Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

In pursuit of the allo-immune response in multiple myeloma: where do we go from here?

Abstract

AlloSCT is a potentially curative procedure for haematological malignancies and marrow failure syndromes. However, unlike leukaemia and lymphoproliferative disorders, AlloSCT has yet to find its place in the clinical management of patients with multiple myeloma. AlloSCT in multiple myeloma is associated with a high procedure-related mortality (TRM up to 35%) when full-intensity conditioning is used and only up to 36% of cases show long-term disease-free survival. The introduction of reduced intensity conditioning AlloSCT, more recently following an autologous SCT, has reduced the TRM to <20%, but there is an associated increased relapse risk. The use of donor lymphocyte infusions and novel biological agents (thalidomide, bortezomib), alone or together, can be effective in relapsed and even persistent disease post-AlloSCT. Thus, in pursuit of the putative graft-versus-myeloma effect, we need to consider the whole patient management pathway both preceding (depth of response to novel agents) and post-AlloSCT, to minimize the toxicity while harnessing the adoptive immunotherapy effect. This review sets out what we have learned to date from the clinical research studies in this area, examines concepts for improving the outcomes of AlloSCT and proposes a potential direction of clinical investigation to maximize the effect of AlloSCT in multiple myeloma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Voena C, Tarella C, Astolfi M, Ladetto M, Palumbo A et al. Molecular and clinical remissions in multiple myeloma: role of autologous and allogeneic transplantation of hematopoietic cells. J Clin Oncol 1999; 17: 208–215.

    Article  PubMed  Google Scholar 

  2. Bensinger WI . The current status of hematopoietic stem cell transplantation for multiple myeloma. Clin Adv Hematol Oncol 2004; 2: 46–52.

    PubMed  Google Scholar 

  3. Rabitsch W, Prinz E, Ackermann J, Wohrer S, Kaufmann H, Seidl S et al. Long-term follow up of patients with multiple myeloma after high-dose chemotherapy and allogeneic stem cell transplantation. Eur J Haematol 2004; 72: 26–31.

    Article  PubMed  Google Scholar 

  4. Gahrton G, Svensson H, Cavo M, Apperley J, Bacigalupo A, Bjorkstrand B et al. Progress in allogenic bone marrow and peripheral blood stem cell transplantation for multiple myeloma: a comparison between transplants performed 1983–93 and 1994–8 at European Group for Blood and Marrow Transplantation centres. Br J Haematol 2001; 113: 209–216.

    Article  CAS  PubMed  Google Scholar 

  5. Attal M, Harousseau JL, Facon T, Guilhot F, Doyen C, Fuzibet JG et al. Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med 2003; 349: 2495–2502.

    Article  CAS  PubMed  Google Scholar 

  6. Child JA, Morgan GJ, Davies FE, Owen RG, Bell SE, Hawkins K et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003; 348: 1875–1883.

    Article  CAS  PubMed  Google Scholar 

  7. Lokhorst HM, Wu K, Verdonck LF, Laterveer LL, van de Donk NW, van Oers MH et al. The occurrence of graft-versus-host disease is the major predictive factor for response to donor lymphocyte infusions in multiple myeloma. Blood 2004; 103: 4362–4364.

    Article  CAS  PubMed  Google Scholar 

  8. Salama M, Nevill T, Marcellus D, Parker P, Johnson M, Kirk A et al. Donor leukocyte infusions for multiple myeloma. Bone Marrow Transplant 2000; 26: 1179–1184.

    Article  CAS  PubMed  Google Scholar 

  9. Kristinsson SY, Landgren O, Dickman PW, Derolf AR, Bjorkholm M . Patterns of survival in multiple myeloma: a population-based study of patients diagnosed in Sweden from 1973 to 2003. J Clin Oncol 2007; 25: 1993–1999.

    Article  PubMed  Google Scholar 

  10. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008; 111: 2516–2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brenner H, Gondos A, Pulte D . Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood 2008; 111: 2521–2526.

    Article  CAS  PubMed  Google Scholar 

  12. Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Blade J et al. International staging system for multiple myeloma. J Clin Oncol 2005; 23: 3412–3420.

    Article  PubMed  Google Scholar 

  13. Chiecchio L, Protheroe RK, Ibrahim AH, Cheung KL, Rudduck C, Dagrada GP et al. Deletion of chromosome 13 detected by conventional cytogenetics is a critical prognostic factor in myeloma. Leukemia 2006; 20: 1610–1617.

    Article  CAS  PubMed  Google Scholar 

  14. Gutierrez NC, Castellanos MV, Martin ML, Mateos MV, Hernandez JM, Fernandez M et al. Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis. Leukemia 2007; 21: 143–150.

    Article  CAS  PubMed  Google Scholar 

  15. Avet-Loiseau H, Attal M, Moreau P, Charbonnel C, Garban F, Hulin C et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 2007; 109: 3489–3495.

    Article  CAS  PubMed  Google Scholar 

  16. Shaughnessy Jr JD, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2007; 109: 2276–2284.

    Article  CAS  PubMed  Google Scholar 

  17. Gahrton G, Tura S, Ljungman P, Belanger B, Brandt L, Cavo M et al. Allogeneic bone marrow transplantation in multiple myeloma using HLA-compatible sibling donors—an EBMT Registry Study. Bone Marrow Transplant 1991; 7 (Suppl 2): 32.

    PubMed  Google Scholar 

  18. Hunter HM, Peggs K, Powles R, Rahemtulla A, Mahendra P, Cavenagh J et al. Analysis of outcome following allogeneic haemopoietic stem cell transplantation for myeloma using myeloablative conditioning—evidence for a superior outcome using melphalan combined with total body irradiation. Br J Haematol 2005; 128: 496–502.

    Article  CAS  PubMed  Google Scholar 

  19. Kroger N, Einsele H, Wolff D, Casper J, Freund M, Derigs G et al. Myeloablative intensified conditioning regimen with in vivo T-cell depletion (ATG) followed by allografting in patients with advanced multiple myeloma. A phase I/II study of the German Study-group Multiple Myeloma (DSMM). Bone Marrow Transplant 2003; 31: 973–979.

    Article  PubMed  Google Scholar 

  20. Lokhorst HM, Segeren CM, Verdonck LF, van der Holt B, Raymakers R, van Oers MH et al. Partially T-cell-depleted allogeneic stem-cell transplantation for first-line treatment of multiple myeloma: a prospective evaluation of patients treated in the phase III study HOVON 24 MM. J Clin Oncol 2003; 21: 1728–1733.

    Article  PubMed  Google Scholar 

  21. Kuruvilla J, Shepherd JD, Sutherland HJ, Nevill TJ, Nitta J, Le A et al. Long-term outcome of myeloablative allogeneic stem cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 2007; 13: 925–931.

    Article  PubMed  Google Scholar 

  22. Mohty M, Boiron JM, Damaj G, Michallet AS, Bay JO, Faucher C et al. Graft-versus-myeloma effect following antithymocyte globulin-based reduced intensity conditioning allogeneic stem cell transplantation. Bone Marrow Transplant 2004; 34: 77–84.

    Article  CAS  PubMed  Google Scholar 

  23. Gerull S, Goerner M, Benner A, Hegenbart U, Klein U, Schaefer H et al. Long-term outcome of nonmyeloablative allogeneic transplantation in patients with high-risk multiple myeloma. Bone Marrow Transplant 2005; 36: 963–969.

    Article  CAS  PubMed  Google Scholar 

  24. Bruno B, Rotta M, Patriarca F, Mordini N, Allione B, Carnevale-Schianca F et al. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med 2007; 356: 1110–1120.

    Article  CAS  PubMed  Google Scholar 

  25. Kroger N, Schwerdtfeger R, Kiehl M, Sayer HG, Renges H, Zabelina T et al. Autologous stem cell transplantation followed by a dose-reduced allograft induces high complete remission rate in multiple myeloma. Blood 2002; 100: 755–760.

    Article  CAS  PubMed  Google Scholar 

  26. Maloney DG, Molina AJ, Sahebi F, Stockerl-Goldstein KE, Sandmaier BM, Bensinger W et al. Allografting with nonmyeloablative conditioning following cytoreductive autografts for the treatment of patients with multiple myeloma. Blood 2003; 102: 3447–3454.

    Article  CAS  PubMed  Google Scholar 

  27. Garban F, Attal M, Michallet M, Hulin C, Bourhis JH, Yakoub-Agha I, et al., for the Intergroupe Francophone du Myélome and the Swiss Group for Clinical Cancer Research. Prospective comparison of autologous stem cell transplantation followed by dose-reduced allograft (IFM99-03 trial) with tandem autologous stem cell transplantation (IFM99-04 trial) in high-risk de novo multiple myeloma. Blood 2006; 107: 3474–3480.

    Article  CAS  PubMed  Google Scholar 

  28. Lee CK, Badros A, Barlogie B, Morris C, Zangari M, Fassas A et al. Prognostic factors in allogeneic transplantation for patients with high-risk multiple myeloma after reduced intensity conditioning. Exp Hematol 2003; 31: 73–80.

    Article  PubMed  Google Scholar 

  29. Barlogie B, Kyle RA, Anderson KC, Greipp PR, Lazarus HM, Hurd DD et al. Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol 2006; 24: 929–936.

    Article  CAS  PubMed  Google Scholar 

  30. Perez-Simon JA, Caballero D, Mateos MV, San Miguel JF . Graft vs. host disease and graft vs. myeloma effect after non-myeloablative allogeneic transplantation. Leuk Lymphoma 2004; 45: 1725–1729.

    Article  CAS  PubMed  Google Scholar 

  31. Crawley C, Lalancette M, Szydlo R, Gilleece M, Peggs K, Mackinnon S et al. Outcomes for reduced-intensity allogeneic transplantation for multiple myeloma: an analysis of prognostic factors from the Chronic Leukaemia Working Party of the EBMT. Blood 2005; 105: 4532–4539.

    Article  CAS  PubMed  Google Scholar 

  32. Crawley C, Iacobelli S, Bjorkstrand B, Apperley JF, Niederwieser D, Gahrton G . Reduced-intensity conditioning for myeloma: lower nonrelapse mortality but higher relapse rates compared with myeloablative conditioning. Blood 2007; 109: 3588–3594.

    Article  CAS  PubMed  Google Scholar 

  33. Shaw BE, Peggs K, Bird JM, Cavenagh J, Hunter A, Alejandro Madrigal J et al. The outcome of unrelated donor stem cell transplantation for patients with multiple myeloma. Br J Haematol 2003; 123: 886–895.

    Article  PubMed  Google Scholar 

  34. Kroger N, Sayer HG, Schwerdtfeger R, Kiehl M, Nagler A, Renges H et al. Unrelated stem cell transplantation in multiple myeloma after a reduced-intensity conditioning with pretransplantation antithymocyte globulin is highly effective with low transplantation-related mortality. Blood 2002; 100: 3919–3924.

    Article  CAS  PubMed  Google Scholar 

  35. Bruno B, Sorasio R, Patriarca F, Montefusco V, Guidi S, Busca A et al. Unrelated donor haematopoietic cell transplantation after non-myeloablative conditioning for patients with high-risk multiple myeloma. Eur J Haematol 2007; 78: 330–337.

    Article  CAS  PubMed  Google Scholar 

  36. Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 2005; 106: 2912–2919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parimon T, Au DH, Martin PJ, Chien JW . A risk score for mortality after allogeneic hematopoietic cell transplantation. Ann Intern Med 2006; 144: 407–414.

    Article  PubMed  Google Scholar 

  38. Alyea E, Weller E, Schlossman R, Canning C, Mauch P, Ng A et al. Outcome after autologous and allogeneic stem cell transplantation for patients with multiple myeloma: impact of graft-versus-myeloma effect. Bone Marrow Transplant 2003; 32: 1145–1151.

    Article  CAS  PubMed  Google Scholar 

  39. Fenk R, Neumann F, Fenk B, Ruf L, Zohren F, Safaian NN et al. Unrelated umbilical cord blood transplantation as salvage treatment for engraftment failure following autologous stem cell transplantation. Leuk Res 2008; 32: 1157–1159.

    Article  CAS  PubMed  Google Scholar 

  40. Ando T, Yujiri T, Tominaga T, Shinya S, Takahashi T, Nomiyama J et al. Autografting followed by a reduced-intensity conditioning unrelated donor cord blood transplantation for a patient with refractory multiple myeloma: successful engraftment with minimal toxicity. Eur J Haematol 2005; 74: 175–179.

    Article  PubMed  Google Scholar 

  41. Corradini P, Cavo M, Lokhorst H, Martinelli G, Terragna C, Majolino I et al. Molecular remission after myeloablative allogeneic stem cell transplantation predicts a better relapse-free survival in patients with multiple myeloma. Blood 2003; 102: 1927–1929.

    Article  CAS  PubMed  Google Scholar 

  42. Caballero D, Garcia-Marco JA, Martino R, Mateos V, Ribera JM, Sarra J et al. Allogeneic transplant with reduced intensity conditioning regimens may overcome the poor prognosis of B-cell chronic lymphocytic leukemia with unmutated immunoglobulin variable heavy-chain gene and chromosomal abnormalities (11q- and 17p-). Clin Cancer Res 2005; 11: 7757–7763.

    Article  CAS  PubMed  Google Scholar 

  43. Gine E, Moreno C, Esteve J, Montserrat E . The role of stem-cell transplantation in chronic lymphocytic leukemia risk-adapted therapy. Best Pract Res Clin Haematol 2007; 20: 529–543.

    Article  CAS  PubMed  Google Scholar 

  44. Khouri IF, Saliba RM, Admirand J, O’Brien S, Lee MS, Korbling M et al. Graft-versus-leukaemia effect after non-myeloablative haematopoietic transplantation can overcome the unfavourable expression of ZAP-70 in refractory chronic lymphocytic leukaemia. Br J Haematol 2007; 137: 355–363.

    Article  CAS  PubMed  Google Scholar 

  45. Tomblyn M, Lazarus HM . Donor lymphocyte infusions: the long and winding road: how should it be traveled? Bone Marrow Transplant 2008; 42: 569–579.

    Article  CAS  PubMed  Google Scholar 

  46. Goodyear O, Piper K, Khan N, Starczynski J, Mahendra P, Pratt G et al. CD8+ T cells specific for cancer germline gene antigens are found in many patients with multiple myeloma, and their frequency correlates with disease burden. Blood 2005; 106: 4217–4224.

    Article  CAS  PubMed  Google Scholar 

  47. Atanackovic D, Arfsten J, Cao Y, Gnjatic S, Schnieders F, Bartels K et al. Cancer-testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation. Blood 2007; 109: 1103–1112.

    Article  CAS  PubMed  Google Scholar 

  48. Zeiser R, Bertz H, Spyridonidis A, Houet L, Finke J . Donor lymphocyte infusions for multiple myeloma: clinical results and novel perspectives. Bone Marrow Transplant 2004; 34: 923–928.

    Article  CAS  PubMed  Google Scholar 

  49. Alyea EP, Canning C, Neuberg D, Daley H, Houde H, Giralt S et al. CD8+ cell depletion of donor lymphocyte infusions using cd8 monoclonal antibody-coated high-density microparticles (CD8-HDM) after allogeneic hematopoietic stem cell transplantation: a pilot study. Bone Marrow Transplant 2004; 34: 123–128.

    Article  CAS  PubMed  Google Scholar 

  50. Peggs KS, Thomson K, Hart DP, Geary J, Morris EC, Yong K et al. Dose-escalated donor lymphocyte infusions following reduced intensity transplantation: toxicity, chimerism, and disease responses. Blood 2004; 103: 1548–1556.

    CAS  PubMed  Google Scholar 

  51. Peggs K, Mackinnon S . Graft-versus-myeloma: are durable responses a clinical reality following donor lymphocyte infusion? Leukemia 2004; 18: 1541–1542 (author reply 1542–1543).

    Article  CAS  PubMed  Google Scholar 

  52. Marks DI, Lush R, Cavenagh J, Milligan DW, Schey S, Parker A et al. The toxicity and efficacy of donor lymphocyte infusions given after reduced-intensity conditioning allogeneic stem cell transplantation. Blood 2002; 100: 3108–3114.

    Article  CAS  PubMed  Google Scholar 

  53. Kroger N . Mini–Midi–Maxi? How to harness the graft-versus-myeloma effect and target molecular remission after allogeneic stem cell transplantation. Leukemia 2007; 21: 1851–1858.

    Article  CAS  PubMed  Google Scholar 

  54. Mitsiades CS, Hayden PJ, Anderson KC, Richardson PG . From the bench to the bedside: emerging new treatments in multiple myeloma. Best Pract Res Clin Haematol 2007; 20: 797–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van de Donk NW, Kroger N, Hegenbart U, Corradini P, San Miguel JF, Goldschmidt H et al. Prognostic factors for donor lymphocyte infusions following non-myeloablative allogeneic stem cell transplantation in multiple myeloma. Bone Marrow Transplant 2006; 37: 1135–1141.

    Article  CAS  PubMed  Google Scholar 

  56. Bruno B, Patriarca F, Sorasio R, Mattei D, Montefusco V, Peccatori J et al. Bortezomib with or without dexamethasone in relapsed multiple myeloma following allogeneic hematopoietic cell transplantation. Haematologica 2006; 91: 837–839.

    CAS  PubMed  Google Scholar 

  57. Mohty M, Attal M, Marit G, Bulabois CE, Garban F, Gratecos N et al. Thalidomide salvage therapy following allogeneic stem cell transplantation for multiple myeloma: a retrospective study from the Intergroupe Francophone du Myelome (IFM) and the Societe Francaise de Greffe de Moelle et Therapie Cellulaire (SFGM-TC). Bone Marrow Transplant 2005; 35: 165–169.

    Article  CAS  PubMed  Google Scholar 

  58. Kroger N, Shimoni A, Zagrivnaja M, Ayuk F, Lioznov M, Schieder H et al. Low-dose thalidomide and donor lymphocyte infusion as adoptive immunotherapy after allogeneic stem cell transplantation in patients with multiple myeloma. Blood 2004; 104: 3361–3363.

    Article  PubMed  Google Scholar 

  59. Attal M, Harousseau JL, Leyvraz S, Doyen C, Hulin C, Benboubker L et al. Maintenance therapy with thalidomide improves survival in patients with multiple myeloma. Blood 2006; 108: 3289–3294.

    Article  CAS  PubMed  Google Scholar 

  60. Brinker BT, Waller EK, Leong T, Heffner Jr LT, Redei I, Langston AA et al. Maintenance therapy with thalidomide improves overall survival after autologous hematopoietic progenitor cell transplantation for multiple myeloma. Cancer 2006; 106: 2171–2180.

    Article  CAS  PubMed  Google Scholar 

  61. Feyler S, Rawstron A, Jackson G, Snowden JA, Cocks K, Johnson RJ . Thalidomide maintenance following high-dose therapy in multiple myeloma: a UK myeloma forum phase 2 study. Br J Haematol 2007; 139: 429–433.

    Article  CAS  PubMed  Google Scholar 

  62. van de Donk NW, Kroger N, Hegenbart U, Corradini P, San Miguel JF, Goldschmidt H et al. Remarkable activity of novel agents bortezomib and thalidomide in patients not responding to donor lymphocyte infusions following nonmyeloablative allogeneic stem cell transplantation in multiple myeloma. Blood 2006; 107: 3415–3416.

    Article  CAS  PubMed  Google Scholar 

  63. Reddy N, Hernandez-Ilizaliturri FJ, Deeb G, Roth M, Vaughn M, Knight J et al. Immunomodulatory drugs stimulate natural killer-cell function, alter cytokine production by dendritic cells, and inhibit angiogenesis enhancing the anti-tumour activity of rituximab in vivo. Br J Haematol 2008; 140: 36–45.

    CAS  PubMed  Google Scholar 

  64. Weber DM, Chen C, Niesvizky R, Wang M, Belch A, Stadtmauer EA et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 2007; 357: 2133–2142.

    Article  CAS  PubMed  Google Scholar 

  65. Palumbo A, Facon T, Sonneveld P, Blade J, Offidani M, Gay F et al. Thalidomide for treatment of multiple myeloma: 10 years later. Blood 2008; 111: 3968–3977.

    Article  CAS  PubMed  Google Scholar 

  66. Oakervee H, Popat R, Cavenagh JD . Use of bortezomib as induction therapy prior to stem cell transplantation in frontline treatment of multiple myeloma: impact on stem cell harvesting and engraftment. Leuk Lymphoma 2007; 48: 1910–1921.

    Article  CAS  PubMed  Google Scholar 

  67. Popat R, Oakervee HE, Hallam S, Curry N, Odeh L, Foot N et al. Bortezomib, doxorubicin and dexamethasone (PAD) front-line treatment of multiple myeloma: updated results after long-term follow-up. Br J Haematol 2008; 141: 512–516.

    Article  CAS  PubMed  Google Scholar 

  68. Dingli D, Pacheco JM, Nowakowski GS, Kumar SK, Dispenzieri A, Hayman SR et al. Relationship between depth of response and outcome in multiple myeloma. J Clin Oncol 2007; 25: 4933–4937.

    Article  PubMed  Google Scholar 

  69. Bensinger W . Stem-cell transplantation for multiple myeloma in the era of novel drugs. J Clin Oncol 2008; 26: 480–492.

    Article  CAS  PubMed  Google Scholar 

  70. Davies FE, Forsyth PD, Rawstron AC, Owen RG, Pratt G, Evans PA et al. The impact of attaining a minimal disease state after high-dose melphalan and autologous transplantation for multiple myeloma. Br J Haematol 2001; 112: 814–819.

    Article  CAS  PubMed  Google Scholar 

  71. Dispenzieri A, Rajkumar SV, Gertz MA, Fonseca R, Lacy MQ, Bergsagel PL et al. Treatment of newly diagnosed multiple myeloma based on Mayo Stratification of Myeloma and Risk-adapted Therapy (mSMART): consensus statement. Mayo Clin Proc 2007; 82: 323–341.

    Article  CAS  PubMed  Google Scholar 

  72. Stewart AK, Bergsagel PL, Greipp PR, Dispenzieri A, Gertz MA, Hayman SR et al. A practical guide to defining high-risk myeloma for clinical trials, patient counseling and choice of therapy. Leukemia 2007; 21: 529–534.

    Article  CAS  PubMed  Google Scholar 

  73. Williams CB, Day SD, Reed MD, Copelan EA, Bechtel T, Leather HL et al. Dose modification protocol using intravenous busulfan (Busulfex) and cyclophosphamide followed by autologous or allogeneic peripheral blood stem cell transplantation in patients with hematologic malignancies. Biol Blood Marrow Transplant 2004; 10: 614–623.

    Article  CAS  PubMed  Google Scholar 

  74. Wong JY, Rosenthal J, Liu A, Schultheiss T, Forman S, Somlo G . Image-guided total-marrow irradiation using helical tomotherapy in patients with multiple myeloma and acute leukemia undergoing hematopoietic cell transplantation. Int J Radiat Oncol Biol Phys 2008 (e-pub ahead of print September 2008).

  75. Orchard K, Cooper M . Targeting the bone marrow: applications in stem cell transplantation. Q J Nucl Med Mol Imaging 2004; 48: 267–278.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr Charles Crawley (Cambridge, UK) for his critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Cook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, G., Bird, J. & Marks, D. In pursuit of the allo-immune response in multiple myeloma: where do we go from here?. Bone Marrow Transplant 43, 91–99 (2009). https://doi.org/10.1038/bmt.2008.397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2008.397

Keywords

Search

Quick links