Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cell Procurement

Comparison between filgrastim and lenograstim plus chemotherapy for mobilization of PBPCs

Abstract

Recombinant human (rHu) G-CSF has been widely used to treat neutropenia and mobilize PBPCs for their autologous and allogeneic transplantation. It shortens neutropenia and thus reduces the frequency of neutropenic fever. We compared the efficiency of glycosylated rHu and non-glycosylated Hu G-CSF in mobilizing hematopoietic progenitor cells (HPCs). In total, 86 patients were consecutively enrolled for mobilization with CY plus either glycosylated or non-glycosylated G-CSF, and underwent leukapheresis. The HPC content of each collection, toxicity, days of leukapheresis needed to reach the minimum HPC target and days to recover WBC (500 and >1000/mm3) and plts (>50 000/mm3) were evaluated. Glycosylated G-CSF mobilized more CD34+ cells than did the non-glycosylated form. The ability to reach a collection target of >3 × 106 CD34+/kg body weight in two leukaphereses was higher for glycosylated G-CSF. No significant differences between the two regimens were observed with regard to toxicity and days to WBC and plt recovery. High-dose CY plus glycosylated G-CSF achieved adequate mobilization and the collection target more quickly and with fewer leukaphereses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Anderlini P, Donato M, Chan KW, Huh YO, Gee AP, Lauppe MJ et al. Allogeneic blood progenitor cell collection in normal donors after mobilization with filgrastim: the M.D Anderson Cancer experience. Transfusion 1999; 39: 555–560.

    Article  CAS  PubMed  Google Scholar 

  2. Bensinger WI, Weaver CH, Appelbaum FR, Rowley S, Demirer T, Sanders J et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor. Blood 1995; 85: 1655–1658.

    CAS  PubMed  Google Scholar 

  3. Dreger P, Haferlach T, Eckstein V, Jacobs S, Suttorp M, Löffler H et al. G-CSF mobilized peripheral blood progenitor cells for allogeneic transplantation: safety, kinetics of mobilization, and composition of the graft. Br J Haematol 1994; 87: 609–613.

    Article  CAS  PubMed  Google Scholar 

  4. Gisselbrecht C, Prentice HG, Bacigalupo A, Biron P, Milpied N, Rubie H et al. Placebo-controlled phase III trial of lenograstim in bone marrow transplantation. Lancet 1994; 343: 696–700.

    Article  CAS  PubMed  Google Scholar 

  5. Tarella C, Castellino C, Locatelli F, Caracciolo D, Corradini P, Falda M et al. G-CSF administration following peripheral blood progenitor cell (PBPC) autograft in lymphoid malignancies: evidence for clinical benefits and reduction of treatment costs. Bone Marrow Transplant 1998; 21: 401–407.

    Article  CAS  PubMed  Google Scholar 

  6. Klumpp TR, Mangan KF, Goldberg SL, Pearlman ES, Macdonald JS . Granulocyte colony-stimulating factor accelerates neutrophil engraftment following peripheral-blood stem-cell transplantation: a prospective, randomized trial. J Clin Oncol 1995; 13: 1323–1327.

    Article  CAS  PubMed  Google Scholar 

  7. Spitzer G, Adkins DR, Spencer V, Dunphy FR, Petruska PJ, Velasquez WS et al. Randomized study of growth factors post-peripheral–blood stem-cell transplant: neutrophil recovery is improved with modest clinical benefit. J Clin Oncol 1994; 12: 661–670.

    Article  CAS  PubMed  Google Scholar 

  8. Kawano Y, Takaue Y, Mimaya J, Horikoshi Y, Watanabe T, Abe T et al. Marginal benefit/disadvantage of granulocyte colony stimulating factor therapy after autologous blood stem cell transplantation in children: results of a prospective randomized trial. The Japanese Cooperative Study Group of PBSCT. Blood 1998; 92: 4040–4046.

    CAS  PubMed  Google Scholar 

  9. Smith TJ, Khatcheressian J, Lyman GH, Ozer H, Armitage JO, Balducci L et al. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol 2006; 24: 3187–3205.

    Article  CAS  PubMed  Google Scholar 

  10. Kubota N, Orita T, Hattori K, Oh-eda M, Ochi N, Yamazaki T . Structural characterization of natural and recombinant human granulocyte colony-stimulating factors. J Biochem 1990; 107: 486–492.

    Article  CAS  PubMed  Google Scholar 

  11. Souza LM, Boone TC, Gabrilove J, Lai PH, Zsebo KM, Murdock DC et al. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science 1986; 232: 61–65.

    Article  CAS  PubMed  Google Scholar 

  12. Ria R, Falzetti F, Ballanti S, Minelli O, Di Ianni M, Cimminiello M et al. Melphalan versus melphalan plus busulphan in conditioning to autologous stem cell transplantation for low-risk multiple myeloma. Hematol J 2004; 5: 118–122.

    Article  CAS  PubMed  Google Scholar 

  13. Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N Engl J Med 1996; 335: 91–97.

    Article  CAS  PubMed  Google Scholar 

  14. Björkstrand B, Ljungman P, Bird JM, Samson D, Brandt L, Alegre A et al. Autologous stem cell transplantation in multiple myeloma: results of the European Group for Bone Marrow Transplantation. Stem Cells 1995; 13: S140–S146.

    Article  Google Scholar 

  15. Socinski MA, Cannistra SA, Elias A, Antman KH, Schnipper L, Griffin JD . Granulocyte macrophage colony stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet 1988; 331: 1194–1198.

    Article  Google Scholar 

  16. Kessinger A, Sharp JG . The whys and hows of haemopoietic progenitor and stem cell mobilization. Bone Marrow Transplant 2003; 31: 319–329.

    Article  CAS  PubMed  Google Scholar 

  17. Gratwohl A, Baldomero H, Schmid O, Horisberger B, Bargetzi M, Urbano-Ispizua A . Change in stem cell source for hematopoietic stem cell transplantation (HSCT) in Europe: a report of the EBMT activity survey 2003. Bone Marrow Transplant 2005; 36: 575–590.

    Article  CAS  PubMed  Google Scholar 

  18. Bensinger W, Appelbaum F, Rowley S, Storb R, Sanders J, Lilleby K et al. Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol 1995; 13: 2547–2555.

    Article  CAS  PubMed  Google Scholar 

  19. Watts MJ, Sullivan AM, Jamieson E, Pearce R, Fielding A, Devereux S et al. Progenitor-cell mobilization after low-dose cyclophosphamide and granulocyte colony-stimulating factor: analysis of progenitor-cell quantity and quality and factors predicting for these parameters in 101 pretreated patients with malignant lymphoma. J Clin Oncol 1997; 15: 535–546.

    Article  CAS  PubMed  Google Scholar 

  20. Ketterer N, Salles G, Moullet I, Dumontet C, ElJaafari-Corbin A, Tremisi P et al. Factors associated with successful mobilization of peripheral-blood progenitor cells in 200 patients with lymphoid malignancies. Br J Haematol 1998; 103: 235–242.

    Article  CAS  PubMed  Google Scholar 

  21. Anderlini P, Lauppe J, Przepiorka D, Seong D, Champlin R, Körbling M . Peripheral blood stem cell apheresis in normal donors: feasibility and yield of second collections. Br J Haematol 1997; 96: 415–417.

    Article  CAS  PubMed  Google Scholar 

  22. Ings SJ, Balsa C, Leverett D, Mackinnon S, Linch DC, Watts MJ . Peripheral blood stem cell yield in 400 normal donors mobilised with granulocyte colony-stimulating factor (G-CSF): impact of age, sex, donor weight and type of G-CSF used. Br J Haematol 2006; 134: 517–525.

    Article  PubMed  Google Scholar 

  23. Kröger N, Renges H, Krüger W, Gutensohn K, Löliger C, Carrero I et al. A randomized comparison of once versus twice daily recombinant human granulocyte colony-stimulating factor (filgrastim) for stem cell mobilization in healthy donors for allogeneic transplantation. Br J Haematol 2000; 111: 761–765.

    PubMed  Google Scholar 

  24. Kröger N, Sonnenberg S, Cortes-Dericks L, Freiberger P, Mollnau H, Zander AR . Kinetics of G-CSF and CD34+ cell mobilization after once or twice daily stimulation with rHu granulocyte-stimulating factor (lenograstim) in healthy volunteers: an intraindividual crossover study. Transfusion 2004; 44: 104–110.

    Article  PubMed  Google Scholar 

  25. Kim MK, Kim S, Jang G, Lee SS, Sym SJ, Lee DH et al. A randomized comparison of peripheral blood hematopoietic progenitor cell level of 5/mm3 versus 50/mm3 as a surrogate marker to initiate efficient autologous blood stem cell collection. J Clin Apher 2007; 22: 277–282.

    Article  PubMed  Google Scholar 

  26. Heuft HG, Goudeva L, Sel S, Blasczyk R . Equivalent mobilization and collection of granulocytes for transfusion after administration of glycosylated G-CSF (3 microg/kg) plus dexamethasone versus glycosylated G-CSF (12 microg/kg) alone. Transfusion 2002; 42: 928–934.

    Article  CAS  PubMed  Google Scholar 

  27. Kuwabara T, Kato Y, Kobayashi S, Suzuki H, Sugiyama Y . Nonlinear pharmacokinetics of a recombinant human granulocyte colony-stimulating factor derivative (nartograstim): species differences among rats, monkeys and humans. J Pharmacol Exp Ther 1994; 271: 1535–1543.

    CAS  PubMed  Google Scholar 

  28. Kuwabara T, Kobayashi S, Sugiyama Y . Pharmacokinetics and pharmacodynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab Rev 1996; 28: 625–658.

    Article  CAS  PubMed  Google Scholar 

  29. Hayashi N, Kinoshita H, Yukawa E, Higuchi S . Pharmacokinetic and pharmacodynamic analysis of subcutaneous recombinant human granulocyte colony stimulating factor (lenograstim) administration. J Clin Pharmacol 1999; 39: 583–592.

    Article  CAS  PubMed  Google Scholar 

  30. Carter CR, Whitmore KM, Thorpe R . The significance of carbohydrates on G-CSF: differential sensitivity of G-CSFs to human neutrophil elastase degradation. J Leukoc Biol 2004; 75: 515–522.

    Article  CAS  PubMed  Google Scholar 

  31. Saito T, Usui N, Asai O, Dobashi N, Yano S, Osawa H et al. Elevated serum levels of human matrix metalloproteinase-9 (MMP-9) during the induction of peripheral blood stem cell mobilization by granulocyte colony-stimulating factor (G-CSF). J Infect Chemother 2007; 13: 426–428.

    Article  CAS  PubMed  Google Scholar 

  32. Carion A, Benboubker L, Hérault O, Roingeard F, Degenne M, Senecal D et al. Stromal-derived factor 1 and matrix metalloproteinase 9 levels in bone marrow and peripheral blood of patients mobilized by granulocyte colony-stimulating factor and chemotherapy. Relationship with mobilizing capacity of haematopoietic progenitor cells. Br J Haematol 2003; 122: 918–926.

    Article  CAS  PubMed  Google Scholar 

  33. Ribeiro D, Veldwijk MR, Benner A, Laufs S, Wenz F, Ho AD et al. Differences in functional activity and antigen expression of granulocytes primed in vivo with filgrastim, lenograstim, or pegfilgrastim. Transfusion 2007; 47: 969–980.

    Article  CAS  PubMed  Google Scholar 

  34. Martino M, Console G, Irrera G, Callea I, Condemi A, Dattola A et al. Harvesting peripheral blood progenitor cells from healthy donors: retrospective comparison of filgrastim and lenograstim. J Clin Apher 2005; 20: 129–136.

    Article  PubMed  Google Scholar 

  35. Lefrère F, Bernard M, Audat F, Cavazzana-Calvo M, Belanger C, Hermine O et al. Comparison of lenograstim vs filgrastim administration following chemotherapy for peripheral blood stem cell (PBSC) collection: a retrospective study of 126 patients. Leuk Lymphoma 1999; 35: 501–505.

    Article  PubMed  Google Scholar 

  36. Kopf B, De Giorgi U, Vertogen B, Monti G, Molinari A, Turci D et al. A randomized study comparing filgrastim versus lenograstim versus molgramostim plus chemotherapy for peripheral blood progenitor cell mobilization. Bone Marrow Transplant 2006; 38: 407–412.

    Article  CAS  PubMed  Google Scholar 

  37. Ataergin S, Arpaci F, Turan M, Solchaga L, Cetin T, Ozturk M et al. Reduced dose of lenograstim is as efficacious as standard dose of filgrastim for peripheral blood stem cell mobilization and transplantation: a randomized study in patients undergoing autologous peripheral stem cell transplantation. Am J Hematol 2008; 83: 644–648.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Associazione Italiana per la Ricerca sul Cancro (AIRC), Milan; the Ministry of Health, Project ‘Oncologia’ and ‘Alleanza contro il Cancro’ 2006, IRCCS Humanitas Mirasole S.p.A; and the Ministry of Education, University and Research (MIUR, PRIN Projects 2008), I-00100 Rome, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Ria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ria, R., Gasparre, T., Mangialardi, G. et al. Comparison between filgrastim and lenograstim plus chemotherapy for mobilization of PBPCs. Bone Marrow Transplant 45, 277–281 (2010). https://doi.org/10.1038/bmt.2009.150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2009.150

Keywords

This article is cited by

Search

Quick links