously, we have shown that IL-21R−/− splenocytes ameliorate GVHD as compared with wild-type splenocytes. Here, we investigated whether or not IL-21R−/− splenocytes diminish the graft-versus-leukemia (GVL) effect. Surprisingly, IL-21R−/− splenocytes efficiently eliminate leukemic cells as well as wild-type splenocytes, suggesting the retention of GVL effects in the absence of IL-21 signaling. To compare the GVL effect between IL-21R−/− and wild-type cells, we titrated the number of splenocytes required for the elimination of leukemic cells and found that the threshold of GVL effect was obtained between 5 × 105 and 5 × 106 with both types of splenocytes. Cotransplantation with CD8-depleted splenocytes but not with purified CD8 T-cells resulted in a significant reduction in anti-leukemic effect of IL-21R−/− cells compared with wild-type cells, suggesting that the lack of IL-21 signaling primarily impairs CD4 T-cell rather than CD8 T-cell function and the comparable GVL effect with IL-21R−/− bulk splenocytes results from cooperative compensation by CD8 T-cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ozaki K, Leonard WJ . Cytokine and cytokine receptor pleiotropy and redundancy. J Biol Chem 2002; 277: 29355–29358.

    Article  CAS  PubMed  Google Scholar 

  2. Leonard WJ, Spolski R . Interleukin-21: a modulator of lymphoid proliferation, apoptosis and differentiation. Nat Rev Immunol 2005; 5: 688–698.

    Article  CAS  PubMed  Google Scholar 

  3. Leonard WJ, Zeng R, Spolski R . Interleukin 21: a cytokine/cytokine receptor system that has come of age. J Leukoc Biol 2008; 84: 348–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 2000; 408: 57–63.

    Article  CAS  PubMed  Google Scholar 

  5. Ozaki K, Kikly K, Michalovich D, Young PR, Leonard WJ . Cloning of a type I cytokine receptor most related to the IL-2 receptor beta chain. Proc Natl Acad Sci USA 2000; 97: 11439–11444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ozaki K, Spolski R, Feng CG, Qi CF, Cheng J, Sher A et al. A critical role for IL-21 in regulating immunoglobulin production. Science 2002; 298: 1630–1634.

    Article  CAS  PubMed  Google Scholar 

  7. Takaki R, Hayakawa Y, Nelson A, Sivakumar PV, Hughes S, Smyth MJ et al. IL-21 enhances tumor rejection through a NKG2D-dependent mechanism. J Immunol 2005; 175: 2167–2173.

    Article  CAS  PubMed  Google Scholar 

  8. Wang G, Tschoi M, Spolski R, Lou Y, Ozaki K, Feng C et al. In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res 2003; 63: 9016–9022.

    CAS  PubMed  Google Scholar 

  9. Hinrichs CS, Spolski R, Paulos CM, Gattinoni L, Kerstann KW, Palmer DC et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 2008; 111: 5326–5333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davis ID, Skrumsager BK, Cebon J, Nicholaou T, Barlow JW, Moller NP et al. An open-label, two-arm, phase I trial of recombinant human interleukin-21 in patients with metastatic melanoma. Clin Cancer Res 2007; 13: 3630–3636.

    Article  CAS  PubMed  Google Scholar 

  11. Thompson JA, Curti BD, Redman BG, Bhatia S, Weber JS, Agarwala SS et al. Phase I study of recombinant interleukin-21 in patients with metastatic melanoma and renal cell carcinoma. J Clin Oncol 2008; 26: 2034–2039.

    Article  CAS  PubMed  Google Scholar 

  12. Frederiksen KS, Lundsgaard D, Freeman JA, Hughes SD, Holm TL, Skrumsager BK et al. IL-21 induces in vivo immune activation of NK cells and CD8(+) T cells in patients with metastatic melanoma and renal cell carcinoma. Cancer Immunol Immunother 2008; 57: 1439–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davis ID, Brady B, Kefford RF, Millward M, Cebon J, Skrumsager BK et al. Clinical and biological efficacy of recombinant human interleukin-21 in patients with stage IV malignant melanoma without prior treatment: a phase IIa trial. Clin Cancer Res 2009; 15: 2123–2129.

    Article  CAS  PubMed  Google Scholar 

  14. Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L, Schluns K et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007; 448: 480–483.

    Article  CAS  PubMed  Google Scholar 

  15. Korn T, Bettelli E, Gao W, Awasthi A, Jäger A, Strom TB et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007; 448: 484–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007; 8: 967–974.

    Article  CAS  PubMed  Google Scholar 

  17. Ozaki K, Spolski R, Ettinger R, Kim HP, Wang G, Qi CF et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 2004; 173: 5361–5371.

    Article  CAS  PubMed  Google Scholar 

  18. Bubier JA, Sproule TJ, Foreman O, Spolski R, Shaffer DJ, Morse III HC et al. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB- Yaa mice. Proc Natl Acad Sci USA 2009; 106: 1518–1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spolski R, Kashyap M, Robinson C, Yu Z, Leonard WJ . IL-21 signaling is critical for the development of type I diabetes in the NOD mouse. Proc Natl Acad Sci USA 2008; 105: 14028–14033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sutherland AP, Van Belle T, Wurster AL, Suto A, Michaud M, Zhang D et al. IL-21 is required for the development of type 1 diabetes in NOD mice. Diabetes 2009; 58: 1144–1155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Teshima T, Hill GR, Pan L, Brinson YS, van den Brink MR, Cooke KR et al. IL-11 separates graft-versus-leukemia effects from graft-versus-host disease after bone marrow transplantation. J Clin Invest 1999; 104: 317–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cooke KR, Gerbitz A, Crawford JM, Teshima T, Hill GR, Tesolin A et al. LPS antagonism reduces graft-versus-host disease and preserves graft-versus-leukemia activity after experimental bone marrow transplantation. J Clin Invest 2001; 107 (12): 1581–1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reddy P, Teshima T, Hildebrandt G, Duffner U, Maeda Y, Cooke KR et al. 2002. Interleukin 18 preserves a perforin-dependent graft-versus-leukemia effect after allogeneic bone marrow transplantation. Blood 2002; 100: 3429–3431.

    Article  CAS  PubMed  Google Scholar 

  24. Yang YG, Qi J, Wang MG, Sykes M . Donor-derived interferon gamma separates graft-versus-leukemia effects and graft-versus-host disease induced by donor CD8T cells. Blood 2002; 99: 4207–4215.

    Article  CAS  PubMed  Google Scholar 

  25. Clouthier SG, Cooke KR, Teshima T, Lowler KP, Liu C, Connolly K et al. Repifermin (keratinocyte growth factor-2) reduces the severity of graft-versus-host disease while preserving a graft-versus-leukemia effect. Biol Blood Marrow Transplant 2003; 9: 592–603.

    Article  CAS  PubMed  Google Scholar 

  26. Reddy P, Maeda Y, Hotary K, Liu C, Reznikov LL, Dinarello CA et al. Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc Natl Acad Sci USA 2004; 101: 3921–3926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang C, Lou J, Li N, Todorov I, Lin CL, Cao YA et al. Donor CD8+ T cells mediate graft-versus-leukemia activity without clinical signs of graft-versus-host disease in recipients conditioned with anti-CD3 monoclonal antibody. J Immunol 2007; 178: 838–850.

    Article  CAS  PubMed  Google Scholar 

  28. Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 2003; 9: 1144–1150.

    Article  CAS  PubMed  Google Scholar 

  29. Meguro A, Ozaki K, Oh I, Hatanaka K, Matsu H, Tatara R et al. IL-21 is critical for GVHD in a mouse model. Bone Marrow Transplant 2010; 45: 723–729.

    Article  CAS  PubMed  Google Scholar 

  30. Bucher C, Koch L, Vogtenhuber C, Goren E, Munger M, Panoskaltsis-Mortari A et al. IL-21 blockade reduces graft-versus-host disease mortality by supporting inducible T regulatory cell generation. Blood 2009; 114: 5375–5384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Williams RT, Roussel MF, Sherr CJ . Arf gene loss enhances oncogenicity and limits imatinib response in mouse models of Bcr-Abl-induced acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2006; 103: 6688–6693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oh I, Ozaki K, Meguro A, Hatanaka K, Kadowaki M, Matsu H et al. Altered effector CD4+ T cell function in IL-21R−/− CD4+ T cell-mediated graft-versus-host disease. J Immunol 2010; 185: 1920–1926.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Tanabe (Institute of Medical Science, University of Tokyo, Tokyo) for donating the bcr-abl vector, Dr Kitamura (Institute of Medical Science, University of Tokyo, Tokyo) for donating PLAT-E, a packaging cell line and Drs Miyoshi (Tsukuba Institute, RIKEN, Tsukuba) and Okano (Keio University, Tokyo) for donating the luciferase-containing lentivirus vector. This work was supported in part by grants from the Ministry of Health, Labor and Welfare of Japan, by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by the Intramural Research Program of the National Heart, Lung and Blood Institute, National Institutes of Health (Bethesda, MD) and by a Young Investigator Award from Jichi Medical University, Tochigi, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Ozaki.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Bone Marrow Transplantation website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meguro, A., Ozaki, K., Hatanaka, K. et al. Lack of IL-21 signal attenuates graft-versus-leukemia effect in the absence of CD8 T-cells. Bone Marrow Transplant 46, 1557–1565 (2011). https://doi.org/10.1038/bmt.2010.342

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2010.342

Keywords

This article is cited by

Search

Quick links