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Background: Signet ring cell colorectal cancer (SRCCa) has a bleak prognosis. Employing molecular pathology techniques we
investigated the potential of precision medicine in this disease.

Methods: Using test (n¼ 26) and validation (n¼ 18) cohorts, analysis of mutations, DNA methylation and transcriptome was
carried out. Microsatellite instability (MSI) status was established and immunohistochemistry (IHC) was used to test for adaptive
immunity (CD3) and the immune checkpoint PDL1.

Results: DNA methylation data split the cohorts into hypermethylated (n¼ 18, 41%) and hypomethylated groups (n¼ 26, 59%).
The hypermethylated group predominant in the proximal colon was enriched for CpG island methylator phenotype (CIMP), BRAF
V600E mutation and MSI (Po0.001). These cases also had a high CD3þ immune infiltrate (Po0.001) and expressed PDL1 (P¼ 0.03
in intra-tumoural lymphoid cells). The hypomethylated group predominant in the distal colon did not show any characteristic
molecular features. We also detected a common targetable KIT mutation (c.1621A4C) across both groups. No statistically
significant difference in outcome was observed between the two groups.

Conclusions: Our data show that SRCCa phenotype comprises two distinct genotypes. The MSIþ /CIMPþ /BRAF V600Eþ /CD3þ /
PDL1þ hypermethylated genotype is an ideal candidate for immune checkpoint inhibitor therapy. In addition, one fourth of
SRCCa cases can potentially be targeted by KIT inhibitors.

Colorectal cancer (CRC) rates are on the decline in the US and
Western Europe, but incidence of signet ring cell colorectal cancer
(SRCCa) has remained steady (Gopalan et al, 2011; Arnold et al,
2017). These are highly malignant, dedifferentiated adenocarcino-
mas and comprise around 0.1–2.4% of all CRC cases (Anthony

et al, 1996). Primary SRCCas are most often diagnosed at an
advanced stage, and typically have a dismal prognosis with average
five year survival rates of around 20% (Nitsche et al, 2013).

Molecular pathology of SRCCa is not well understood and it is
unclear whether the signet ring cell phenotype carries a distinct
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genotype as well. Because of the rarity of this cancer most
published studies are either case reports or retrospective epide-
miological and clinicopathological analyses. High frequency of
BRAF mutations, microsatellite instability (MSI) and CpG island
methylator phenotype (CIMP) have been reported along with
predominance in proximal colon and the female gender (Kakar
et al, 2012). But to date there has not been any multi-omics study
conducted to comprehensively study the molecular pathology of
this disease. This is necessary for two reasons: (a) to shed light on
whether SRCCa has a molecular profile distinct from other CRC
subtypes, and (b) to identify novel biomarkers and therapeutic
targets.

MATERIALS AND METHODS

Patient samples. For the test cohort, patients were identified from
the pathology archives of Belfast Health and Social Care Trust
(BHSCT) in Northern Ireland and formalin fixed paraffin-
embedded (FFPE) tissue blocks were made available by the
Northern Ireland Biobank. For the validation cohort, patients were
both identified and FFPE tissue blocks made available from the
Grampian Biorepository in Scotland. Ethical approval was
provided by the Northern Ireland Biobank scientific access group
committee (study number–NIB14-0139), the Grampian Biorepo-
sitory scientific access group committee (tissue request–TR000058)
and the NHS Health Research Authority North West–Preston
research ethics committee (reference–15/NW/0855). No written
consent was required from patients for the use of FFPE tissue
blocks and anonymised demographic and clinicopathological data.
All identified patients were reviewed by two expert pathologists
(MST and MBL for test cohort/GIM and MBL for validation
cohort). Only cases that fulfilled the WHO criteria of greater than
50% of the tumour comprising of signet ring cells were selected for
the study (Bosman, 2010).

Nucleic acid extraction. Representative normal (furthest from
the tumour) and tumour (highest cellularity of signet ring
tumour cells) FFPE tissue blocks were selected after haematox-
ylin and eosin (H&E) slide review. The H&E slides were then
annotated for the epithelial layer in normal blocks and signet
ring cell rich areas in tumour blocks (MST and MBL). 5� 10 mm
and 5� 8 mm sections were cut onto glass slides for DNA and
RNA extraction, respectively. Annotated areas were macrodis-
sected using sterile scalpel blades into 1.5ml microcentrifuge
tubes. DNA extraction was done using Maxwell 16 FFPE Plus
LEV DNA Purification Kit (Promega, Southampton, UK), and
RNA using the RNeasy FFPE Kit (Qiagen, Manchester, UK).
Quantification was conducted using NanoDrop 2000 (Thermo
Fisher Scientific Inc., Loughborough, UK) unless mentioned
otherwise.

Next generation sequencing. Next generation sequencing (NGS)
was performed on the entire test cohort tumour samples. TaqMan
RNase P Detection Reagents Kit was used to quantify 10 ng of
DNA and library prepared using the Ion AmpliSeq Library Kit 2.0
and Cancer Hotspot Panel v2 (Thermo Fisher Scientific Inc.).
Sequencing was performed on the Ion PGM System according to
manufacturer’s instructions and our previously published protocols
(McCourt et al, 2013; Alvi et al, 2015).

DNA methylation. DNA methylation arrays were performed
on both test and validation cohort tumour samples and
additionally on 10 randomly selected normal samples from the
test cohort. We used the Infinium 450k arrays (Illumina Inc.,
Cambridge, UK) following the manufacturer’s instructions and our
previously published protocol (Alvi et al, 2015). Total 200 ng of
DNA as quantified using Qubit Fluorometric Quantitation assay

(Thermo Fisher Scientific Inc.) was used and arrays were scanned
using iScan (Illumina Inc.).

Gene expression. Gene expression arrays were performed on test
cohort tumour samples and 10 randomly selected normal samples.
The Whole-Genome DASL HT assay was used in combination
with the HumanHT-12 v4 BeadChip (Illumina Inc.) according to
manufacturer’s instructions and our previously published protocol
(Alvi et al, 2015). Around 200 ng of total RNA was used as
quantified by Qubit Fluorometric Quantitation assay and chips
were scanned using iScan.

Sanger sequencing. Sequencing was carried out using the
BigDye Terminator v3.1 Cycle Sequencing Kit on the ABI 3500
Genetic Analyzer (Thermo Fisher Scientific Inc.) using manu-
facturer’s instructions. Primers were designed using NCBI
primer designing tool with M13 overhangs. All PCRs were
carried out using AmpliTaq Gold 360 Master Mix (Thermo
Fisher Scientific Inc.), and cleaned using ExoSAP-IT (Affyme-
trix, UK). Approximately 10–50 ng of DNA was used for each
reaction.

Microsatellite instability analysis. MSI status was evaluated using
MSI Analysis System, Version 1.2 (Promega) according to the
manufacturer’s instructions. We tested five mononucleotide repeat
markers (BAT-25, BAT-26, NR-21, NR-24 and MONO-27), which
were co-amplified using fluorescently labelled primers and
analysed on an ABI 3500 Genetic Analyzer. Approximately
10–50 ng of DNA was used for each reaction.

BRAF V600E mutation assay. Cobas 4800 BRAF V600 mutation
test kit (Roche Molecular Systems Inc., Burgess Hill, UK) was
used to look for BRAF V600E mutation according to the
manufacturer’s instructions. Around 125 ng of DNA was used for
each reaction.

Immunohistochemistry. PDL1 and CD3 immunohistochemistry
was carried out on 3 mm full face sections using PD-L1/CD274
(SP142) antibody (Spring Bioscience, CA, USA) at 1 : 40 dilution
and CONFIRM anti-CD3 (2GV6) rabbit monoclonal antibody
(Ventana, UK) respectively. In addition OptiView amplification kit
was used for PDL1 antibody. Staining was carried out on Ventana
Benchmark XT platform with the OptiView Universal DAB
Detection Kit (Ventana Medical Systems, Burgess Hill, UK).

PDL1 scoring was performed separately for peritumoural
lymphoid follicles (PLF), intra-tumoural lymphoid cells (ILC)
and tumour epithelial cells (TEC). Scoring criteria used was 0
(negative) for no cell staining and 1 (positive) for any number of
cells staining. CD3 staining, assessed in ILCs only, was scored
semi-quantitatively using a three tiered scoring system (1 for the
lowest counts observed and 3 for the highest).

Data analysis. For NGS data vcf files were generated from the
torrent server using the variantCaller plugin (Life Technologies,
Loughborough, UK) and imported into Ion Reporter 5.0 (Thermo
Fisher Scientific Inc.) for annotation. Methylation and gene
expression array data was analysed using GenomeStudio methyla-
tion and expression modules version 1.9.0 respectively (Illumina
Inc.). Sanger sequencing data were viewed and confirmed with
Finch TV version 1.4.0 (Geospiza Inc., WA, USA). Gene set
enrichment analysis (www.broadinstitute.org/gsea) was used for
pathway analysis using default settings. Assignment of patient
samples into their respective consensus molecular subtyping
(CMS) groups based on gene expression data was carried out
using the ‘CMSclassifier’ package in R version 3.2.4 (The R
Foundation for Statistical Computing, Austria; Guinney et al,
2015). For comparing data between groups, using Prism version 5
(GraphPad Software, CA, USA) a t-test was performed for
continuous variables and Fisher’s exact test for categorical
variables. Cox proportional hazards analysis to look for

BRITISH JOURNAL OF CANCER Molecular profiling of signet ring cell cancer

204 www.bjcancer.com |DOI:10.1038/bjc.2017.168

www.broadinstitute.org/gsea
http://www.bjcancer.com


associations between molecular and clinicopathological data were
conducted using Stata version 11.2 (StataCorp, TX, USA).

RESULTS

Patient cohorts. Total of 26 and 18 patients were identified from
the BHSCT and the Grampian Biorepository, respectively. We did
not observe any statistically significant difference between the two
cohorts in terms of demographics or clinicopathological data
(Supplementary Table 1).

DNA methylation. From the test cohort, based on beta values,
most variable probes were identified using a s.d. cut-off of
0.25. This generated a list of 875 probes. These probes were used
for unsupervised hierarchical clustering using the manhattan
metric and were able to split the 26 sample cohort into
distinct hypermethylated (n¼ 9) and hypomethylated (n¼ 17)
groups. The same probes were also able to split the validation
cohort into hypermethylated (n¼ 9) and hypomethylated
(n¼ 9) groups. As shown in Figure 1 only 300 (enclosed in
red) out of the 875 probes are consistently differentially
methylated between the two groups. The full list is available in
Supplementary Table 2 and raw data can be obtained from
GSE79740.

As shown in Supplementary Figure 1 the hypermethylated
group was also CIMP positive. We were also able to identify genes
consistently hypermethylated and hypomethylated across all
tumour samples compared to normal tissue with potential as
diagnostic biomarkers (Supplementary Table 3).

Mutations. As shown in Figure 1, compared to the hypomethy-
lated group, we observed the hypermethylated group to be
enriched for BRAF V600E mutation (Po0.001 in test, validation
and both cohorts combined together). This was also confirmed
using a PCR based assay. Other mutations were also observed in
the test cohort using the 50 gene hotspot panel (PRJNA316428,

Supplementary Table 4). According to the COSMIC database,
compared to colorectal adenocarcinoma average we observed
higher frequencies of TP53 (69% vs 44%), BRAF (31% vs 13%) and
KIT (34% vs 8%) mutations. At the same time a lower frequency of
APC (35% vs 45%), KRAS (12% vs 34%), PIK3CA (4% vs 14%) and
ATM (4% vs 18%) mutations was observed (Figure 2 and
Supplementary Table 4). The number of mutant genes in each
sample also varied ranging between 1 and 11 with an average of 2.7
mutant genes per sample (out of the 50 tested by panel). This
average was 3.9 in the hypermethylated and 2.1 in the
hypomethylated group (Po0.05).

The KIT mutations detected by NGS in the test cohort were
similar in eight out of the nine cases (c.1621A4C). This was
validated using a Sanger sequencing assay in both the test and
validation cohorts and an additional three cases were found in the
validation cohort (Forward primer: GTTGTAAAACGACGGC-
CAGUCGTAGCTGGCATGATGTGC, R primer: CACAGGA
AACAGCTATGACCTCTGGAGAGAGAACAAATAAATGGT).

Gene expression. Gene set enrichment analysis was used to look
at pathway enrichment at the gene expression level in the test
cohort. Using the ‘hallmark 50 gene sets’ we identified 19 gene sets
enriched in the hypermethylated group and 4 in the hypomethy-
lated group (qo0.05). The top three were ‘MTOR signalling’,
‘MYC targets V1’ and ‘E2F targets’ in the hypermethyated group
and ‘epithelial mesenchymal transition’, ‘myogenesis’ and ‘apical
junction’ in the hypomethylated group (Supplementary Figure 2
and Supplementary Table 5).

Gene expression data (GSE79793) was also merged with DNA
methylation data using GenomeStudio and spearman correlation
coefficients were calculated for every combination of methylation
and expression array probes (Supplementary Table 6). We
observed 5725 combinations (2088 gene probes) with an inverse
relationship in the hypermethylated group and only 753 combina-
tions (439 gene probes) in the hypomethylated group highlighting
the impact of differential methylation between the two (spearman
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epithelial cells.
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coefficient o� 0.5 and average beta value difference 40.1
between normal and tumour samples).

Gene expression data was also used for CMS classification
(Guinney et al, 2015). We observed CMS1 and CMS4 as the
predominant subtypes in the hypermethylated (67%) and hypo-
methylated (53%) groups, respectively (Supplementary Table 7).

Microsatellite instability and PDL1 expression. MSI was called
where three or more out of the five loci tested were observed to be
aberrant. As shown in Figure 1, we observed most of the MSI cases
in both the test and validation cohorts to fall within the
hypermethylated group (Po0.001, P¼ 0.06, Po0.001 in test,
validation and both cohorts combined together respectively).
Because it has recently been shown that metastatic MSI-high
CRCs are good candidates for immune checkpoint inhibitor
therapy, we tested for CD3 and PDL1 expression to evaluate the
presence of adaptive immune resistance in our cohorts (Xiao and
Freeman, 2015).

We initially conducted CD3 IHC to confirm the presence of an
immune infiltrate in the test cohort. As shown in Supplementary
Figure 3 we observed a higher infiltration of CD3þ T-lymphocytes
in both MSI cases compared to microsatellite stable cases (MSS)
and also the hypermethylated group compared to hypomethylated
group (Po0.001).

We then looked at PDL1 gene expression data and observed a
higher expression of PDL1 in MSI cases compared to MSS
(Figure 3A, P¼ 0.04). We also observed a similar trend in the
hypermethylated group compared to hypomethylated group;
however it was not statistically significant (Figure 3A, P¼ 0.07).

This finding was validated at the protein level using IHC in both
the test and validation cohorts (representative staining can be seen
in Figure 3B). A higher expression of PDL1 was observed in MSI
cases compared to MSS cases (Po0.001, P¼ 0.16, Po0.001 in test,
validation and both cohorts combined together, respectively,
Figure 3C). The trend was consistent across all the three cell
populations we looked at but strongest in the ILCs (P¼ 0.003,
P¼ 0.3, P¼ 0.001 in test, validation and both cohorts combined
together, respectively, Figure 3C). We also observed a similar trend
comparing PDL1 protein expression in hypermethylated vs
hypomethylated group (P¼ 0.008, P¼ 0.8, P¼ 0.03 in test,
validation and both cohorts combined together, respectively,
Figure 3C).

Association between molecular and clinicopathological data.
Patients in the hypermethylated group had a higher average age
compared to the hypomethylated group (Po0.01 in test,
validation and both cohorts combined together, Figure 1). We
observed these to be mostly female patients (P¼ 0.10, P¼ 0.15,
P¼ 0.01 in test, validation and both cohorts combined together,
respectively, Figure 1) and the tumours were mostly in the
proximal colon (P¼ 0.01, P¼ 0.13, Po0.01 in test, validation
and both cohorts combined together, respectively, Figure 1).

We observed no statistically significant link between molecular
data and any other clinicopathological parameters including
prognosis (overall survival) even when adjusted for age/stage/
gender/MSI/tumour location in a multivariate analysis
(Supplementary Table 7).

DISCUSSION

Our study has for the first time identified two distinct genotypes
within the SRCCa phenotype. Markers previously associated with
this phenotype (e.g., BRAF V600E mutation, MSI and CIMP) are
only present in one genotype, which represents only 41% of the
cases in our cohorts (9/26 in test cohort, 9/18 in validation cohort).
We also found this genotype to be associated with older age, female
gender and predominant in the proximal colon. Again these are
features which have been associated with the signet ring cell
phenotype by a number of studies but our study shows that these
only represent one (hypermethylated) genotype (Kakar et al, 2012;
Barras, 2015). The study design is summarised in Supplementary
Figure 4.

DNA methylation level was observed to be the major
difference between the two genotypes with 202 genes (300
probes) splitting the cohorts into two groups. It is also interesting
to see that all these genes follow the classic methylation pattern of
CIMP genes, which are unmethylated in normal tissue. Methyla-
tion levels in the hypomethylated genotype are similar to those of
the normal tissue and are only elevated in the hypermethylated
genotype (data not shown). With the widespread availability of
array-based methylation analysis it is now possible to look at
methylation at a much deeper level than was possible when CIMP
was discovered back in 1999 (Toyota et al, 1999). It can be seen
from our data that the CIMP genotype in these cases comprises of
a 202 gene signature as opposed to only five genes as has been
traditionally thought. We also observed interesting differences in
methylation patterns outside of the 300 probes that split the
cohorts into two genotypes. The main difference was approxi-
mately twice the amount of methylation changes occurring within
CpG islands in the hypermethylated genotype compared to
hypomethylated genotype (44% vs 19%) (Supplementary
Figure 5).

On the basis of NGS data we found TP53, APC, KIT and BRAF
to be the most mutated genes. TP53 and APC are also highly
mutated in conventional CRC and BRAF is known to be
frequently mutated in SRCCa. The finding of a common KIT
mutation is novel. Across both the test and the validation cohorts
(and across both the hypermethylated and hypomethylated
genotypes) 25% of cases were found to carry a KIT M541L
mutation. A Sanger sequencing assay confirmed this finding,
and the high-incidence rate differs substantially from the
minor allele frequencies reported in multiple databases
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(1000 Genomes frequency: 6.45% (The Genomes Project C,
2015), ExAC frequency: 7.89% (Lek et al, 2016), NHLBI ESP
European frequency: 11.19% (National Heart, Lung, and Blood
Institute). We know that KIT mutant gastrointestinal stromal
tumours benefit from treatment with the tyrosine kinase inhibitor
imatinib (Siehl and Thiel, 2007) and similarly it has been reported
that this mutation not only increases proliferation but also
enhances sensitivity to imatinib in certain cancers (Gonçalves
et al, 2006; Masago et al, 2015; Iacono et al, 2016). Also it has not
been reported previously in CRC and thus is of potential clinical
significance as it may open new targeted approaches to treatment.
This finding also highlights the distinct molecular profile of
SRCCa and that it is not just an enrichment of conventional CRC.

Approximately 75% of cases in our study had stage III
tumours, and we know that B12% of all stage III colorectal
tumours are MSI (Vilar and Gruber, 2010). However we observed
48% of our cases to be MSI, and most of them were in the
hypermethylated genotype (88% of hypermethylated cases were
MSI). We were also able to confirm the downregulation of MLH1
using gene expression data in this genotype, which indicates a
defective DNA mismatch repair pathway (Kane et al, 1997)
(Supplementary Figure 6). In light of recent developments
highlighting the potential of immune checkpoint inhibitor
therapies in MSI tumours, we also examined CD3 and PDL1
expression in our cohorts (Herbst et al, 2014; Xiao and Freeman,
2015). We observed higher CD3 and PDL1 levels in MSI cases
compared to MSS (Figure 3). We also observed both these
markers to be upregulated in the hypermethylated genotype
compared to the hypomethylated genotype, suggesting that the
hypermethylated genotype may potentially benefit from immune
checkpoint inhibitor therapy because of the development of
adaptive immune resistance (Figure 3; Llosa et al, 2015).

This finding also fits in with recent studies, where upregulation
of mTOR and MYC pathways (as observed in the hypermethy-
lated genotype, Supplementary Figure 2 and Supplementary
Table 5) can lead to PDL1 dependant suppression of the immune
response (Casey et al, 2016; Lastwika et al, 2016). The immune
checkpoint inhibitor therapy clinical trials in CRC have suffered
from low-sample numbers because most MSI CRCs are early
stage (Xiao and Freeman, 2015). This makes SRCCa hypermethy-
lated genotype an ideal candidate for these trials as these cancers
are likely to be both MSI and high stage (Le et al, 2015; Llosa et al,
2015).

Comparing our data to the CMS classification of Guinney
et al, 2015 we find our hypermethylated group similar to the
CMS1 (microsatellite instability immune, 14%) subtype with a
high mutation count, MSI, CIMP, BRAF mutations, immune
infiltration (as measured by CD3 IHC) and predominance
in the proximal colon and the female gender (Guinney et al,
2015). The hypomethylated group shows similarities to CMS4
(mesenchymal, 23%) subtype in terms of upregulation of
epithelial–mesenchymal transition genes, but also to CMS3
(metabolic, 13%) subtype as it contains all of the KRAS mutant
tumours.

In summary, SRCCa comprises of two molecularly distinct
genotypes. An MSIþ /CIMPþ /BRAF V600Eþ /CD3þ /PDL1þ

hypermethylated genotype predominant in the proximal colon,
and a hypomethylated genotype predominant in the distal colon.
The high frequency of MSI and PDL1 expression in the
hypermethylated genotype makes it a potential target for immune
checkpoint inhibitor therapy. In addition, a high-detected
frequency of the c.1621A4C (p.M541L) KIT actionable mutation
also suggests imatinib as a candidate genomic targeted therapy.
Testing tumour tissue for these two molecular aberrations may be
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***¼Po0.05, Po0.01 and Po0.001, respectively)).
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clinically beneficial upon making a diagnosis of SRCCa. Because of
the rarity of this disease and the lack of cell line and animal models,
the results of this study strongly support the need for an early
phase trial aimed at these targets.
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