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Gastric cancer (GC) is a life-threatening disease worldwide. Despite remarkable advances in treatments for GC, it is still fatal to many
patients due to cancer progression, recurrence and metastasis. Regarding the development of novel therapeutic techniques, many
studies have focused on the biological mechanisms that initiate tumours and cause treatment resistance. Tumours have traditionally
been considered to result from somatic mutations, either via clonal evolution or through a stochastic model. However, emerging
evidence has characterised tumours using a hierarchical organisational structure, with cancer stem cells (CSCs) at the apex. Both
stochastic and hierarchical models are reasonable systems that have been hypothesised to describe tumour heterogeneity. Although
each model alone inadequately explains tumour diversity, the two models can be integrated to provide a more comprehensive
explanation. In this review, we discuss existing evidence supporting a unified model of gastric CSCs, including the regulatory
mechanisms of this unified model in addition to the current status of stemness-related targeted therapy in GC patients.

Gastric cancer (GC) is the third leading cause of death and the fifth
most frequently diagnosed cancer in adults worldwide, with an
estimated 0.72 million deaths and 0.95 million new cases in 2012
(Torre et al, 2015). Apparent tumour heterogeneity exists not only
between sexes but also regarding the spatial-temporal distribution
of the tumour. Overall, the incidence and mortality of GC are
nearly twice as high in males as in females, and the disease usually
occurs in individuals who are 45 years or older and predominantly
from developing countries and regions, such as East Asia (Magee
et al, 2012). Despite considerable advances in GC treatment and
decreasing trends in incidence and mortality rates, many patients
still die due to cancer progression, recurrence and metastasis. Due
to a lack of effective screening methods, more than 50% of patients
are in advanced stages at initial diagnosis, at which time most of
these patients do not have the opportunity for radical surgery and
are reluctant to undergo treatment with adjuvant therapy. The
response rate (RR) of patients with advanced GC (AGC) to first-
line chemotherapy is only 50%, and the median overall survival
(OS) is less than 12 months (Cunningham et al, 2008; Kang et al,
2009). Furthermore, the OS of patients after second-line therapy is
only B6 months (Janowitz et al, 2016). In view of the failure of
conventional therapy, substantial attention has been focused on the
genetic and molecular mechanisms that initiate tumours and cause

drug resistance. More evidence is emerging to indicate that
tumours are characterised by a hierarchical organisational
structure, with cancer stem cells (CSCs) at the apex, and additional
evidence suggests that successful eradication of CSCs may be a
promising therapeutic approach for treating cancer.

Through improvements in cell sorting, gene labelling and
lineage tracing, substantial evidence has emerged in support of the
hierarchical model hypothesis. For example, CD34þCD38�

leukemia cells, which were the first CSCs identified using flow
cytometry, demonstrated self-renewal ability and the capacity to
differentiate into mature leukemic cells and initiate human acute
myeloid leukemia after serial transplantation into immunocom-
promised mice (Bonnet and Dick, 1997). The lineage tracing of
cells containing stemness markers has provided more direct,
functional evidence for the presence of CSCs (Schepers et al, 2012;
Hayakawa et al, 2015). Hence, it has been gradually accepted that
the central features of CSCs are their unlimited self-renewal
capacity and pluripotency and that this small number of cancer
cells is responsible for tumour initiation, progression, recurrence
and metastasis (Clarke et al, 2006). However, this model has been
challenged based on results obtained using advances in high-
throughput sequencing of multiple tumour genomes for detecting
large variations in gene mutations within or between tumours
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(Gerlinger et al, 2012; Nik-Zainal et al, 2012) and using functional
assays combined with genetic analyses. The diversity of driver
mutations implies the presence of subclones and their role in
tumour heterogeneity. In addition, the use of single-nucleus
sequencing to investigate the genetic structure of single cancer
cells by accurately quantifying the genomic copy number revealed
the existence of distinct subclones among individual cells (Navin
et al, 2011). Likewise, the single-cell DNA/RNA sequencing of
circulating tumour cells (CTCs) has allowed the detection of
heterogeneity in genome mutations and signalling pathways that
may contribute to tumour progression and treatment failure
(Yu et al, 2012; Heitzer et al, 2013; Miyamoto et al, 2015).
Generally, the identification of different genetic subclones suggests
that gene mutations and clonal evolution also have key roles in
tumour initiation, progression and metastasis.

As discussed above, both the stochastic and hierarchical models
are reasonable hypotheses that have been proposed to describe
tumour heterogeneity, but alone, each model is insufficient to
explain the diversity within tumours. In light of growing
controversy, Kreso and Dick (2014) proposed that the two models
could be integrated into a more comprehensive explanation. By
combining genetic analyses with functional assays of tumour-
initiating cells (T-ICs), it was found that T-ICs also contain genetic
subclones, which influence their properties (Notta et al, 2011;
Chow et al, 2014); that is, T-ICs can also evolve. Hence, it is
reasonable to imagine that an early-stage tumour containing rare
CSCs and other cells becomes more heterogeneous and invasive as
advantageous mutations accumulate and that as the CSCs develop
into several subclones, they achieve a higher capacity for self-
renewal and thus form a greater proportion of the total cells
(Figure 1). In addition, some studies have shown that sorted non-
T-IC subpopulations can transform into T-ICs under specific
conditions (Chaffer et al, 2013) via two possible mechanisms: by
dedifferentiation of non-T-ICs (Schwitalla et al, 2013) or by
occasional mutations in non-T-ICs that endow them with
stemness. These studies highlight the plasticity of cancer cells
and the dynamic process of tumour evolution, during which T-ICs
and non-T-ICs can interconvert. Collectively, a unified model that
is dynamically regulated by other determinants such as epigenetics
(Baer et al, 2013; Klutstein et al, 2016), gene expression
stochasticity (Elowitz et al, 2002; Kaern et al, 2005; Spencer et al,
2009), the CSC niche (Plaks et al, 2015) and the tumour

microenvironment (TME; Medema and Vermeulen, 2011) is
proposed, and this model may provide an overall explanation for
the biological properties of the tumour (Kreso and Dick, 2014).

In this review, we discuss the evidence for a unified model in
describing gastric CSCs (GCSCs) and the regulatory mechanisms
of this model in addition to the current status of stemness-related
targeted therapy in GC patients.

ORIGIN OF GCSCS

On the basis of the Lauren classification, GC is primarily divided
into two distinct categories: intestinal type and diffuse-type. The
pathological process of intestinal type GC has been well studied;
the gastric epithelium develops through sequential stages of
chronic gastritis, atrophic gastritis, metaplasia, dysplasia and
eventually cancer. However, it is unclear which determinants are
involved and how those determinants result in the emergence of
these morphologic changes, especially regarding the mechanism by
which GCSCs originate. According to the unified model of
carcinogenesis, tumour cells are composed of several subpopula-
tions of CSCs and highly homogeneous non-CSCs, and these
subclones could be produced by the mutation of a single CSC.
Therefore, the following questions have been raised: what is the
precursor of CSCs, and how does a normal cell obtain the ability to
infinitely self-renew? Current evidence suggests that GCSCs likely
originate from multiple cell types, including gastric stem cells
(GSCs), glandular cells and bone marrow-derived cells (Figure 2A).

GCSCs originate from GSCs. In the human stomach, the
epithelium of gastric units or glands is primarily composed of
four types of functional cells: chief cells, parietal cells, mucous cells
and enteroendocrine cells. The majority of these differentiated cells
are short-lived and are rapidly replaced by new cells, and each
gland is considered to be formed by polyclonal expansion of
multiple stem cells (McDonald et al, 2008). Hence, it is widely
accepted that the integrity of the fast-growing gastric epithelium is
sustained by quiescent stem cells. Early evidence revealed by
radiolabelling with 3H-thymidine and electron microscopy identi-
fied certain immature, granule-free cells with the highest labelling
index in a region near the isthmus of units that were presumed
to be GSCs (Karam and Leblond, 1993). The first specific
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Figure 1. The unified model of cancer. (A) The most primitive CSCs continuously divide, self-renew, differentiate into non-CSCs and eventually
form a tumour mass with functional diversity, during the course of which the cancer cells occasionally develop genetic mutations that can endow
non-CSCs with stemness. (B) The tumour becomes more heterogeneous and invasive as advantageous mutations in the CSCs accumulate; in
addition, several subclones develop, and the tumour cells confer a higher capacity for self-renewal and begin to make up a greater proportion of
the total cells. (C) Most of the CSCs are drug-resistant and survive after chemotherapy or radiotherapy. (D) The residual CSCs cause tumour
relapse, and more subclones are generated.
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identification of stem cells in situ by the Villinb-gal/þ marker
demonstrated that this rare subpopulation is primarily located at or
below the isthmus of pyloric glands (Qiao et al, 2007). Moreover,
based on lineage tracing, cells in the isthmus that express trefoil
factor family 2 (TFF2) messenger RNA have also been proposed as
progenitor cells (Quante et al, 2010). Multiple specific markers
have also been used to distinguish stem cells from mature epithelial
cells in different sites within the stomach. Lgr5 is a well-established
stem cell marker in the intestine and colon (Barker et al, 2007) that
has been shown to be expressed strictly in the bottom of the adult
human pyloric glands. Via stimulation of gastric units in vitro and
lineage tracing in vivo, Lgr5þ cells have been shown to possess
self-renewal capacity; therefore, Lgr5 can be considered an
exclusive marker for GSCs (Barker et al, 2010). Above the bottom
of the pyloric and fundic glands, Sox2þ stem cells without a
marked overlap in Lgr5 expression were identified by using
double-labelling methods and marker tracing (Arnold et al, 2011).
Recently, some studies have found that a specific subpopulation of
chief cells had the potential to function as reserve stem cells.
A single Troyþ mature chief cell located at the base of the gastric
corpus glands could generate an entire gland, based on lineage
tracing, and could form long-lived organoids in a three-dimensional
culture system (Stange et al, 2013). Likewise, Mist1-expressing cells

in the isthmus but not in the lower third of the gastric corpus units
have also been observed to have self-renewal ability and to
differentiate into multiple lineages of mature cells, such as mucous
cells and chief cells. In addition, the use of transgenic mouse
models also showed that Mist1þ isthmus cells could expand and
evolve independently of Lgr5þ cells and are the origin of mature
epithelial cells in the corpus units (Hayakawa et al, 2015). These
results show the heterogeneity of stem cells in different regions of
the stomach and even in different zones of an identical unit, which
implies that GCSCs are heterogeneous.

The mechanism of carcinogenesis is diverse in distinct
phenotypes of GSCs, but the model of field cancerisation has
been well documented. This model holds that a mutated GSC
expands to the whole gland and forms a clonal patch by unit
fission, which has been demonstrated previously by the detection
of mitochondrial DNA mutations in normal and intestinal
metaplastic mucosa adjacent to the tumour tissue of GC patients
(McDonald et al, 2008). With the identification of GSC-specific
markers, numerous driver mutations in the malignant progression
of GSCs were verified by functional analysis in transgenic mouse
models. A recent study showed that the inactivation of the tumour
suppressor gene Krüppel-like factor 4 (Klf4) in Villinþ gastric
stem-like cells accelerated the malignant transformation of gastric
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Figure 2. The combination of the hierarchical and stochastic theories of GC. (A) GC stem cells originate from gastric stem cells, dedifferentiated
epithelial cells or bone marrow-derived cells. (B) The accumulation of cancer-associated mutations and chromosomal aberrations in the initiating
cells, which are induced by multiple factors, such as diet, alcohol, H. pylori infection and smoking, promotes the pathological process of gastric
adenocarcinoma, in which the gastric epithelium develops through sequential stages of chronic gastritis, atrophic gastritis, metaplasia (intestinal or
spasmolytic polypeptide-expressing), dysplasia and eventually cancer. (C) The formation, invasion and metastasis of GC occur according to the
unified model, which is dynamically regulated by other determinants such as epigenetic alternation, gene expression stochasticity, immune
escape, niche, signalling pathways and networks of soluble factors. CAF = cancer-associated fibroblast.
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mucosa in the carcinogen-induced Villin-Creþ ;Klf4fl/fl mice
(Li et al, 2012). The effect of aberrant Wnt pathway activity, such
as the deletion of the adenomatous polyposis coli (APC) gene, on
the carcinogenesis of Lgr5þ stem cells was evaluated in the
Lgr5-CreERT2;APCfl/fl mouse model. The results showed that
b-cateninhi adenomas only in the pylorus were rapidly formed by
the expansion of Lgr5þ transformed stem cells after the mice were
treated with tamoxifen to induce the loss of APC (Barker et al,
2010). A study regarding the effect of Helicobacter pylori (H. pylori)
infection on Lgr5þ stem cells also revealed that these bacteria
could directly act on stem cells, promote proliferation and increase
the expression of tumour-associated genes, such as the Wnt target
gene Axin2 and the anti-apoptosis gene Olfactomedin4 (Sigal et al,
2015). Similarly, it has been demonstrated that mutations in
distinct pathway components in isthmus Mist1þ stem cells of the
corpus gland were responsible for the differentiation of intestinal
type and diffuse-type GC (IGC and DGC). Such effects have been
observed for mutations in the Kras gene, facilitating the
metaplastic/dysplastic transformation and expansion of Mist1þ

isthmus cells; aberrant Notch activation, resulting in the develop-
ment of IGC; and mutations in E-cadherin and transformation-
related protein 53 (TRP53), inducing the formation and invasion of
DGC containing numerous lineage-traced signet-ring cells in the
context of chronic inflammation (Hayakawa et al, 2015).
Collectively, it is presumed that GCSCs are likely derived from
aberrant GSCs and that they possess various genetic and functional
properties in disparate primary sites. This hypothesis would be
more convincing if more in-depth genomic analyses and additional
advanced bioinformatics techniques were applied to these stem
cells.

GCSCs originate from dedifferentiated epithelial cells. Dediffer-
entiation is a cellular process by which mature, differentiated cells
transform back to a primitive or fetal stage and lose certain
characteristics, for example, their specific function or phenotype.
Some researchers have suggested that the dedifferentiation of
gastric epithelial cells (GECs) may be an aberrant change in the
developmental cycle that gives rise to metaplasia, dysplasia and
ultimately GC. A study showed that malignant changes in the
gastric epithelium of Mongolian gerbils were associated with
dedifferentiated mature cells defined by the expression of
cytokeratin-7, which is mainly present in fetal epithelial cells
(Kirchner et al, 2001). Recently, utilising lineage tracing to analyse
the origin of the spasmolytic polypeptide-expressing metaplasia
(SPEM) cells induced by L-635 treatment in the Mist1-CreERT2
mouse model, a study showed that the loss of acid-secreting cells
under an induced inflammatory environment resulted in the rapid
production and spread of SPEM that developed from transdiffer-
entiated mature chief cells, which demonstrated the capacity of
mature GECs to regain ‘stemness’ and to initiate a tumour in the
presence of inflammation (Nam et al, 2010). To explore the
mechanism by which gastric mucosa converts to intestinal type,
research revealed that the homeobox protein CDX1 could directly
bind to and activate the expression of genes encoding reprogram-
ming proteins, such as SALL4 and KLF5, which endow GECs with
intestinal stem-like features. The long-term expression of CDX1
induced the generation of intestinal stem cell markers and the
subsequent expression of intestinal mature cell markers, which
indicated that mature GECs could dedifferentiate into stem-like
cells and then transdifferentiate into intestinal type cells via the
aberrant expression of stemness-related genes (Fujii et al, 2012). In
addition, another four transcription factors, Klf4, Oct 3/4, c-MYC
and Sox2, have also been demonstrated to induce the reprogram-
ming of differentiated GECs into pluripotent stem cells (Aoi et al,
2008). Furthermore, the involvement of H. pylori in the generation
of GCSCs via inducing the epithelial–mesenchymal transition
(EMT) of GECs has been reported previously (Bessede et al, 2014;

Choi et al, 2015). In particular, the CagA protein of H. pylori was
responsible for the transformation of GECs into a subset of cells
with mesenchymal phenotypes and CSC features, including the
activation of mitogen-activated protein kinase (MAPK), extra-
cellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase
(JNK) signalling pathways (Bessede et al, 2014).

Although the above studies support the idea that mature GECs
are likely to reacquire stemness properties and act as sources of
GCSCs, the experimental techniques used in these studies were did
not provide sufficient direct evidence of the capacity of mature
GECs to dedifferentiate and initiate tumorigenesis. For example,
the identification of cells by using specific markers could not
definitively distinguish a bona fide stem cell from other cells
expressing the identical marker; the observation of stemness
characteristics may simply be due to the activation of stem cells
among the studied cells. Hence, more rigorous and stronger
evidence is needed to validate these data.

GCSCs originate from bone marrow-derived cells. Bone
marrow-derived cells (BMDCs) are well known for their striking
plasticity regarding their phenotype and function; they constantly
migrate to peripheral tissues via chemotaxis towards chronic
inflammation and injury, and they display the ability to
differentiate into multiple lineages. To date, many biological effects
on the gastric mucosa and stroma exerted by BMDCs have been
demonstrated, including (1) contributing to the formation of a
mesenchymal or perivascular stem cell niche (Quante et al, 2011;
Hayakawa et al, 2015); (2) involvement in the repair of damage
caused by chronic inflammation and the regeneration of glandular
epithelium (Okamoto et al, 2002; Ferrand et al, 2011b; Bessede
et al, 2015); (3) promotion of the proliferation and metastasis of
GC cells (Quante et al, 2011; Hayakawa et al, 2015; Zhu et al,
2016a); and (4) acting as a potential source of epithelial cancer
(Bessede et al, 2015). Despite massive investigative efforts, the
mechanism underlying malignant changes in BMDCs is still not
well-established. Early research using a mouse model revealed that
chronic infection with H. felis, rather than acute injury or
inflammation, resulted in the recruitment and repopulation of
BMDCs into the gastric mucosa, and the progeny of the BMDCs
developed subsequently through metaplasia, dysplasia and finally
into epithelial cancer (Houghton et al, 2004). Recently, using a
female mouse model treated with male mouse BMDCs expressing
green fluorescent protein (GFP) and infected with different mouse-
adapted H. pylori strains, metaplastic and dysplastic glands with
GFPþ cells were detected in most of the mice after 1 year of
infection with H. pylori, and nearly a quarter of the foci contained
these BMDCs (Varon et al, 2012). In addition, fluorescence in situ
hybridisation (FISH) for the Y chromosome was also performed on
the stomach tissue sections of Helicobacter-infected mice in the
above-mentioned two studies to further confirm that donor-
derived engrafted BMDCs were the origin of the gastric mucosal
cells expressing GFP and epithelial markers (Houghton et al, 2004;
Varon et al, 2012). Thus, chronic inflammation and injury
of the gastric mucosa may be a primary cause of BMDC homing.
Moreover, the mechanism of BMDC migration in the epithelium
is likely associated with the involvement of the nuclear factor-
kappa B (NF-kB) pathway via the secretion of chemokines
(tumour necrosis factor-a, TNF-a; Ferrand et al, 2011a).
However, some results conflicting with the above evidence have
also been presented. A study showed that syngeneic BMDCs
labelled with GFP were only marginally scattered in stroma and
not in glands of gastric neoplastic lesions or tumours induced by
N-nitroso-N-methylurea (MNU) and H. felis infection in
recipient mice (Yang et al, 2013). Likewise, opposite-sex
donor BMDCs were only identified by FISH for sex chromosomes
in perineoplastic stroma of secondary GC in an aplastic
anaemia patient treated with allogeneic hematopoietic stem cell
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transplantation (Worthley et al, 2009). The opposite conclusion is
also possible because in the human case, chronic inflammation
likely existed before transplantation, and in animal experiments,
it is difficult to fully model the true conditions. However, the
evidence for the properties of stem cells, which are presumed to
originate from BMDCs, would be more reasonable if single-cell
studies, lineage tracing and optimised animal models were
performed.

IDENTIFICATION AND FUNCTIONAL VERIFICATION OF
GCSCS

Although many experimental investigations have been performed
on the identification and functional verification of GCSCs, the
hierarchical model for stomach remains indefinite because of a lack
of direct evidence. To date, there are several major methods that
can be used to isolate GCSCs, including (1) identifying GCSCs by
specific markers (Qiao and Gumucio, 2011); (2) separating GCSCs
from side population (SP) cells (Fukuda et al, 2009; Nishii et al,
2009; Ehata et al, 2011; She et al, 2012; Hasegawa et al, 2014);
(3) screening for GCSCs through drugs or radiation treatment
(Xue et al, 2012; Xu et al, 2015b); and (4) capturing tumour cells
from circulating blood, metastatic sites or peritoneal milky spots
(Cao et al, 2009; Chen et al, 2012). For these selected CSC-rich
subpopulations, two general approaches are used to validate the
properties of stemness. One approach is the spheroid body
formation assay in vitro; the other is the tumour-formation assay
in vivo.

Identification by specific markers. The antigen CD44 was the
first putative marker used to identify GCSCs. The first study
showed that CD44þ cells separated from three GC cell lines
(GCCLs) through fluorescence-activated cell sorting (FACS)
exhibited self-renewal capacity as indicated by spheroid formation
in vitro and tumour formation in mice, while both the CD44� cells
and short-hairpin RNA (shRNA) CD44-knockdown cells exhibited
a remarkable decline in tumorigenicity (Takaishi et al, 2009).
Subsequently, CD44v8-10 was identified as the predominant CD44
variant and served as a GCSC marker through a series of
experiments in primary tumour samples including the isolation
and culture of primary GC cells (GCCs), limiting dilution assays
and xenografts in NOD/SCID/IL2Rg� (NSG) mice (Lau et al,
2014). Strikingly, CD44þCD54þ CTCs captured in the peripheral
blood of GC patients have also exhibited the ability to self-renew.
Chen et al (2012), using an antibody combined with magnetic
beads, separated up to 103 CD44þ cells from the blood samples of
seven chemotherapy patients, and cells from six of those patients
successfully formed tumour spheres when passaged in vitro.
Furthermore, after transplantation into SCID mice, CD44þ

CD54þ cells from these primary cultured cells quickly developed
into tumours that were similar to the original lesions, and the
remainder of the cells were negative for these markers. To improve
specificity, the co-recognition of multiple markers with CD44 has
been widely studied, and the relevant data are presented in Table 1.
Recently, studies have focused on the mechanism of CD44þ cells
functioning as GCSCs. Hedgehog (HH) signalling has been proven
to have an important role in the maintenance of stemness of
CD44þ CSCs, as HH signalling proteins are upregulated in

Table 1. Specific markers of gastric cancer stem cells

Markers
Source of
specimen

Tumour spheroid
formation

Tumour
formation
in vivo

Limiting
dilution assay

Drug
resistance

Differentiation
capacity Reference

CD44þ GCCLs þ þ Not done þ þ (Takaishi et al, 2009),
(Yoon et al, 2014)

CD44þ / CD24þ Patient tissues þ þ þ Not done þ (Zhang et al, 2011)

CD44þ / CD26þ GCCLs þ þ Not done þ Not done (Nishikawa et al, 2015)

CD44þ / CD47þ GCCLs þ þ Not done Not done Not done (Yoshida et al, 2015)

CD44þ / CD54þ Patient tissues þ þ þ Not done þ (Chen et al, 2012)

CD44þ /ABCG2þ GCCLs þ þ Not done Not done Not done (Liu et al, 2013a)

CD44þ / EpCAMþ Patient tissues þ þ þ þ þ (Han et al, 2011)

CD44v8-10þ /EpCAMþ Patient tissues þ þ þ Not done Not done (Lau et al, 2014)

CD44þ /Musashi-1þ GCCLs Not done þ Not done þ Not done (Xu et al, 2015a)

ALDHþ GCCLs þ þ þ þ Not done (Nishikawa et al, 2013)

ALDH-3A1þ GCCLs þ þ Not done Not done þ (Wu et al, 2016a)

ALDHþ / REG4 GCCLs Not done þ Not done Not done þ (Katsuno et al, 2012)

CD49fhigh Patient tissues þ þ þ þ þ (Fukamachi et al, 2013)

CD71� GCCLs Not done þ þ þ þ (Ohkuma et al, 2012)

CD90þ Patient tissues þ þ þ þ Not done (Jiang et al, 2012)

CD133þ GCCLs þ þ Not done þ Not done (Zhang et al, 2016b)

CD133þ / SOX17þ GCCLs Not done þ Not done Not done þ (Fukamachi et al, 2011)

CXCR4þ GCCLs Not done þ þ þ þ (Fujita et al, 2015)

KIFC1þ GCCLs þ Not done Not done Not done Not done (Oue et al, 2016)

Lgr5þ Patient tissues þ þ Not done Not done Not done (Wang and Liu, 2015)

Oct4þ /Sox2þ /Nanogþ GCCLs þ þ Not done þ Not done (Liu et al, 2013b)

SALL4þ GCCLs Not done þ Not done Not done þ (Zhang et al, 2014)

Sca-1þ GCCLs þ þ þ þ Not done (Park et al, 2016)

TR3þ GCCLs þ þ Not done þ þ (Zhan et al, 2013)

Abbreviation: GCCLs¼GC cell lines.
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CD44þ GCCs, and the inhibition of HH signalling by Smoothened
(Smo) shRNA or vismodegib results in a decrease in tumorigenesis
and drug resistance of CD44þ cells and the full suppression of
cancer cell proliferation, migration and invasion (Yoon et al, 2014).
Another study also demonstrated the same functions of the
SHH-GLI1 pathway and the effector protein ABCG2 in CD44þ

Musashi-1þ GCSCs (Xu et al, 2015a).
CD90, another universal marker of multi-tissue stem cells and

CSCs, has also been extensively investigated in GC. Jiang et al
(2012) first observed that the CD90þ subpopulation in GC could
be characterised as CSCs. In that study, the tumour hierarchy was
successfully reconstructed using single cells that were selected from
high-tumorigenicity mouse models established by using a different
source of 103 primary GCCs. The stemness properties of these
single cells were also shown through the formation of in vitro
spheroids and in vivo tumour masses. The comparison of RNA
expression between spheroids and primary tumour cells revealed a
marked upregulation of CD90. Then, after single CD90þ cells
isolated via FACS were implanted into nude mice, nearly 90%
developed into tumours. Recently, although an increasing number
of specific GCSC markers have been found using the similar
experimental techniques mentioned above (Table 1), studies
utilising direct methods such as lineage tracing and single-cell
analysis have not yet been reported. Furthermore, the expression of
CSC markers is not always stable and reliable in different cells and
at different times, perhaps due to the variability in mutations,
origin of cells, frequency of tumorigenic cells, regulation of the
TME or experimental techniques, resulting in the inability to purify
true CSCs (Meacham and Morrison, 2013; Kreso and Dick, 2014).
Hence, there are still many unknown variables in the hierarchical
model of GC, and additional investigations in the heterogeneity
and plasticity of CSC phenotypes are needed.

Separation from side population cells. Side population cells, the
subpopulation of cells separated from the main population (MP) of
cells by flow cytometric markers, have exhibited CSC-like features
in many studies (Patrawala et al, 2005; Wang et al, 2007). With
respect to GC, one study showed higher in vivo tumorigenicity of
SP cells from GCCLs and from GC samples (Fukuda et al, 2009).
Another study also supports this possibility through the use of
spheroid- and tumour-formation assays with SP cells (She et al,
2012). However, our group (Zhang et al, 2013) previously found
that only some of the SP cells possess stemness properties. Thus,
the mechanism for distinguishing between SP cells and MP cells
requires additional investigation.

Screening through the use of drugs or radiation treatment.
Drug resistance, an inherent characteristic of quiescent cells, such
as CSCs, may be a feasible approach for acquiring cancer stem-like
cells. Confirming the CSC properties of drug-preconditioned
GCCLs, recent research found that vincristine-treated cancer cells
exhibited mesenchymal features, multi-drug resistance, high
tumorigenicity and the abilities to self-renew and differentiate
in vitro (Xue et al, 2012). Likewise, the stemness characteristics of
residual cells from 5-fluorouracil (5-FU)-preconditioned GCCLs
were also demonstrated by single-cell clonogenic assays and
tumorigenicity assays (Xu et al, 2015b). Nevertheless, this method
may be difficult to implement in primary tumour tissues due to a
mix of various drug-resistant cells, such as normal tissue stem cells;
therefore, it would be helpful to combine this technique with other
identification methods.

Capturing from circulating blood, metastasis sites or peritoneal
milky spots. Metastatic cells from original tumours are well
known for their capacity to initiate tumours. Milky spots, namely
lymphoid tissues in the abdominal cavity, have been indicated as
early infiltration sites of the peritoneal dissemination of GCCs
(Tsujimoto et al, 1996). A milky spot has been assumed to be a

‘natural filter’ for capturing GCSCs, as a location in which
abundant macrophages are cytotoxic against non-CSCs and
contribute to a niche for CSC survival (Cao et al, 2009). A recent
study reported many macrophages and metastatic lesions observed
by electron microscopy and DiI-labelled MFCs (a murine GCCL)
in omental milky spots (OMSs) in a mouse model, and the
researchers verified that OMS-derived cancer cells exhibited
remarkable CSC properties, such as higher tumorigenicity through
a limiting dilution assay in vivo and higher expression of CSC
markers (Cao et al, 2011). Furthermore, milky spots were also
considered to provide a hypoxic microenvironment for GCSCs
through the overexpression of hypoxia inducible factor-1a (HIF-
1a) and to enhance the survival and self-renewal capacity of the
CSCs in them (Miao et al, 2014). These reports offer an alternative
route for investigating the mechanism of cancer cell metastasis and
the heterogeneity of CSCs between primary and metastatic sites.

EVIDENCE OF THE CLONAL EVOLUTION MODEL OF
GASTRIC CANCER

The heterogeneity, the phenotypic characteristics and the biological
function of stomach tumours have been described in many studies
over the past several decades; however, genetic variation was not
investigated based on a comprehensive molecular evaluation until
the emergence of next-generation high-throughput sequencing
technology. The first study using whole-exome sequencing found
massive somatic mutations including 20 candidate driver genes in
22 matched pairs of GC samples and healthy controls. They
reported that mutations of a top putative driver gene, ARID1A,
were more frequent in the microsatellite instability (MSI) and
Epstein-Barr virus (EBV)-infected types of GC and showed a link
with a trend of better prognosis (Wang et al, 2011). Similarly,
another exome sequencing study showed recurrent gene mutations
including in the proto-oncogene PIK3CA and the tumour
suppressor genes TP53 and ARID1A in 15 GC samples, as well
as frequent genetic abnormalities including in the E-cadherin
family gene FAT4 and the chromatin remodelling genes (ARID1A,
MLL3 and MLL), in a prevalence screening among 110 GC
samples. The functional assays suggested that inactivation of the
FAT4 and ARID1A genes was correlated with malignant behaviour
of GC such as cellular proliferation, invasion and migration (Zang
et al, 2012). The first whole-genome analysis using massively
parallel signature sequencing and DNA paired-end tag sequencing
in 2 gastric adenocarcinomas (GACs) provided the first detailed
reconstruction of a mutant genome and revealed the integrative
characteristics of mutational processes in GC compared with
exome sequencing (Nagarajan et al, 2012). Subsequently, many
mutations and epigenetic alterations were identified using similar
techniques in different subtypes of GC, and the corresponding
functional verification implied their core roles in initiation and
progression of GC (Jaiswal et al, 2013; Kakiuchi et al, 2014;
Liang et al, 2014; Shimizu et al, 2014; Wang et al, 2014; Wong et al,
2014; Zhou et al, 2014; Hu et al, 2016; Li et al, 2016a, b; Lim et al,
2016b). Recently, based on the molecular sequencing and analysis
platforms, a robust and comprehensive classification was pre-
sented, dividing GC into four molecular subtypes and characteris-
ing somatic genomic mutations, alterations in gene expression
and signalling pathways by analysing 295 human GACs
(Cancer Genome Atlas Research Network, 2014). The following
subtypes were defined: (1) EBV-infected tumours, which are
mainly characterised by recurrent PIK3CA mutations, amplifica-
tion of the genes for the non-receptor tyrosine kinase JAK2 and the
immune suppressive proteins PD-L1/2, and extensive DNA
hypermethylation; (2) MSI tumours, which exhibit increased
mutation frequency and hypermethylation, including the
epigenetic silencing of the mismatch repair gene hMLH1;

BRITISH JOURNAL OF CANCER A unified model of gastric cancer

978 www.bjcancer.com |DOI:10.1038/bjc.2017.54

http://www.bjcancer.com


(3) genomically stable tumours, which are rich in the diffuse
histological subtype, E-cadherin and RHOA (a member of Ras
superfamily) gene mutations and structural rearrangements,
especially in the fusions between the CLDN18 (a member of the
claudin family) gene and the ARHGAP26/6 (Rho GTPase-
activating proteins) gene; and (4) chromosomal instability (CIN)
tumours, which are distinguished by frequent aneuploidy, the
overexpression of p53 (TP53 mutation) and recurrent genomic
amplifications of receptor tyrosine kinases (RTKs), such as EGFR
and VEGFR, and downstream effector RAS proteins. Later, the
Asian Cancer Research Group proposed a different type of
molecular classification (Cristescu et al, 2015) to establish an
association of the diverse patterns of molecular alterations with
tumour progression and prognosis. This proposal defined four
subtypes: (1) the mesenchymal-like type, with the worst prognosis
and highest recurrence rates; (2) the MSI type, with the best OS
and the lowest recurrence rates; (3) the TP53-active; and (4) TP53-
inactive types with intermediate clinical outcomes. Furthermore,
distinct somatic mutations in peritoneal metastatic tumours vs
primary tumours were identified (Lim et al, 2016a; Liu et al, 2016).
In general, numerous indisputable pieces of evidence have proven
the genetic heterogeneity among different subtypes and even
within the same subtype of GC, and functional tests have
supported that various driver mutations contributed to the clonal
expansion of cancer cells endowed with advantageous functions
and characteristics toward a favourable direction for survival.
Consequently, recurrent genetic alterations constantly change the
phenotypic and functional properties of GC for adapting to hostile
environments, implying an important role of clonal evolution in
GC heterogeneity and development.

THE COMBINATION OF THE HIERARCHICAL AND
STOCHASTIC THEORIES OF GASTRIC CANCER

In light of the studies on the origination and identification of
GCSCs, the existence of a functional hierarchy in GCCs may be
confirmed. However, the GCSCs identified based on specific
markers also possess distinct functions and phenotypes. Despite
the lack of an exclusive marker, the deficiency of cell separation
and purification technologies and the disparity among cell sources,
the combination of the hierarchical and stochastic theories is likely
to provide a reasonable explanation for how primitive GCSCs
continually optimise their own genome, improve the pattern of
gene expression and generate various subclones to adapt to the
ever-changing TME (Figure 2B). According to the evidence on the
origin of GCSCs, the accumulation of diverse cancer-related
mutations induced by carcinogenic factors in stem cells that are
derived from the epithelium, mesenchyme or dedifferentiated
mature cells results in the formation of the most primitive CSCs,
which show distinct genotypes in a variety of histopathological and
anatomic sites, even within a single gastric unit, due to the presence
of different types of stem cells and genetic alterations. Primitive
CSCs acquire the properties of unlimited self-renewal and multi-
lineage differentiation potential and gradually create a hierarchical
structure in the tumour lesion. Concurrently, these CSCs evolve
into different subclones to survive and to evade the immune
system, and the dominant clones generate their respective
hierarchical organisations, while the remaining cells are eliminated.
Although this hypothesis has been supported by single-cell
analyses of other cancers (Navin et al, 2011; Lawson et al, 2015),
genetic and functional studies on GCSCs at the single-cell level are
lacking. Hence, using identification, isolation, dynamic observation
and deep sequencing techniques with single GCSCs is expected to
contribute to existing knowledge and to allow for the study of
different subclones of GCSCs via the combination of genomic
analyses with functional assays.

REGULATORY MECHANISMS OF THE UNIFIED MODEL OF
GC

CSC niche. It is generally accepted that dormant stem cells in a
given tissue reside in a specific anatomic location, namely the stem
cell niche, where a specialised microenvironment is provided to
regulate stem cell fate (Voog and Jones, 2010). Likewise, according
to previous studies, there is also a niche around CSCs in tumours
(Plaks et al, 2015). The CSC niche, containing distinct stromal cells
such as fibroblasts, endothelial cells, extracellular matrix and
networks of soluble factors and blood vessels (Figure 2C), has an
important role in the maintenance of CSC properties and plasticity
(Borovski et al, 2011). However, the components and the
principally regulated pathways of niches in GC are largely
unknown. Some studies have suggested that bone marrow-derived
myofibroblasts (BMFs), which are involved in the formation of the
niche, promote the development and progression of GC (Worthley
et al, 2009; Quante et al, 2011; Shibata et al, 2013; Zhu et al, 2016a).
Using an inflammation-induced GC model, Quante et al (2011)
found the expansion of MFs in the BM niche at the earliest stage of
GC development and subsequent migration into injury sites. The
BMFs created a niche that promoted tumorigenesis in TGF-b- and
Cxcr4/Cxcl12-dependent pathways. Similarly, another study
revealed that the activation of the IL-6/HGF/STAT3 pathway in
BMFs-stimulated cancer cells to upregulate TGF-b1, and vice
versa. This interaction between BMFs and GCCs is responsible for
the regulation of stemness and tumorigenesis (Zhu et al, 2016a).
Recent research confirmed that BM-derived Cxcr4þ intraepithelial
gastric innate lymphoid cells (ILCs) adjacent to Mist1þ stem cells
in the isthmus area functioned as niche cells to maintain the
properties of GSCs (Hayakawa et al, 2015). The other essential
aspects of the CSC niche, such as hypoxia (Lu et al, 2015; Zhang
et al, 2016a), tumour-associated macrophages (Wan et al, 2014;
Zhou et al, 2015; Jia et al, 2016; Raggi et al, 2016), blood vessels
(Borovski et al, 2011) and vasculogenic mimicry (Sun et al, 2016),
have also been studied for their effects on the stemness of CSCs in
various types of tumours. Although the relevant research on GC is
insufficient, it can nevertheless be speculated that the niche is
important for the survival and evolution of GCSCs.

Epigenetic alterations. Epigenetics refers to heritable alterations
in gene expression without the involvement of changes in
nucleotide sequences. Similar to genetic mutations, epigenetic
alterations also have an irreplaceably important function in the
malignant transformation of somatic cells and in the development
and progression of cancer. In GAC, many mechanisms of variation
have been studied, including DNA hypermethylation, histone
modification and epigenetic silencing of noncoding RNAs. Using
combined transcriptome and epigenome sequence analyses in
EBV-infected GCCLs, it was revealed that the transcription of 216
genes was downregulated due to EBV-related hypermethylation
and that tumour-associated proteins, such as Indian hedgehog and
TraB domain-containing, were overexpressed with a remarkable
increase in gene methylation (Liang et al, 2014). In addition, the
epigenetic silencing of mismatch repair genes and tumour
suppressor genes, including MLH1, CDH1 and CDKN2A, was also
identified in distinct subtypes of GC (Ushijima and Hattori, 2012;
Cancer Genome Atlas Research Network, 2014). Furthermore,
many studies (Peterson et al, 2010; Tomita et al, 2011; Haam et al,
2014; Chen et al, 2015; Guo et al, 2015; Park et al, 2015; Kim et al,
2016; Yang et al, 2016; Yoshida et al, 2017) have demonstrated the
effects of aberrant epigenetic activation and of the inactivation of
diverse genes, including Tff1, Tff2, BACH2, Sema3E, OLFM4,
TET1, TLR4, GDF1, FAT4 and so on, on GC carcinogenesis and
progression through in vivo and in vitro functional experiments.
For instance, Tomita et al (2011) observed an extensive
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suppression of Tff1, a tumour suppressor gene, which is associated
with DNA methylation and histone modification at the Tff1
promoter in epithelial cells of MNU-treated wild-type mice, and
subsequent GC initiation. Additionally, there was an enhanced
tumorigenic capacity in gastrin- and Tff1-deficient mice and,
conversely, a repression in hypergastrinemic mice. Hence, it was
suggested that the progressive epigenetic silencing of Tff1 by
promoter methylation, which could be reversed by gastrin,
contributed to GC initiation (Tomita et al, 2011).

The ability of long noncoding RNA (lncRNA; Endo et al, 2013;
Hu et al, 2014; Okugawa et al, 2014; Fan et al, 2016; Guo et al,
2016; Lu et al, 2016) and microRNA (miRNA) to regulate GC
development and progression is also being elucidated (Table 2). In
CD44þ GC stem-like cells, it was found that the marked
upregulation of miR-106b and the related downregulation of its
target protein Smad7 resulted in activation of the TGF-b/Smad
pathway, thereby enhancing stemness characteristics such as self-
renewal, EMT and invasion (Yu et al, 2014). Likewise, another
study showed that the overexpression of miR-19b/20a/92a
promoted sustained stem-like properties through activating the
Wnt-b-catenin pathway in EpCAMþCD44þ GCCs (Wu et al,
2013). Furthermore, our group and other researchers revealed an
important role of lncRNA and miRNA in regulating CD44
expression of GCCs (Hashimoto et al, 2010; Hu et al, 2014;

Wei et al, 2016). Recently, Bintu et al (2016) investigated the
regulatory mechanism of epigenetics at the single-cell level and
proposed a three-state dynamic model of epigenetic silencing, in
which the state of gene expression was stochastically converted
among activation, reversible silencing and irreversible silencing in
an all-or-none manner, namely, by regulating the fraction of
repressed cells but not the level of gene expression. Hence,
epigenetic aberrations contributed to the distinct functional types
and phenotypes of individual GCCs, particularly the initiation,
persistence and progression of CSCs; however, additional func-
tional assays are necessary to validate the emergence of epigenetic
alterations in identifying potential therapeutic targets.

Other regulatory mechanisms. Almost all of the genetic and
epigenetic functions of cells are performed and regulated in the
context of various types of signalling pathways, and the
dysregulation of such pathways contributes to tumorigenesis. For
example, the Wnt pathway significantly influences the develop-
ment of various tumours (Takahashi-Yanaga and Kahn, 2010).
Many studies have shown that the canonical Wnt/b-catenin
pathway is involved in the acquisition and maintenance of the
stem-like features of GCCs (Wang et al, 2013; Mao et al, 2014;
Yong et al, 2016; Zhou et al, 2016), and non-canonical Wnt
pathways, especially those activated by Wnt5a, are important in

Table 2. Effects of microRNAs on the stemness properties of gastric cancer cells

MiRNA
Expression Source of specimen Targets

Functional validation in vitro and
in vivo Reference

MiR-19b/20a/92a m EpCAMþCD44þ GCCLs E2F1kHIPK1 k

Wnt/b-catenin pathway m

The capacity of self-renewal and
proliferation m

(Wu et al, 2013)

MiR-23b k GCCLs Notch 2 receptor m Ets1mE2F1 m Tumorigenesis, growth, progression
and tumorsphere formation m

(Huang et al, 2015)

MiR-29c k GCCLs ITGB1 m Tumorigenesis, proliferation,
adhesion, invasion and migration m

(Han et al, 2015)

MiR-34 k P53-deficient GCCLs Bcl-2mNotch m HMGA2 m Tumorigenesis and tumorsphere
formation m

(Ji et al, 2008)

MiR-106b m CD44þ GCCLs Smad7 k TGF-b/Smad pathway m The capacity of self-renewal, EMT and
invasiveness m

(Yu et al, 2014)

MiR-124 k GCCLs SMOX m H2O2 production m Not done (Murray-Stewart et al, 2016)

MiR-133b k GCCLs FSCN1 m Proliferation, invasion and migration m (Guo et al, 2014)

MiR-141 k GCCLs TAZ m Proliferation, invasion and migration m (Zuo et al, 2015)

MiR-145 k GCCLs N-cadherin (CDH2) m Invasion and migration m (Gao et al, 2013)

MiR-148a k GCCLs ROCK1 m Invasion and migration m (Zheng et al, 2011)

MiR-149 k GCCLs and human tissues IL-6 m PTGER2/EP2 m The effect of CAFs on EMT, invasion
and stemness of GC m

(Li et al, 2015)

MiR-155-5p k GCCLs and human tissues NF-kB p65 m Transition of BM-MSC to GC-MSC m (Zhu et al, 2016b)

MiR-181c k GCCLs NOTCH4mKRAS m Tumorigenesis m (Hashimoto et al, 2010)

MiR-200b k GCCLs ZEB1/2 k Invasion and migration m (Kurashige et al, 2015)

MiR-210 k GCCLs STMN1mDIMT1 m Chronic gastric diseases and
tumorigenesis m

(Kiga et al, 2014)

MiR-328 k GCCLs CD44 m Tumorigenesis, resistance to drugs
and ROS m

(Ishimoto et al, 2014)

MiR-373 k GCCLs CD44 m Stemness m (Wei et al, 2016)

MiR-448 m GCCLs KDM2BkMyc m Glycolytic metabolism m (Hong et al, 2016)

MiR-483-5p m Spheroid from GCCLs Wnt/b-catenin pathway m Growth, invasion and self-renewal of
GCSCs m

(Wu et al, 2016b)

MiR-490-3p k GCCLs SMARCD1 m Tumorigenesis, growth, migration and
invasivenessm

(Shen et al, 2015)

MiR-508-5p m GCCLs ABCB1mZNRD1 m Multi-drug resistance m (Shang et al, 2014)

MiR-1290 m GCCLs FOXA1 k Proliferation and migration m (Lin et al, 2016)

Abbreviations: CAF = cancer-associated fibroblast; EMT¼ epithelial–mesenchymal transition; GCCLs¼GC cell lines; GCSC¼gastric cancer stem cell; GC-MSC = gastric cancer tissue-derived
mesenchymal stem cell; ROS¼ reactive oxygen species.
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regulating EMT and initiating GCSCs (Kanzawa et al, 2013;
Hayakawa et al, 2015). The HH family, as another key regulator
during embryonic development, has also been implicated in the
formation of diverse tumours (McMillan and Matsui, 2012). In
human gastric glands, the SHH pathway has important roles in
self-renewal (Song et al, 2011), chemotherapy resistance of CSCs
(Yoon et al, 2014; Xu et al, 2015a) and tumour angiogenesis (Chen
et al, 2011). In addition, multiple signalling pathways, including
those associated with Notch-1 (Yeh et al, 2009; Hong et al, 2014)/
Notch2 (Tseng et al, 2012; Huang et al, 2015), STAT3 (Jenkins
et al, 2005; Ernst et al, 2008; Tye et al, 2012), TGF-b/Smad (Yoo
et al, 2008; Yu et al, 2014; Yang et al, 2016), TNF-a/TNFR1
(Oshima et al, 2014), PI3K/AKT/mTOR (Yun et al, 2014), c-Met
(Yashiro et al, 2013) and Ras/Raf/MEK/ERK (Bessede et al, 2014),
are likely to be associated with the malignant behaviour of GCSCs.
In total, all of these pathways form a complex signalling network
inside and outside cancer cells via crosstalk between different axes
and via mutual regulation by their products, such as cytokines,
chemokines, transcription factors and other regulatory proteins. In
addition, there are many unknown or unclear mechanisms, such as
the stochasticity of gene expression and the plasticity of cancer cells
that promote CSC development and evolution. Therefore, it is
impossible for a single theory to elucidate this complicated
biological system, whereas a unified model is better able to present
a comprehensive and reasonable explanation.

CLINICAL TARGETED THERAPY

The primary methods of targeted therapy in GC involve small
molecules, tumour vaccines, monoclonal antibodies (mAbs) and
adaptive cellular immunotherapies, including the chimeric antigen
receptor T-cell (CAR-T) strategy. Regarding GCSCs, the major
drug treatment targets are specific antigens and stemness-related
signalling pathways.

Targeting specific antigens. CD44 is a surface marker that is
expressed in GC stem-like cells. A study found that CD44v
promoted glutathione synthesis and inhibited the activity of
reactive oxygen species, thereby resulting in tumour growth via
interaction with xCT (a glutamate-cystine transporter; Ishimoto
et al, 2011). Accordingly, a dose-escalation clinical study for
targeting CD44vþ CSCs by the oral administration of sulfasalazine
(SSZ, an inhibitor of xCT) in patients with AGC was conducted.
The results showed that SSZ was safe and efficacious in patients,
some of whom exhibited decreased levels of CD44vþ cells and
glutathione in their biopsy samples (Shitara et al, 2016). Moreover,
several types of mAbs, such as bivatuzumab mertansine (BIMI1)
and RO5429083, have been designed to fight CD44þ cells.
However, multiple phase I clinical trials in different tumours
showed that a few patients treated with CD44v6-targeting BIMI1
had fatal drug-associated adverse events, and the overall assess-
ment of the benefits and risks was negative (Tijink et al, 2006;
Rupp et al, 2007; Sauter et al, 2007; Riechelmann et al, 2008). Thus,
the further clinical development of BIMI1 was terminated.
RO5429083, also known as RG7356, is a humanised IgG1 mAb
that is specific to CD44. In a phase I study, among 44 patients with
refractory or relapsed acute myeloid leukemia, two patients treated
with RG7356 had complete responses, and one had stable disease,
and the side effects were generally mild or moderate (Vey et al,
2016). The study of RG7356 in patients with CD44þ advanced
solid tumours, including GC, was sponsored by Roche
(NCT01358903), and it is expected to reach a favourable outcome.

Epithelial cell adhesion molecule (EpCAM) is a transmembrane
glycoprotein in normal epithelia and is upregulated in epithelial
neoplasms. In addition, it is a marker widely expressed in CSCs
and is involved in the activation of a stemness-related pathway

(Gires et al, 2009; Munz et al, 2009). EpCAM has long been
considered a potential target for antitumour therapy, and
vaccination with EpCAM protein has been proposed (Mosolits
et al, 2004). Furthermore, clinical trials of mAbs have ranged from
testing the first murine IgG2a antibody, termed edrecolomab
(Mosolits et al, 2004), to the EpCAM/CD3 bi-specific antibody
MT110 (NCT00635596) and catumaxomab (Heiss et al, 2010;
Goere et al, 2014; Bokemeyer et al, 2015), and ultimately to human
engineered or fully human antibodies including ING-1 (Mosolits
et al, 2004) and adecatumumab (MT201; Schmidt et al, 2012).
Heiss et al (2010) found that catumaxomab provided a significant
clinical benefit to GC patients with malignant ascites in a phase II/
III trial. Another study has also demonstrated the safety and
efficacy of catumaxomab in patients with resectable GC when
serving as a part of a combined modality therapy (Bokemeyer et al,
2015). Moreover, a phase II trial of the intraperitoneal infusion of
catumaxomab to treat postoperative GC patients with resectable
primary lesions and peritoneal carcinomatosis is currently
underway (Goere et al, 2014). In addition, a clinical study
(NCT02725125) aiming to assess the safety and efficacy of
EpCAM-targeted CAR-T for GC is currently recruiting patients.

CD133þ cells represent a subpopulation of CSCs in many solid
tumours (Grosse-Gehling et al, 2013). Although several mAbs
(Swaminathan et al, 2010; Huang et al, 2013) against CD133 have
been developed, retrospective clinical trials are lacking. Recently,
our research team successfully generated anti-CD133 CAR
vector-transduced T cells, and a phase I clinical study
(NCT02541370) on the safety and efficacy of our CART133
formulation for treating relapsed or chemotherapy-refractory
advanced malignancies including GC is currently recruiting
patients. In addition, the University of Minnesota has sponsored
a clinical trial to test CD133KDEL toxin (an anti-CD133 ligand-
directed, non-immunogenic pseudomonas toxin) in solid tumour
patients (NCT02845414).

Programmed cell death-ligand 1 (PD-L1) is now considered a
critical component of the immunosuppressive microenvironment
in GAC (Thompson et al, 2016). Multiple inhibitors of immune
checkpoints have been applied to clinical therapy, especially the
anti-PD-1 mAb pembrolizumab, which has shown manageable
side effects and a 22% (8/36) overall response rate in a phase I
study of PD-L1þ AGC patients (Muro et al, 2016). However,
another multicenter study on the anti-PD-L1 mAb nivolumab
showed no benefit in 7 GC patients (Brahmer et al, 2012). Many
promising studies of combination treatments of pembrolizumab or
nivolumab with different therapies and new drugs including
atezolizumab (a human engineered anti-PD-L1 mAb) and CA-170
(a PD-L1/2 and VISTA checkpoint inhibitor) are underway in GC
patients.

Lgr5 and Sox2 are thought to be specific markers of GCSCs and
normal stem cells (NSCs). A Sox2-targeted plasmid DNA vaccine
has been developed and used to treat patients with advanced breast
cancer (NCT02157051). In addition, an anti-Lgr5 humanised mAb,
BNC101, is currently being tested in a phase I clinical study of
patients with metastatic colorectal cancer (NCT02726334). The
expected results may promote the application of these drugs in GC
patients.

Targeting stemness-related signalling pathways. HH pathway
inhibitors have been designed to target four major sites, specifically
SMO, Hh ligand, Hh acyltransferase (HHAT) and GLI. To date,
the drugs applied in clinical trials only include SMO inhibitors,
such as vismodegib (GDC-0449), sonidegib (LDE225), saridegib
(IPI-926), taladegib (LY2940680), glasdegib (PF-04449913), TAK-
441, BMS-833923 (XL139) and LEQ506. Although some have
exerted targeted efficacy against tumours (Justilien and Fields,
2015; Migden et al, 2015; Robinson et al, 2015), the clinical results
have not shown clear improvements in terms of therapeutic effects
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in GC patients. A randomised, controlled, multicenter phase II
clinical trial conducted by the NCI to evaluate the efficacy of
chemotherapy (FOLFOX) with or without vismodegib in advanced
gastric and gastroesophageal junction (GEJ) cancer patients has
been completed, and it revealed no significant differences in the
outcome measures, including progression-free survival (PFS),
relative risk (RR) and OS (NCT00982592). Likewise, the GC
patients in multiple phase I clinical trials rarely experienced a
confirmed complete or partial response to other SMO inhibitors,
such as the objective response being 0/1 for sonidegib by Rodon
et al (2014) and 0/1 for TAK-441 by Goldman et al (2015).
Nevertheless, some studies have been conducted, including a phase
1b/2 clinical trial of taladegib in combination with chemotherapy
and radiotherapy to treat patients with oesophageal or GEJ
adenocarcinoma (NCT02530437) and some GC-related clinical
studies.

There are three major types of Notch pathway-targeted drugs:
(1) Notch receptor inhibitors: brontictuzumab (OMP-52M51, anti-
Notch1), tarextumab (OMP-59R5, anti-Notch2/3) and BMS906024
(pan-Notch inhibitor); (2) inhibitors of the Notch ligand DLL4:
MED10639, demcizumab (OMP-21M18), OMP-305B83 and
enoticumab (REGN421); and (3) g-secretase inhibitors: MK0752,
RO4929097, PF03084014, BMS986115, LY3039478 and LY900009.
However, only a few solid tumour patients have experienced

complete responses to selected drugs, including MK0752 (Krop
et al, 2012; Piha-Paul et al, 2015) and PF03084014 (Messersmith
et al, 2015). Moreover, many drugs induce a variety of severe
adverse events such as intractable diarrhoea, vomiting, skin
disorders and hypophosphatemia (Takebe et al, 2014), perhaps
due to the wide distribution of the Notch pathway in normal
tissues, especially NSCs. Hence, the antitumour activity of Notch
pathway inhibitors must be confirmed based on the results of
ongoing clinical trials.

Drugs targeting the Wnt pathway have been developed and
have emerged for clinical use within the last 5 years. The mechanisms
associated with targeting the Wnt pathway have been categorised as
follows: (1) targeting the Wnt receptor: Foxy-5 (mimicking the effects
of Wnt-5a), OTSA101 (anti-Fzd10), ipafricept (Fzd8-Fc, OMP-
54F28); (2) b-catenin antagonists: PRI-724, CWP232291 (CWP291);
(3) PORCN protein inhibitors: WNT974 (LGK974), ETC-1922159
(ETC-159), CGX1321; and (4) other inhibitors: DKN01 (LY2812176,
anti-DKK1), LY2090314 (anti-GSK3b). A phase I clinical trial that
assessed the combination treatment of LY2090314 with pemetrexed
and carboplatin in patients with solid tumours reported an overall
response rate of 5/41, but two GC cases had no objective response
(Gray et al, 2015). Most of the clinical studies on targeting the Wnt
pathway are in progress, although a few have been terminated or
suspended due to severe adverse events.

Table 3. Clinical trials of targeted therapy against CSC-related targets in AGC patients

Target Drug Mechanism Registration Phase Treatment Results
CD44v Sulfasalazine xCT inhibitor EPOC1205 I Sulfasalazine Positive

C-MET Rilotumumab/AMG-102 Anti-HGF mAb RILOMET-1/
NCT01697072

III ECX with or without
Rilotumumab

Terminated duo to increased death risk

C-MET Rilotumumab/AMG-102 Anti-HGF mAb RILOMET-2/
NCT02137343

III CX with or without Rilotumumab Terminated duo to increased death risk

C-MET Onartuzumab/MetMAb Anti-MET mAb NCT01590719 II FOLFOX6 with or without
Onartuzumab

METþ PFS: 5.95 mo vs 6.80 mo (P¼ 0.45),
OS: 8.51 mo vs 8.48 mo (P¼ 0.80; Shah
et al, 2016)

C-MET Onartuzumab/MetMAb Anti-MET mAb NCT01662869 III FOLFOX6 with or without
Onartuzumab

MET 2þ /3þ PFS: 6.9 mo vs 5.7 mo
(P¼ 0.223), OS: 11.0 mo vs 9.7 mo
(P¼ 0.062; Shah et al, 2015)

C-MET Tivantinib/ ARQ-197 c-Met receptor tyrosine
kinase inhibitor

NCT01611857 II TivantinibþmFOLFOX ORR: 10/34 with 1CR, 9PRs, PFS: 6.1 mo,
OS: 9.6 mo (Pant et al, 2015)

C-MET Savolitinib/AZD6094/
Volitinib

c-Met receptor tyrosine
kinase inhibitor

NCT02447380
and NCT02447406

II Volitinibþdocetaxel Ongoing

C-MET AMG 337 c-Met receptor tyrosine
kinase inhibitor

NCT02344810 I/II FOLFOX6 with or without
AMG 337

Ongoing

EpCAM Catumaxomab Anti-CD3 and
Anti-EpCAM mAb

NCT00836654 II/III paracentesis with or without
catumaxomab

Positive

EpCAM Catumaxomab Anti-CD3 and
Anti-EpCAM mAb

NCT01784900 II Surgical
resectionþ catumaxomab

Terminated

EpCAM Catumaxomab Anti-CD3 and
Anti-EpCAM mAb

No II Chemotherapyþ
Surgeryþ catumaxomab

4-Year DFS and OS rates: 38 and 50%

EpCAM CAR-T Anti-EpCAM NCT02725125 I/II CAR-T cells Ongoing

mTOR Everolimus/RAD001 mTOR inhibitor GRANITE-1/
NCT00879333

III BSC with or without Everolimus PFS: 1.7 mo vs 1.4 mo (P¼ 0.78), OS: 5.4
mo vs 4.3 mo (P¼ 0.124; Ohtsu et al, 2013)

PD-L1 Pembrolizumab Anti-PD-L1 mAb KEYNOTE-012/
NCT01848834

Ib Pembrolizumab Positive RR: 8/36 with 8PRs

PD-L1 Nivolumab/MDX1105 Anti-PD-L1 mAb NCT00729664 I Nivolumab Negative RR: 0/7

Raf Sorafenib/ BAY 43-906 Tyrosine kinase and Raf
kinase inhibitor

ECOG5203/
NCT00253370

II Sorafenibþdocetaxelþ cisplatin ORR: 18/44 with 18 PRs, PFS: 5.8 mo, OS:
13.6 mo (Sun et al, 2010)

SHH Vismodegib/GDC0449 SMO inhibitor NCT00982592 II FOLFOX with or without
Vismodegib

PFS: 8.4 mo vs 8.8 mo (P¼ 0.87), OS: 12.1
mo vs 15.4 mo (P¼ 0.253)

SHH Taladegib/ LY2940680 SMO inhibitor NCT02530437 Ib/2 Taladegib pre- or with Chemo
radiation

Ongoing

Abbreviations: AGC¼ advanced gastric cancer; BSC¼best supportive care; CR¼ complete remission; CSC, cancer stem cell; CX¼Cisplatin and Capecitabine; DFS¼disease-free survival;
ECX¼Epirubicin, Cisplatin and Capecitabine; FOLFOX¼ Fluorouracil, Leucovorin and Oxaliptin; mo¼months; ORR = overall response rate; OS¼overall survival; PFS¼progression-free
survival; PR¼partial remission; RR¼ response rate.
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The clinical trials of other agents aimed at targeting CSC-related
pathways in GC patients are shown in Table 3. Although the
majority of existing results have demonstrated negative or limited
efficacy, we believe that targeted therapy for CSCs is a feasible and
promising approach for developing cures for cancer in light of
successful analogous research in multiple types of tumours.

FURTHER PERSPECTIVES

Currently, the primary problems with regard to the safety and
efficacy of targeted therapies against solid tumours are off-target
effects and drug resistance, a situation that largely reflects the
complexity and dynamic variation of cancer cells. Technological
advances in molecular biology have revolutionised our under-
standing of tumour development. In particular, sequencing
techniques have confirmed multiple subclones with distinct
genomes in tumours, and functional experiments have revealed
rare subpopulations with stemness properties, indicating that
tumour growth can be considered as an evolutionary tree, in which
the most primitive CSCs, representing the trunk, continuously
divide, self-renew and differentiate. Subsequently, new mutations
emerge as branches, and the main subtypes are gradually formed
due to selection by the TME. However, most of the mechanisms
underlying the unified model remain unclear. Even within a single
genotype, each individual cancer cell possesses different gene
expression levels, phenotypes and functional characteristics, and
this diversity is constantly regulated. Hence, many problems
remain to be resolved, such as how heterogeneity is generated
among different CSCs with the same genome, whether cancer
could be cured by killing CSCs just as one may cut down the trunk
of a tree, and so forth. Additional promising studies are currently
focused on investigating the mechanisms of heterogeneity in CSCs
at the single-cell level, which will likely aid in addressing the
current challenge of developing clinical CSC-targeted treatments.
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