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Background: To project risks of developing cancer and the number of cases potentially induced by past, current, and future
computed tomography (CT) scans performed in the United Kingdom in individuals aged o20 years.

Methods:Organ doses were estimated from surveys of individual scan parameters and CT protocols used in the United Kingdom.
Frequencies of scans were estimated from the NHS Diagnostic Imaging Dataset. Excess lifetime risks (ELRs) of radiation-related
cancer were calculated as cumulative lifetime risks, accounting for survival probabilities, using the RadRAT risk assessment tool.

Results: In 2000–2008, ELRs ranged from 0.3 to 1 per 1000 head scans and 1 to 5 per 1000 non-head scans. ELRs per scan
were reduced by 50–70% in 2000–2008 compared with 1990–1995, subsequent to dose reduction over time. The 130 750
scans performed in 2015 in the United Kingdom were projected to induce 64 (90% uncertainty interval (UI): 38–113) future
cancers. Current practices would lead to about 300 (90% UI: 230–680) future cancers induced by scans performed in
2016–2020.

Conclusions: Absolute excess risks from single exposures would be low compared with background risks, but even small increases
in annual CT rates over the next years would substantially increase the number of potential subsequent cancers.

Fifteen years ago, Brenner et al (2001) first assessed the possible
magnitude of cancer risks induced by paediatric computed
tomography (CT) and raised concerns about potential harmful
effects of these X-ray exposures. That study predicted risks of fatal
cancer ranging from 1 per 10 000 to 1 per 1000 scanned patients,
depending on their age and the scanned body part. Based on
current radiological practices at that time in the United States, they
projected that about 500 children scanned each year would
ultimately die from a radiation-related cancer. Several investigators
also reported the use of adult-calibrated scan parameters in
paediatrics in this past period, resulting in unnecessarily high

radiation doses in small body size patients (Mettler et al, 2000;
Donnelly et al, 2001; Huda and Vance, 2007).

Since then, direct evidence of increased cancer risks after CT
scans received in childhood or early adulthood has been provided
in epidemiological studies (Pearce et al, 2012; Mathews et al, 2013;
Huang et al, 2014; Journy et al, 2016), although there were
uncertainties in the dose estimates and a possibility of bias owing
to underlying medical conditions (Walsh et al, 2014; Berrington de
Gonzalez et al, 2016). These studies have enhanced awareness
about potential risks of X-ray exposures among the medical
community and, along with considerable technological progress in
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CT, has led to further radiation dose optimisation in paediatrics.
For instance, a survey in Great Britain showed that doses per scan
were reduced by 50% in 2000–2008 compared with exposures
before 1990 (Lee et al, 2016). At the same time, however, the
number of examinations performed annually has considerably
increased, in both adults and children (Pearce et al, 2011), owing to
the more widespread availability of CT scanners, the considerable
reduction in scan times (which now makes the use of sedation
unnecessary in most children), and improvements in CT image
quality allowing more medical applications. The increasing
frequency of CT use has undoubtedly provided considerable
medical benefits to children but at the same time has increased the
collective radiation exposure and the number of possible radiation-
related cancers (Linton et al, 2003). In 2010, Parkin and Darby
estimated that, in the United Kingdom, 0.6% of all cancers would
be attributable to radiation exposures from diagnostic imaging in
both paediatrics and adults (Parkin and Darby, 2011).

Our aim here is to estimate the potential radiation-related
cancer risks from current CT practice in the United Kingdom,
specifically in paediatrics, compared with past practice, and to
quantify the impact of the documented dose reductions. We then
use data on frequency of CT use to project the numbers of future
cancers possibly attributable to paediatric scans currently
performed in the United Kingdom, or will be in the next 5 years,
in individuals aged o20 years.

MATERIALS AND METHODS

Projection of excess lifetime risks (ELRs) per scan. To project
future cancer risks, we used the RadRAT risk assessment tool,
which was developed at the National Cancer Institute, Bethesda,
MD, USA (Berrington de Gonzalez et al, 2012), and is now freely
accessible at https://irep.nci.nih.gov/radrat. RadRAT incorporates
an extended list of cancer site-specific risk models that were
previously derived by the US National Research Council in the
BEIR VII report (NRC, 2006) from cohorts of survivors of the
Hiroshima and Nagasaki atomic bombings and patients receiving
radiotherapy for benign diseases or repeated diagnostic procedures.
The above-mentioned recent studies on CT exposures cannot
provide a full picture of radiation-related risks, mainly because
their duration of follow-up is still too short to describe cancer
incidence after the age of 50 years (Pearce et al, 2012; Mathews
et al, 2013; Huang et al, 2014; Berrington de Gonzalez et al, 2016;
Journy et al, 2016). In consequence, most of these studies estimated
risks for a limited range of cancer sites. The risk estimates per unit
dose were, however, compatible with the models implemented in
RadRAT for leukaemia and cerebral tumours (no estimate per unit
dose is available for other cancer sites), once children with previous
cancers or cancer-predisposing conditions were excluded
(Berrington de Gonzalez et al, 2016). Current evidence from CT
scans thus provides support for the appropriateness of the BEIR
VII/RadRAT models for our risk projection purposes.

From these models, ELRs of developing cancer were calculated
for single CT scans, according to the patient’s age at exposure,
gender, and scanned body part, as cumulative risks that would
occur in addition to baseline cancer risks (i.e., without CT
exposure) over a lifetime, while accounting for survival probabil-
ities at each attained age. Survival functions (England, 2011–2013)
and baseline incidence rates (United Kingdom, 2011–2012) were
obtained from the Office for National Statistics (ONS; www.ons.-
gov.uk, accessed on 26 March 2015). To account for risk projection
uncertainties, 90% uncertainty intervals (UIs) were calculated as
the 5th through to 95th percentile range of the distribution of
ELR (or a total number of future cancers) values computed by
Monte Carlo simulations using RadRAT. As detailed in the

methodological paper, probability distributions were assigned to
each of the following components of risk projection: dose–response
model parameters, minimum latency period between radiation
exposure and cancer occurrence, high-to-low doses risk extrapola-
tion, and population-to-population risk transport, as well as to
organ doses (see ‘Organ dose per scan’ section), to propagate
uncertainties and dose variability in risk projection (Berrington de
Gonzalez et al, 2012). All results on projected risks are displayed
here as median simulated values with 90% UI.

Projection of total number of future cancers in the United
Kingdom. The total number of future cancers potentially induced
by annual frequencies of CT scans was calculated as a sum of
estimated numbers of scans in a year for a given age group, gender,
and scanned body part, multiplied by the corresponding ELRs. The
presumed linear dose–response relationship for solid cancers and
leukaemia over the dose range of our interest (o0.5 Gy; Preston
et al, 2007; Wakeford, 2013) implies that the sum of projected risks
for children who received multiple exposures is simply equal to the
sum of projected risks per scan over all exposures in the
population. The number of cancers potentially related to future
scans for the period 2016–2020 was projected under different
scenarios of dose reduction and future annual CT rates, which are
detailed below. The total number of cancers potentially induced by
past CT use (1990–2012) was not projected, owing to the lack of
data on frequencies of paediatric CT scans in this time period, and
the overly speculative nature of retrospective risk projections over
such a long period.

Organ doses per scan. Organ doses were estimated by age at
exposure (0–4, 5–9, 10–14, 15–19 years), scanned body part (head,
chest, abdomen–pelvis), gender, and time period (1990–1994,
1995–1999, 2000–2008), mainly from individual scan parameters
extracted from a sample of 1073 procedures in members of the UK
CT cohort (Lee et al, 2016), used to refine dosimetry since the first
publication (Pearce et al, 2012). We converted the values of volume
Computed Tomography Dose Index (CTDIvol) estimated from the
scan parameters into organ doses using conversion coefficients and
standard landmarks, as described previously (Lee et al, 2016). For
risk projection, the variability in organ doses was described by log-
normal distributions derived from the 1073 CT scan sample. For
less frequently scanned body parts (cervical spine, shoulders, hips)
and particular protocols (high-resolution, whole-body CT), data
from the sample were very sparse. We thus used ‘typical’ CTDIvol
values published from two national surveys of CT protocols used in
the United Kingdom (Kim et al, 2012). For these infrequently
scanned body parts, we did not account for dose variability
(or uncertainty) in risk projection because no variability para-
meters were provided in the two national reference surveys. No
dose estimation was performed for scans of the limbs because
published values of CTDIvol were not reported separately for both
legs and arms (Kim et al, 2012), and conversion factors were not
developed for arms (Lee et al, 2012). For the period 2016–2020, we
considered three scenarios of possible future dose reduction
(constant, � 20%, or � 40%, as compared with doses per scan
in 2000–2008), which would result from technological innovation
and improved dose optimisation (Dougeni et al, 2012; Raman et al,
2013).

Frequencies of paediatric CT scans in the United Kingdom. The
total number of scans in England in 2013–2015 was collected from
the Diagnostic Imaging Dataset, which gathers information about
all imaging tests carried out in England through the National
Health Service (NHS) since April 2012 (reports accessible at
www.england.nhs.uk). Data were obtained by 5-year age group
and gender, excluding CT-guided procedures (e.g., biopsies or
drainage), which are usually associated with very small doses.
Procedures with unknown age or gender (o3%) were assumed to
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have the same age and gender distribution as scans with specified
patients’ age and gender and were added to subtotals. To estimate
the number of scans by body part, we applied frequencies by scan
type and 5-year age groups estimated in the UK CT cohort (Pearce
et al, 2012). The total number of scans throughout the United
Kingdom was estimated by applying CT rates per 1000 inhabitants
derived from NHS England data by 5-year age group and calendar
year to the 2012-based population projections for the whole of the
United Kingdom published by the ONS (http://www.ons.gov.uk,
accessed on 7 March 2016). In the United Kingdom, paediatric CT
scans are virtually all performed within the public NHS system.
The number of CT scans performed over the next 5 years was then
projected under various realistic scenarios of future changes in
annual CT rates per inhabitant (constant, þ 5, þ 3, or � 2%, as
compared with the rates in 2015), and a ‘worst case’ scenario of
annual increase by 10% corresponding to CT trends observed in
past years in other countries (Smith-Bindman et al, 2012; Brady
et al, 2016; Dovales et al, 2016).

RESULTS

ELRs associated with single CT scans in 1990s and 2000s. The
projected ELR per scan decreased by 50–70% during the period
2000–2008 compared with the period 1990–1994, depending on
age at exposure, gender and scanned body part (Figure 1). In 2000–
2008, ELRs ranged from 0.3 to 1 per 1000 head scans and 1 to 5 per
1000 non-head scans (scans of the chest or abdomen and pelvis)
according to patient’s gender and age (Table 1). For head scans,
projected ELRs were similar for both genders, but for non-head
scans, ELRs were 1.5–3 times higher in girls than in boys owing to
higher risks of thyroid, breast, lung, and gynaecological cancers.
As compared with a background lifetime risk of 40% in unexposed
children, each single scan during childhood would lead to one
excess case per 1000 spontaneous cancers, on average. Uncertain-
ties in risk projection were nevertheless large, for example, for
chest scans in girls aged 5 years, 90% of the simulated ELR values
ranged from 1 to 13 per 1000 (Table 1).

Number of future cancers potentially induced by scans
performed in 2015. In England, the annual rate of CT use
increased by 3% on average over the period 2013–2015 up to 8.5
scans per 1000 in 2015. The 2015 rates were, respectively, 5.6, 3.8,
7.0, and 17.9 per 1000 in individuals aged 0–4, 5–9, 10–14, and
15–19 years. Based on these figures, we projected that 64 (90% UI:
38–113) future cancers would be induced by the 130 750 scans
performed in 2015 in the United Kingdom in individuals aged
o20 years. Girls accounted for 46% of the projected future
cancers; adolescents aged 15–19 years accounted for half and
infants (o1-year-old at scan) for almost 10% of projected future
cancers (Figure 2). Cerebral tumours were the most frequent
potentially radiation-related cancers, accounting for a fourth of all
projected future cancers (Figure 3). Leukaemia, oral, lung, breast,
and colorectal cancers accounted each for 1 out of 10. Despite the
fact that cervical spine, chest, abdomen, and/or pelvis scans
accounted for only one-fifth of all examinations, tumours of organs
located exclusively in the neck, thoracic, or abdominal region
(thyroid gland, breasts, lungs, digestive, and urinary organs)
accounted for half of all projected future cancers, owing to their
high sensitivity to radiation.

Projected future cancers from different scenarios of CT practices
up to 2020. While considering the doses per scan during the
period 2000–2008 and the CT rates of 2015 remaining constant up
to 2020, we calculated that 320 (90% UI: 230–680) future cancers
would be induced by paediatric CT use in the United Kingdom
over the next 5 years (Table 2). If the frequency of scans continues
to increase by 3% per year up to 2020, this would lead to a number

of potential future cancers increasing by 10%, as compared with
constant CT rates. Rates increasing annually by 5% and 10% would
be associated with increasing numbers of subsequent future
cancers by 16% and 34%, respectively, by 2020. Countering these
projections are further CT dose reduction techniques likely to be
developed or implemented in the future, which would proportion-
ally decrease the associated potential cancer risks (Table 2).

DISCUSSION

This study is an updated risk assessment for paediatric CT scans,
which accounts for recent trends in radiation doses and frequency
of use in the United Kingdom. Compared with the earliest period
of CT use (before 1995), it shows that potential cancer risks per
scan have been reduced by 50–70% in recent years owing to dose
reduction practices over time. With an estimated annual rate of 8.5
scans per 1000 children and adolescents, resulting in a total of
131 000 scans in 2015, we projected that 40–110 children who were
scanned in that year would ultimately develop a radiation-related
cancer over their lifetime. To put this in context, if we assume that
110 000 children were scanned that year (1.2 scan per child on
average), 44 000 of these children would develop a cancer during
their life, independently of their CT exposure in childhood
(assuming a background lifetime risk of cancer of 40%).

An rough estimate of 5 future cancers per 10 000 paediatric
scans from current practices in the United Kingdom is substan-
tially lower than in previous studies conducted from past CT
practices in the United States, which estimated 8 cancer deaths
(Brenner et al, 2001) and 10–12 incident cancers (Berrington de
Gonzalez et al, 2009; Miglioretti et al, 2013) attributable to 10 000
paediatric scans. A reduction of risks per scan in the United States
by a similar extent to our estimates for the United Kingdom would
be especially meaningful in terms of cancer burden reduction in
this larger population. A projection rate of 5 future cancers per
10 000 scans would correspond to 3400 future cancers possibly
induced by the 6.8 million paediatric scans performed in the
United States in 2014 (IMV, 2014), as compared with the 7000–
8000 future cancers that we project from the previous estimates
(Berrington de Gonzalez et al, 2009; Miglioretti et al, 2013). This
reduction assumes that the reduced doses per scan observed in the
United Kingdom also apply in the United States, although, to our
knowledge, no large-scale survey has described very recent trends
in radiation doses in routine paediatric care in the United States.
Transposing current results for the United Kingdom to another
population also assumes that the two populations have similar
background risks and distribution of age at scan and scanned
body parts, which can be considered as a reasonable assumption
(Ferlay et al, 2012).

Other previous studies have projected cancer risks from
paediatric CT scans. Most of them have reported radiation
exposure and potential subsequent risks based on dedicated CT
protocols, for example, for monitoring of cystic fibrosis (de Jong
et al, 2006), detection of renal calculi (Kuhns et al, 2011), treatment
of neurovascular diseases (Raelson et al, 2009), low-dose chest scan
(Niemann et al, 2015), or coronary angiography (Huang et al,
2009). Few other studies have projected risks per scan from
standard paediatric CT protocols, for example, in the United States
(Li et al, 2011), France (Journy et al, 2014), and China (Su et al,
2014). None, to our knowledge, has previously considered routine
practices in the United Kingdom. Many components differ
between these studies, including population-specific background
cancer risks and life expectancy, organ doses (scan parameters
including the length of the scan region, and methods to estimate
organ doses), risk models (though relatively homogeneous models
were used in most studies), and methods to propagate risk
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projection uncertainties. However, our projection of 0.1–1 incident
case (all cancer sites combined) per 1000 head scans and 1–5 per
1000 non-head scans is completely consistent with other studies
reporting all-cancer risks from standard CT protocols (Berrington
de Gonzalez et al, 2009; Li et al, 2011; Miglioretti et al, 2013). With
the use of largely similar risk models, these studies also consistently
reported 2–7 times higher risks per scan in girls than in boys (for
non-head scans only) and 1.5–3 times higher risks per scan in
neonates than in adolescents aged 10–15 years (for all scans)

(Berrington de Gonzalez et al, 2009; Li et al, 2011; Miglioretti et al,
2013; Journy et al, 2014).

The current study benefited from the use of empirical data on
radiation doses and frequency of exposure in the United Kingdom
for the past and current time periods. The source of information
used for organ dose estimation is the only one to include both
individual variability and temporal trends from 1990 to 2008 in the
United Kingdom and will be part of a refined dosimetry of the UK
CT cohort (Lee et al, 2016). Since the most recent period (2000–
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Figure 1. Projected ELR scans for the period 1990–2008.
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2008) of this survey, progress in CT technology and improved
practices in dose optimisation are likely to have reduced radiation
doses that are currently delivered to patients and to reduce them
even more in the future. Although future technological advances
are unpredictable, we assessed different scenarios of dose reduction
compatible with the expected gains from the widespread use of
recent technological innovations (particularly automatic exposure
control and iterative reconstruction) (Dougeni et al, 2012; Raman
et al, 2013). A recent national survey in the United Kingdom,
however, suggested few changes in paediatric CT practices in 2011
compared with 2003 (PHE, 2014). Future frequencies of CT use are
also unpredictable, but ‘realistic’ scenarios of future annual CT
rates increasing by � 2% to þ 5% would predict total numbers of
possibly induced future cancers varying from � 6% to þ 16% in
the United Kingdom by the end of 2020, as compared with
CT rates in 2015. A ‘worst case scenario’ of annual rates increasing

by 10% up to 2020 would lead to an increased total number of
potential subsequent cancers by 34% in the next 5 years.

As has been extensively discussed in the literature (NRC, 2006;
UNSCEAR, 2012), the methodological framework for low-dose
radiation risk projection has several limitations. In our particular
context, the main sources of uncertainty are related to the shape of
the dose–response relationship, particularly at low doses
(o0.1Gy), the joint effect of radiation and other risk factors for
cancer, the existence of modifying effects, such as age at exposure,
and the latency time between radiation exposure and cancer
diagnosis. Propagation of uncertainties through Monte Carlo
simulations as implemented in RadRAT accounts for most of these
sources of uncertainties to provide ranges of possible risk values.
However, RadRat only considers one set of no-threshold risk
models and does not consider different shapes of the dose–
response relationship and effects of modifying effects (Berrington
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Figure 2. Pie chart of the usage of paediatric CT scans by age group. (A) Number of scans performed in the UK in 2015. (B) Number of future
cancers potentially induced by those scans.

Table 1. Projected excess lifetime risk (ELR) and uncertainty intervals of all cancers incidence per 1000 CT scans, according to the
time period of scan, the scanned body part, and patient’s gender and age

ELR (90% uncertainty interval)
by time period

Relative difference between
time periods, (%)a

Scanned body part
Age

(in years) Gender
1990–1994

(1)
1995–1999

(2)
2000–2008

(3) (2) vs (1) (3) vs (2) (3) vs (1)
Head 0 Male 2.4 (1.2–4.8) 1.6 (0.6–4.1) 0.9 (0.4–2.3) � 33 � 44 � 63

Female 2.1 (1.0–4.0) 1.5 (0.7–3.2) 0.8 (0.4–2.0) � 29 � 47 � 62
5 Male 1.4 (0.7–2.7) 1.0 (0.4–2.7) 0.7 (0.3–1.7) � 29 � 30 � 50

Female 1.2 (0.6–2.0) 0.9 (0.4–1.8) 0.6 (0.3–1.3) � 25 � 33 � 50
15 Male 0.9 (0.4–1.8) 0.4 (0.2–1.3) 0.4 (0.2–1.2) � 56 00 � 56

Female 0.6 (0.3–1.0) 0.3 (0.1–0.8) 0.3 (0.1–0.6) � 50 00 � 50

Chest 0 Male 3.7 (1.8–8.7) 1.9 (0.8–5.0) 1.4 (0.5–6.0) � 49 � 26 � 62
Female 13.3 (6.5–24.8) 6.3 (2.7–16.3) 4.5 (1.5–16.5) � 53 � 29 � 66

5 Male 3.0 (1.4–7.1) 1.5 (0.7–4.1) 1.1 (0.4–4.9) � 50 � 27 � 63
Female 10.5 (5.0–18.3) 4.9 (2.1–12.6) 3.3 (1.1–12.8) � 53 � 33 � 69

15 Male 2.2 (1.2–4.3) 1.3 (0.6–3.2) 0.9 (0.4–2.1) � 41 � 31 � 59
Female 7.3 (4.2–11.4) 4.4 (1.9–8.8) 2.6 (1.3–6.4) � 40 � 41 � 64

Abdomen and pelvis 0 Male 6.2 (3.0–12.4) 3.1 (1.4–7.7) 2.1 (0.8–7.1) � 50 � 32 � 66
Female 10.6 (5.5–20.0) 5.4 (2.7–11.7) 3.8 (1.5–10.9) � 49 � 30 � 64

5 Male 5.2 (2.5–10.1) 2.6 (1.2–6.3) 1.8 (0.7–5.8) � 50 � 31 � 65
Female 8.5 (4.4–16.1) 4.3 (2.2–9.4) 3.1 (1.2–8.6) � 49 � 28 � 64

15 Male 3.8 (2.1–7.4) 2.4 (1.2–5.3) 1.5 (0.7–3.6) � 37 � 38 � 61
Female 5.3 (3.2–9.9) 3.5 (1.6–7.0) 2.2 (1.1–4.5) � 34 � 37 � 58

Abbreviation: CT¼ computed tomography. ELR: median simulated value of ELR per 1000 scans.
aRelative differences of median ELR values between the two time periods indicated in parentheses.
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de Gonzalez et al, 2012). Using the same reference data as used to
estimate the BEIR VII/RadRAT models, other risk models have
been preferred by other authors and scientific committees, in
particular the United Nations Scientific Committee on the Effects
of Atomic Radiation (UNSCEAR, 2006) and US Environmental
Protection Agency (EPA, 2011). These models generally use
different assumptions to model the dose–response relationship and
account for confounding factors and effect modifiers. Attempts
have been made to develop methods to account for model
uncertainty based on goodness-of-fit criteria, but they might lead
to omitting important confounding factors (Richardson and Cole,
2012) or effect modifiers (e.g., age at exposure), which could be
critical for risk projection purposes.

Extrapolation of risks from moderate-to-high doses (0.1 to
42Gy) to the low-dose range (o0.1Gy) of single CT exposures

remains controversial (Doss, 2013). CT scan studies do not have a
sufficient follow-up to provide risk estimates over a lifetime and for
cancer sites that usually occur at old ages (e.g., thyroid, breast,
lung, digestive cancers). These studies are nevertheless helpful to
assess the validity of BEIR VII/RadRAT models (or others) for risk
projection purposes. First analyses in the UK and the Australian
studies showed risk estimates for brain tumours that were higher
than what the BEIR VII/RadRAT risk models would have
predicted, with an excess relative risk (ERR) per mGy of 0.02
(95% CI: 0.01–0.04) vs 0.006 (95% CI: 0–0.06) in the a-bomb
survivors who were exposed before age 20 years and followed up to
20 years after exposure (Pearce et al, 2012; Mathews et al, 2013).
However, a further analysis of the UK CT cohort showed that the
risk estimates were reduced, though remaining significantly
increased, after excluding children with a previous unreported

Table 2. Projected number of future cancers potentially induced by CT scans performed over the next 5 years (period 2016–
2020) in the United Kingdom, according to various scenarios of future practices in paediatrics

Avoided or additional future cancers as
compared with the reference scenario

Change in doses per scan as
compared with practices in
2000–2008

Change in annual CT
rate per inhabitant as
compared with 2015

Projected future cancers
potentially induced by scans

performed in 2016–2020 (90%
uncertainty interval) Absolute difference Relative difference

Dose remaining constant þ 10% 430 (300–870) þ111 þ 34%
þ 5% 370 (260–770) þ52 þ 16%
þ 3% 350 (250–730) þ30 þ 9%
þ 0% 320 (230–680) Reference scenario
� 2% 300 (220–650) �19 � 6%

20% reduction þ 10% 350 (240–700) 24 þ 7%
þ 3% 280 (200–590) �40 � 12%
þ 0% 260 (180–540) �64 � 20%

40% reduction þ 10% 260 (180–520) �62 � 19%
þ 3% 210 (150–440) �111 � 34%
þ 0% 190 (140–410) �129 � 40%

Abbreviation: CT¼ computed tomography. The number of projected future cancers are rounded to the nearest 10.

26%

10%

13%12%

10%

4%

9%

7%

5%
4%

Projected future cancers 

Brain and CNS
Leukaemia
Lung
Oral cavity and pharynx
Colon and rectum
Other digestive organs
Breast
Thyroid
Urinary organs
Others

71%

2%

7%

9%

3%
8%

Body parts scanned by CT

Head, facial bones
Cervical spine
Chest
Abdomen ± pelvis
Pelvis
Extremities, hips, shoulders, whole body

A B

Figure 3. Pie chart of the usage of paediatric CT scans by scanned body part. (A) Body parts scanned by CT. (B) Projected future cancers by
tumour site. CNS = central nervous system. NB: Figures are reported only for diagnostic scans; they exclude CT-guided procedures.

BRITISH JOURNAL OF CANCER Cancers attributable to paediatric CT in the UK, 1990–2020

114 www.bjcancer.com |DOI:10.1038/bjc.2016.351

http://www.bjcancer.com


diagnosis of cancer or suspected tumour at the time of scan, with
an ERR per mGy of 0.01 (95% CI: 0.004–0.03; Berrington de
Gonzalez et al, 2016). After accounting for indication bias, this
latest analysis thus provides risk estimates that are compatible with
the results from the a-bomb survivors’ study, especially if we
consider that a residual indication bias may remain in the CT risk
estimates. The risk estimates for leukaemia, including myelodys-
plasia, after CT exposures (ERRs per mGy comprised between 0.03
and 0.04 depending on the population considered) appeared also
consistent with the results of the a-bomb survivor study (ERR per
mGy¼ 0.04; Pearce et al, 2012; Mathews et al, 2013; Berrington de
Gonzalez et al, 2016), which also includes cases of myelodysplasia
during the early follow-up (Hsu et al, 2013). Current evidence from
CT scan studies thus support the appropriateness of the BEIR VII/
RadRAT models to evaluate potential risks subsequent to CT
exposures at a population level. At the current time, this conclusion
is, however, limited to brain tumours and leukaemia only, as no
dose–response analyses has been conducted to date for other
cancer sites in studies with sufficient sample size. We thus
acknowledge the need for further analyses with longer duration
follow-up to fully address the issue of risk extrapolation to CT
exposures.

Finally, caution is required to avoid interpreting the current
results as individual risks. As discussed below, large uncertainties
exist when projecting risks from one particular situation of
radiation exposure to another one, and we must acknowledge
that the sensitivity to radiation varies according to individual
factors, such as genetic susceptibility or other cancer risk factors
(UNSCEAR, 2013). In addition, we considered here that the
current background cancer risks and life expectancy of the
general UK population applied in children who receive CT scans,
without considering temporal changes and individual underlying
medical conditions that may impact the risk of cancer and
survival. A reduced survival probability will obviously reduce the
risk of radiation-related effects over a lifetime (Brenner et al,
2011; Harbron et al, 2016). The current results should therefore
only be interpreted at the population level to provide a sense of
the magnitude of the potential risks and impact of collective
exposures and to assess possible future scenarios of CT practices.
At the individual level, with potential absolute risks subsequent
to CT exposures usually very low compared with the background
lifetime risks of cancer, the immediate benefits of CT, as
currently utilised in the United Kingdom, would largely
outweigh the risks in most clinical situations.

CONCLUSION

Changes in practice have substantially reduced the radiation doses
to children from CT scans in the United Kingdom and potential
subsequent cancer risks. However, the accompanying increase in
frequency of scans has increased the collective exposure and
the potential associated cancer burden. We estimated that about
230–680 future cancers would be induced by scans performed in
children during 2016–2020 in the United Kingdom, if the
frequency of CT use remains unchanged and no substantial
further dose reduction occurs on a widespread scale. The absolute
excess risk related to one CT scan would be very low as compared
with background cancer risks that patients would face over their
lifetime. Therefore, when paediatric CT is justified for a particular
indication and other imaging tests are not adapted or available, the
expected benefits of CT for children would largely outweigh the
risks. However, because of the potential harmful effects of radiation
exposure, paediatric CT scans need to be used in accordance with
clinical guidelines and with proper dose optimisation to avoid
unnecessary exposures and risks.
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