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Background: Osteosarcoma (OS) is the most common bone malignancy in the paediatric population, principally affecting
adolescents and young adults. Minimal advancements in patient prognosis have been made over the past two decades because
of the poor understanding of disease biology. Runx2, a critical transcription factor in bone development, is frequently amplified
and overexpressed in OS. However, the molecular and biological consequences of Runx2 overexpression remain unclear.

Methods: si/shRNA and overexpression technology to alter Runx2 levels in OS cells. In vitro assessment of doxorubicin (doxo)-
induced apoptosis and in vivo chemosensitivity studies. Small-molecule inhibitor of c-Myc transcriptional activity was used to
assess its role.

Results: Loss of Runx2 sensitises cells to doxo-induced apoptosis both in vitro and in vivo. Furthermore, in conjunction with
chemotherapy, decreasing Runx2 protein levels activates both the intrinsic and extrinsic apoptotic pathways. Transplanted tumour
studies demonstrated that loss of endogenous Runx2 protein expression enhances caspase-3 cleavage and tumour necrosis in
response to chemotherapy. Finally, upon doxo-treated Runx2 knockdown OS cells there was evidence of enhanced c-Myc
expression and transcriptional activity. Inhibition of c-Myc under these conditions resulted in decreased activation of apoptosis,
therefore insinuating a role for c-Myc in dox-induced activation of apoptotic pathways.

Conclusions: Therefore, we have established a novel molecular mechanism by which Runx2 provides a chemoprotective role in
OS, indicating that in conjunction to standard chemotherapy, targeting Runx2 may be a new therapeutic strategy for patients
with OS.

Osteosarcoma (OS) is the most common bone malignancy in the
paediatric population, and it comprises about 3% of all paediatric
tumours. The current treatment regimen for patients with OS
includes neoadjuvant chemotherapy, surgical resection of the
tumour with assessment of tumour necrosis, and subsequent post-
operative systemic chemotherapy. Active chemotherapeutic agents
used in the treatment of OS include doxorubicin (doxo), cisplatin,
and high-dose methotrexate (Bueno et al, 2004; Clark et al, 2008;
Geller and Gorlick, 2010; Rainusso et al, 2013). Owing to a lack of
reliable predictive biomarkers of therapeutic efficacy, the response

to chemotherapy is assessed histologically after tumour resection.
Poor responding tumours show less than 90% necrosis, whereas
a good response is defined as greater than 90% or complete
necrosis. The tumour response to chemotherapy is directly
correlated with long-term patient survival (Provisor et al, 1997;
Kager et al, 2003; Miwa et al, 2013). With the current treatment
regimen, the survival rates are 65–75% for patients with localised
disease, but only about 20% for those with evidence of metastatic
disease (Wang, 2005; Ta et al, 2009; Geller and Gorlick, 2010).
Overall, these survival rates have not significantly improved over
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the past 30 years despite ongoing studies (Tang et al, 2008; Mirabello
et al, 2009; Ta et al, 2009).

Although specific gene alterations have been associated with OS,
the mechanisms leading to the development and progression of the
disease are not well defined (Tang et al, 2008). One gene often
amplified and aberrantly expressed in OS is the transcription factor
Runx2 (Man et al, 2004; Nathan et al, 2009; Sadikovic et al, 2009;
Won et al, 2009). Runx2 is the master regulator of skeletal
development and directly regulates the cell fate decision between
proliferation, apoptosis, and differentiation in osteoblasts
(Karsenty and Wagner, 2002; Franceschi et al, 2007; Teplyuk
et al, 2008; Ghali et al, 2010; Olfa et al, 2010). Overexpression of
Runx2 has been correlated with an increase in proliferation of OS
cells in vitro, poor clinical outcome, and poor response to
chemotherapeutic regimens (Pereira et al, 2009; San Martin et al,
2009; Won et al, 2009; Sadikovic et al, 2010; van der Deen et al,
2012; Lucero et al, 2013; Lamoureux et al, 2014; Lee et al, 2015).
Runx2 also prevents apoptosis in LNCaP cells after treatment with
docetaxel, which implicates a role for Runx2 in chemoresistance in
non-osseous tumours (Browne et al, 2012).

It has been suggested that Runx2 gene expression is a marker for
chemotherapeutic resistance in OS (Sadikovic et al, 2010). However,
before Runx2 can be considered as a viable biomarker or therapeutic
target for OS, it is imperative that investigations into understanding
its biological role in OS be performed before prolonged inhibition of
this critical transcription factor can be considered. Here, we show
that the knockdown of Runx2 sensitises OS to cell death following
treatment with doxo, in vitro and in vivo. We have also provided a
novel mechanism for the increased doxo-induced apoptosis in
Runx2 knockdown cells by providing evidence that c-Myc has a role
in the activation of pro-apoptotic pathways, and inhibition of c-Myc
abolishes molecular characteristics of apoptotic activation in Runx2
knockdown cells after chemotherapy treatment. Thus, we have
demonstrated a novel chemoprotective role for Runx2 in OS, which
implies that inhibition of Runx2 with concurrent chemotherapy is a
potential therapeutic intervention for patients with OS.

MATERIALS AND METHODS

Cell culture, transfections, and inhibitors. Osteosarcoma cell
lines were cultured in Dulbecco’s modified Eagle’s medium and
supplemented with 10% FBS and maintained at 37 1C with 5%
CO2. The m824 and c2984 cell lines were derived from p53þ /�
mouse OSs in the laboratory (Ma et al, 2009). Stable c2984, DLM8,
and HOS control or Runx2 knockdown cell lines were generated by
transfecting Open Biosystems pLKO.1 TRC control or pLKO.1
shRunx2 vector (clone ID: TRCN0000013655) utilising the
Lipofectamine LTX reagent (Invitrogen, Grand Island, NY,
USA). Positively transfected clones were selected with puromycin
(2 mgml� 1), and real-time PCR confirmed Runx2 knockdown.
FlexiTube (Qiagen, Valencia, CA, USA, catalogue# GS12393)
siRNA for Runx2 was transfected per manufacturer’s recommen-
dation. Stable m824 cell lines overexpressing Runx2 were generated
by transfecting a FLAG-Runx2 or empty vector using the
Lipofectamine LTX reagent, and positively transfected clones were
selected using neomycin (1mgml� 1). Cells were cultured in the
presence of DMSO (vehicle), doxo (Sigma, St Louis, MO, USA), or
the c-Myc inhibitor 10058-F4 (Sigma) for the reported amount of
time. Doxorubicin dosing for each mouse and human OS cells was
determined through analysis of killing curves previously per-
formed. For caspase westerns, 293 cells untreated or treated with
staurosporine (Sigma), a known inducer of caspase-dependent
apoptosis, was used as a positive control.

Cell proliferation assays. Growth assays were performed by
plating 1000 cells per well in a 96-well dish. Cell growth was

assessed daily by addition of the Cell Counting Kit-8 (CCK-8)
reagent (Dojindo Laboratories, Kumamoto, Japan), according to
the manufacturer’s instructions (Cell counting kit-8 (CCK-8) assay
kit; Dojindo Laboratories). Each cell line was plated in triplicate,
and the value presented represents the average of the samples. The
P-values were calculated comparing values from control cells to
shRunx2 cells on each day.

Quantitative real-time PCR. Total mRNA was extracted with the
RNeasy Mini kit (Qiagen) and quantified using Bio-Rad spectro-
photometer (Bio-Rad, Hercules, CA, USA). Total RNA (500 ng)
were used for cDNA synthesis using the High-Capacity cDNA
reverse transcription kit (Applied Biosystems, Foster City, CA,
USA). Real-time PCR with iQ SYBR Green Super Mix (Bio-Rad)
was performed using QuantiTect gene-specific primer pairs
(Qiagen) utilising the StepOnePlus real-time PCR machine
(Applied Biosystems). The relative mRNA expression was
calculated with the DDCT method.

Western blot analysis. Cells were lysed in RIPA buffer (50mM
Tris-Cl, pH 7.4, 150mM NaCl, 1% NP-40, 0.25% Na-deoxycholate)
supplemented with protease inhibitors (Complete mini, Roche,
Indianapolis, IN, USA) and phosphatase inhibitors (Sigma, P0044
and P5726). Nuclear lysates were isolated utilising the NE-PER
nuclear and cytoplasmic extraction reagents (Promega) following the
manufacturer’s instructions. Lysates were boiled in NuPAGE LDS
sample buffer (Invitrogen), separated on NuPAGE Novex 4%–12%
Bis-Tris Gel (Invitrogen), and transferred to polyvinylidene
difluoride membranes. The blots were probed overnight with
antibodies to Runx2 (Cell Signaling, Danvers, MA, USA, D1H7),
Caspase-9 (Cell Signaling, 9502), Cleaved Caspase-9 (Cell Signaling,
9501), Caspase-8 (Cell Signaling), Anti-Fas Antibody, clone 7C10,
Rat mAB (Millipore, Darmstadt, Germany, 1C12), Caspase-3 (Cell
Signaling, 9662), Fas-Associated protein with Death Domain
(FADD; Santa Cruz Biotechnology, Dallas, TX, USA, H-181),
TBP (Thermo Scientific, Grand Island, NY, USA, MA1–21516),
tubulin (Fisher Scientific, Waltham, MA, USA, Ab-2, clone DM1A),
c-Myc (Santa Cruz Biotechnology), or GAPDH (EMD Millipore,
Billerica, MA, USA, AB2302). Blots were incubated with the
appropriate secondary HRP-conjugated antibodies for 1 h, and
signal was detected utilising Millipore Immobilon Western chemi-
luminescent HRP substrate (Millipore). FADD protein levels were
quantified utilising the Image J software (http://imagej.nih.gov/ij),
and were normalised to GAPDH.

Immunoprecipitation. C2984 cells were treated with 50 nM doxo
or DMSO for 48h. Cells were then lysed with NP-40 buffer and
centrifuged to clear the lysates. The lysates were then quantified
using the BCA Assay (Thermo Fisher). A measure of 500mg of lysate
wwere then incubated with Fas or negative control IgG overnight at
41. Lysates were then incubated with Protein A or Protein G
magnetic beads for 2 h at 41. Bead pellets were collected by magnetic
separation and washed with lysis buffer and re-suspended in 4�
LDS NuPAGE Sample Buffer (Invitrogen). Protein complexes were
then separated on a 4–12% SDS–PAGE gel and transferred to PVDF
membranes. Membranes were then incubated overnight with
respective antibodies. 5% of the input lysate was used as control.

Luciferase transcription factor reporter assays. To test for c-Myc
activity, the Myc Cignal reporter assay from Qiagen (CCS-012L)
was used. c2984 control or shRunx2 cells were transiently
transfected with the c-Myc luciferase reporter plasmid and treated
with DMSO or doxo 24 h post transfection. The Dual Luciferase
Assay system (Promega) was used to analyse reporter activity. The
firefly luciferase signal was normalised to the renilla luciferase
signal, and the data presented in the graphs is the normalised
average of triplicate assays. P-values were calculated comparing
control shRNA cells treated with doxo to shRunx2 cells treated
with doxo.
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Allograft in vivo tumour studies. All animal experiments were
conducted according to institutional animal care and use
committee protocols after approval was obtained from the BCM
Institutional Review Board (BCM Animal Protocols AN-336 and
AN-5225). c2984 control shRNA and shRunx2 cells (1� 106) were
each injected subcutaneously into 10 NU/NU nude female mice.
Tumour growth was measured weekly, and tumour volume (V)
was determined by the formula V¼ (4/3)� p� [(LþW)/4]3,
L being the longer cross-section and W being the shorter. Half
of the control or shRunx2 mice were treated with either doxo
(4mg kg� 1 per dose) or PBS at the first sign of palpable tumour,
and injections were performed every 7 days for 4 weeks. Mice were
weighed and tumour volume was documented two times per week.
Tumour tissue was isolated at the time of killing the mice, lysed in
RIPA lysis buffer using PT100 homogenizer (Polytron), and lysates
were subjected to western blot analysis.

Immunohistochemistry. Tumours were fixed in 10% formalin at
the time of killing the mice, paraffin-processed, sectioned, and
stained with haematoxylin and eosin. Slides were scanned in the
Department of Veterinary Medicine and Surgery at the MD
Anderson Cancer Center. Stained tumour sections were scanned,
and the percentage of necrosis in each tumour section was
quantified utilising the Aperio ImageScope Viewer (Leica Biosys-
tems, Buffalo Grove, IL, USA). Percentage necrosis was quantified
by the following formula: ((area of necrosis in the tumour section/
total area of the tumour section)� 100). The percentage necrosis
represented in the graph represents the average of the tumours in
each untreated and doxo-treated group. Statistical difference
between the groups was determined by the two-sample Wilcoxon
rank-sum (Mann–Whitney) test.

Apoptosis detection with Annexin V staining. c2984, DLM8,
and HOS control or shRunx2, or m824 cmv10 or Runx2 cells were
plated overnight. Media containing doxo was added to the cells for
the time listed. Cells were then trypsinised, washed with 1� PBS,

and resuspended in 1� Annexin V binding buffer (FITC Annexin
V Apoptosis Detection Kit I, BD Pharmingen, San Jose, CA, USA).
FITC Annexin V (AV) and propidium iodide were added to the
cells, and incubated for 15min at RT in the dark. Cells were
analysed by flow cytometry within 1 h. Percent apoptosis
represents the sum of the AV and AV/propidium iodide-positive
cell populations. For apoptosis studies, the P-values were calculated
comparing the control cells treated with doxo to shRunx2 cells
treated with doxo.

Cytochrome c release determination. c2984 and HOS control or
shRunx2 cells were plated overnight. Media containing doxo was
added to the cells for the time listed. Cytochrome c release was
quantified using the Flowcellect Cytochrome c kit (Millipore)
following the manufacturer’s instructions. Cells were analysed by
flow cytometry, and % cytochrome c release represents FITC-
negative population. For cytochrome c release, the P-value was
calculated comparing the control cells treated with doxo to
shRunx2 cells treated with doxo.

Statistical analysis. The significance of differences between
control and shRunx2 samples under different conditions was
determined by Student’s t-test. A P-value p0.05 was considered
significant. A two-sided Student’s t-test (paired) was used to
calculate the level of statistical significance for the relative tumour
volumes (treated/untreated) in control mice vs in shRunx2 mice on
each day observed. P values less than 0.05 were considered
statistically significant. The relative tumour volume reduction after
dox treatment in control vs shRunx2 cohorts was subjected to
analysis of covariance. Briefly, the data were fitted into a multi-
linear regression model that contains linear terms of control,
shRunx2, and control-shRunx2 (interaction term) with relative
tumour volume as the response variable. The statistical analysis
was performed by using R software (https://www.r-project.org/).
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Figure 1. Runx2 knockdown enhances doxorubicin (doxo) sensitivity in OS. (A) Cell viability assay for c2984 control and shRunx2 mouse OS cell
lines treated with the indicated doses of doxo for 24 h. Each value is the average of triplicate samples. P-values were determined comparing
control and shRunx2 values at each dose of doxo. *Pp0.05, ***Pp0.001. (B and C) Cell survival assay for mouse c2984 (B) and human HOS
(C) control and shRunx2 OS cells treated with the indicated doses of doxo for 72 h. Each value is the average of triplicate samples, and represents
the absorbance levels normalised to appropriate untreated cell lines. P-values were determined comparing control and shRunx2 values at each
dose of doxo. *Pp0.05, ***Pp0.001. Validation of Runx2 protein knockdown is shown by western blot next to survival graphs.
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RESULTS

Knockdown of Runx2 sensitises OS cells to treatment with doxo
in vitro via intrinsic and extrinsic apoptotic pathways. The
efficacy of chemotherapeutics, including doxo, depends on the
ability of these agents to trigger apoptosis in cancer cells. RUNX2
mRNA is increased in OS tumours that show a poor response to
chemotherapy, and consequently, we investigated whether the
expression of Runx2 confers mechanisms of chemoresistance to OS
cells. We treated control and stably transduced shRunx2 OS cells
with doxo, and noticed that the Runx2 knockdown cells
consistently displayed enhanced chemosensitivity to lower doses
of doxo than the control cells (Figure 1A). In addition, compared
with control cells treated with doxo, the Runx2 knockdown cells
showed a significant decrease in cell proliferation (Figure 1B and C,
and Supplementary Figure 1A). These results indicate that
the expression of Runx2 is integral to OS cell survival in response
to doxo.

After demonstrating this phenotype associated with dysregu-
lated Runx2 expression, we were interested in the molecular
mechanism(s) by which Runx2 confers chemoresistance to OS
cells. We investigated if the enhanced sensitivity in the Runx2
knockdown cells was caused by an increase in apoptosis by
performing FACS analysis of Annexin V staining after doxo
treatment. We observed that the downregulation of Runx2 in
mouse and human OS cells resulted in a significant increase in the
percentage of apoptotic cells compared with the control cells
(Figure 2A and B, and Supplementary Figure 1B). Importantly, to
further prove that Runx2-dependent mechanisms are directly

contributing to chemosensitivity, we performed the reciprocal
experiment using the murine M824 OS cell line with relatively low
Runx2 expression (Supplementary Figure 1C). We observed that
overexpression of Runx2 protected OS cells from doxo-induced
apoptosis compared with control cells. These experiments
demonstrate that the expression of Runx2 is integral to OS cell
survival in response to chemotherapy.

The initiation of cell death can be achieved through the extrinsic
or intrinsic apoptotic pathways. Doxorubicin induces apoptosis in
a caspase-dependent manner in U2OS cells (Yuan et al, 2007).
Therefore, we assessed whether the extrinsic or intrinsic pathways
were activated in our Runx2 knockdown cell lines after doxo
treatment. The intrinsic pathway is mediated by cytochrome c
release before caspase cleavage (Wang, 2005) noticed a significant
increase in the percentage of cytochrome c release after doxo
treatment in mouse and human Runx2 knockdown OS cells
(Figure 2C and D). Furthermore, we noticed that higher expression
of the extrinsic ligand, Fas, and adaptor protein, FADD, in our
mouse and human Runx2 knockdown cell lines when compared
with control cell lines (Figure 3A and B, and Supplementary
Figure 2A). Activation of the extrinsic pathway results in the
recruitment of FADD and the formation of the death-inducing
signalling complex (DISC), and this potentiates the activation of
downstream caspases and subsequent apoptosis (Kavurma and
Khachigian, 2003). To investigate DISC formation, we performed
co-immunoprecipitation of DISC components Fas and FADD
within OS upon doxo treatment in control and Runx2 knockdown
cells. Upon doxo-treatment, we observed enhanced Fas and FADD
interaction (Supplementary Figure 2B), thus insinuating increased
DISC formation in Runx2 knockdown cells. These results
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Figure 2. Induction of apoptosis and cytochrome c release in doxo-treated Runx2 knockdown cells in vitro. (A and B) Annexin V FACS analysis of
c2984 (A) and HOS (B) control and shRunx2 cells treated with the indicated dose of doxo for 48 h (A) or 24 h (B) revealed a significant increase in
apoptotic cells in the shRunx2 samples compared with control cells. Values represent the average of triplicate samples. (C and D) FACS analysis of
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demonstrate that Runx2 can influence the activation of both the
intrinsic mitochondrial-mediated and extrinsic death receptor
apoptotic pathways after treatment with doxo.

Activation of the extrinsic and intrinsic apoptotic pathways
culminates in the cleavage of cellular caspases that induce cell
death. We next investigated the cleavage of caspases in doxo-
treated Runx2 knockdown cells. We noticed an increase in the
cleavage of caspase 8, an initiator caspase involved in necrosis and
apoptosis induced by the extrinsic pathway, in the Runx2
knockdown cells after doxo treatment (Figure 3C; McIlwain et al,
2013). We also observed cleavage of both caspase-3 and caspase-9,
which are activated by the intrinsic pathway, in the doxo-treated
Runx2 knockdown cells (Figure 3D and Supplementary Figure 2C;
Porter and Janicke, 1999). Taken together, these data demonstrate
that Runx2 expression has a critical role in the activation of
apoptotic pathways and the cleavage of caspases following
chemotherapy exposure.

Decreased expression of Runx2 enhances chemosensitivity and
tumour necrosis in vivo. As we noticed an increase in doxo
sensitivity in vitro, we next tested whether knockdown of Runx2
could sensitise tumours to treatment with doxo in vivo. We
injected control or shRunx2-expressing OS cells subcutaneously
into nude mice, allowed for palpable tumour growth, and began
weekly doxo (4mg kg� 1 per dose) intraperitoneal treatments. We
observed that the tumours expressing the Runx2 shRNA were
more sensitive to doxo, as shown by the noticeable decrease in
tumour volume after treatment (Figure 4A). Furthermore, we
observed an increase in detectable cleaved caspase-3 only in the
Runx2 knockdown tumours after doxo treatment (Figure 4B),
which corroborated our in vitro data. A statistical significance

between tumour volumes was noted at day 27 post treatment
(Po0.05) and an ANOVA revealed a coefficient of � 0.0078 for
control and Runx2 knockdown, but it did not have statistical
significance (P40.1).

As the clinical efficacy of the chemotherapy regimen is assessed
by percent tumour necrosis upon surgical resection, we investigated
whether there was an increase in necrosis in our Runx2 knockdown
tumours treated with doxo. We thoroughly analysed haematoxylin
and eosin-stained tumour sections, and quantified the percentage of
necrosis in multiple tumour sections (Figure 5A). We did not notice
a statistically significant difference in necrosis in the untreated
control shRNA and Runx2 knockdown tumours, except for one
apparent outlier in our Runx2 knockdown cohort. However, when
treated with doxo, we noticed a statistically significant increase in the
percentage of tumour necrosis in the Runx2 knockdown tumours
when compared with control shRNA tumours (Figure 5B). This
suggests that the decreased Runx2 levels leads to enhanced
chemosensitivity, and tumour necrosis, and contribute towards
decreased tumour volume in our Runx2 knockdown tumours.
Collectively, these data indicate that enhanced expression of Runx2
confers resistance to doxo in OS and the knockdown of Runx2 can
potentiate chemotherapeutic responsiveness.

c-Myc influences doxo-induced apoptosis in Runx2 knockdown
cells. We have demonstrated that the loss of Runx2 expression
augments doxo-induced FADD expression, caspase cleavage, and
cell death. We next sought to elucidate the mechanisms by which
Runx2 protects cells from doxo-induced apoptosis. Although
c-Myc has been best characterised as having significant oncogenic
functions, it can have pleiotropic roles in tumour cell biology
including the regulation of apoptotic genes. Specifically, although it
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has previously been reported to have a cooperative role with Runx2
during lymphoma development, c-Myc can have an active role as a
pro-apoptotic factor via its regulation of caspase-3 cleavage in
response to doxo and FADD activation during apoptosis
(Kangas et al, 1998; Prendergast, 1999; Blyth et al, 2001, 2006;
Klefstrom et al, 2002; Grassilli et al, 2004; Scionti et al, 2008;
Baniwal et al, 2010).

Thus, we investigated whether the transcription factor c-Myc
could be actively involved in the chemotherapy-induced apoptotic
pathways within OS. We assessed the relative expression of c-Myc
and noticed an increase in c-Myc protein levels, but not mRNA
levels (data not shown), in our shRunx2 cells treated with doxo

(Supplementary Figure 3A). The exact post-transcriptional
mechanisms of regulation require additional investigations. More-
over, using a c-Myc luciferase reporter and analysis of c-Myc
transcriptional target genes revealed a statistically significant
increase in c-Myc transcriptional activity in our Runx2 knockdown
cells after doxo treatment when compared with control cells
(Supplementary Figure 3B). This implies that enhanced intratu-
moral c-Myc transcriptional activity may contribute to the
chemosensitivity seen in our shRunx2 OS cells.

Subsequently, we evaluated the effects of c-Myc inhibition on
essential downstream apoptotic events. Cleavage of caspases is a
biochemical event that occurs during c-Myc apoptosis and is also
enhanced in our Runx2 knockdown cells after doxo treatment.
Therefore, we investigated whether the activation of caspases
could be diminished by inhibition of c-Myc using 10058-F4, a
selective Myc-Max inhibitor (Huang et al, 2006). We treated
c2984 OS cells with doxo, with or without 10058-F4, and isolated
protein lysates after doxo treatment. Western blot analysis
revealed that inhibition of c-Myc prevented the cleavage of
caspases normally seen in shRunx2 cells post doxo treatment
(Figure 6A and B). Furthermore, inhibition of c-Myc-Max
interaction prevented the upregulation of FADD gene and
protein expression after doxo treatment in our Runx2 knockdown
cells (Figure 6C–E). Our data present a novel molecular role for
c-Myc in the Runx2-mediated chemoresistance pathways in OS
that could be therapeutically exploited.

DISCUSSION

Runx2 is a vital transcription factor that directly regulates multiple
cell fate decisions, including apoptosis in response to TNF-a,
during normal osteoblast differentiation (Ghali et al, 2010; Olfa
et al, 2010). Moreover, it has been implicated as a putative
oncogene and marker for chemoresistance in OS (Nathan et al,
2009; Pereira et al, 2009; San Martin et al, 2009; Sadikovic et al,
2010; Lamoureux et al, 2014; Lee et al, 2015). The biological
consequences of Runx2 overexpression and its molecular role in
chemoprotective pathways in OS have not been clearly defined. We
have identified a novel mechanism for Runx2 in antagonising
chemotherapy-induced apoptosis in vitro, and more importantly,
provide significant evidence of its chemoprotective role in OS
in vivo. Our study also provides molecular evidence that Runx2
contributes towards inhibiting apoptosis after doxo treatment by
repressing the activation of caspase-3 in vitro and in vivo, although
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this mechanism needs to be further investigated as its direct effects
on caspase-3 have not been reported.

We have identified a novel role for c-Myc in chemotherapy-
induced apoptosis of OS. We have shown that the inhibition of
c-Myc prevents caspase cleavage and induction of FADD
expression in the doxo-treated Runx2 knockdown OS cells.
c-Myc and Runx2 cooperate to induce T-cell lymphoma, whereby
Runx2 functions to prevent the apoptosis normally induced by
aberrant c-Myc expression by an unknown mechanism (Blyth et al,
2006). Our data suggest that loss of Runx2 allows for increased
c-Myc-dependent apoptosis in OS cells after doxo treatment.
Studies into how Runx2 functions to prevent c-Myc induced
apoptosis after doxo treatment is an exciting area of future
research, as the cooperation between these two oncogenes has been
implicated in the pathogenesis of other human tumours (Blyth
et al, 2006).

In conclusion, we have shown a synergistic effect between Runx2
downregulation and doxo treatment in vitro and in vivo, compared
with treatment with doxo alone. In addition, our data suggest that
Runx2 functions to prevent c-Myc-mediated apoptosis after doxo
treatment. Currently, there are no clinically useful Runx2 inhibitors. We
provide strong evidence to support the claim that Runx2 serves as a
biomarker for chemoresistance in OS, and thus targeting Runx2 with
small-molecule inhibitors in combination with standard chemotherapy

regimens can represent a novel effective therapeutic approach for
patients afflicted with this deadly disease.
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