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Background: Malignancy alters cellular complex lipid metabolism and membrane lipid composition and turnover. Here, we
investigated whether tumorigenesis in cancer-derived prostate epithelial cell lines influences protein kinase C-linked turnover of
ethanolamine phosphoglycerides (EtnPGs) and alters the pattern of ethanolamine (Etn) metabolites released to the medium.

Methods: Prostate epithelial cell lines P4E6, LNCaP and PC3 were models of prostate cancer (PCa). PNT2C2 and PNT1A were models
of benign prostate epithelia. Cellular EtnPGs were labelled with [1-3H]-Etn hydrochloride. PKC was activated with phorbol ester
(TPA) and inhibited with Ro31-8220 and GF109203X. D609 was used to inhibit PLD (phospholipase D). [3H]-labelled Etn metabolites
were resolved by ion-exchange chromatography. Sodium oleate and mastoparan were tested as activators of PLD2. Phospholipase D
activity was measured by a transphosphatidylation reaction. Cells were treated with ionomycin to raise intracellular Ca2þ levels.

Results: Unstimulated cell lines release mainly Etn and glycerylphosphorylEtn (GPEtn) to the medium. Phorbol ester treatment
over 3h increased Etn metabolite release from the metastatic PC3 cell line and the benign cell lines PNT2C2 and PNT1A but not
from the tumour-derived cell lines P4E6 and LNCaP; this effect was blocked by Ro31-8220 and GF109203X as well as by D609,
which inhibited PLD in a transphosphatidylation reaction. Only metastatic PC3 cells specifically upregulated Etn release in
response to TPA treatment. Oleate and mastoparan increased GPEtn release from all cell lines at the expense of Etn. Ionomycin
stimulated GPEtn release from benign PNT2C2 cells but not from cancer-derived cell lines P4E6 or PC3. Ethanolamine did not
stimulate the proliferation of LNCaP or PC3 cell lines but decreased the uptake of choline (Cho).

Conclusions: Only the metastatic basal PC3 cell line specifically increased the release of Etn on TPA treatment most probably by
PKC activation of PLD1 and increased turnover of EtnPGs. The phosphatidic acid formed will maintain a cancer phenotype
through the regulation of mTOR. Ethanolamine released from cells may reduce Cho uptake, regulating the membrane
PtdEtn:PtdCho ratio and influencing the action of PtdEtn-binding proteins such as RKIP and the anti-apoptotic hPEBP4. The work
highlights a difference between LNCaP cells used as a model of androgen-dependent early stage PCa and androgen-
independent PC3 cells used to model later refractory stage disease.

The plasma membrane of prostate cancer (PCa) cells provides a
primary contact surface with basement membrane, other cancer
cells and stroma as well as with immune cells. Malignancy alters
the fatty acid composition of complex lipids in such membranes

driven by a switch to anabolic metabolic pathways (Suburu and
Chen 2012). Prostate cancer cells and transformed prostate
epithelial cell lines also contain elevated levels of choline (Cho)
and ethanolamine (Etn) metabolites indicative of changes in
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phosphatidylcholine (PtdCho) and ethanolamine phosphoglyceride
(EtnPG) turnover (e.g., Ackerstaff et al, 2001, 2003; Swanson et al,
2008; Komoroski et al, 2011) as reported for other cancer cells
and transformed cell lines (e.g., Aboagye and Bhujwalla, 1999;
Ackerstaff et al, 2001, 2003; Herminghaus et al, 2002; Iorio et al,
2005; Glunde et al, 2006; Eliyahu et al, 2007; Podo et al, 2007).
In PCa cells, levels of phosphorylEtn (PEtn) exceed those
of phosphorylCho (Podo, 1999; Swanson et al, 2008; Komoroski
et al 2011). Further, the glycerylphosphorylEtn (GPEtn) to
glycerylphosphorylCho ratio increases in PCa as with many
transformed cells (Singer et al, 1995; Bell and Bhakoo, 1998;
Podo, 1999; Ackerstaff et al, 2003; Swanson et al, 2008; Komoroski
et al, 2011). Such changes in Etn metabolites reveal that turnover of
EtnPGs, as well as that of PtdCho, is altered in tumorigenesis.
Serum EtnPG levels are also raised in PCa (Zhou et al, 2012).

These changes in Cho and Etn metabolite levels in malignant
cells occur because of the increased expression and/or activity of
enzymes regulating PtdCho and EtnPG metabolism including Cho/
Etn kinase (Cho/EtnK), PLD, PtdCho-specific phospholipase C
(PtdCho-PLC) and phospholipase A2 (PLA2) (e.g., Ramirez de
Molina et al, 2002, 2008; Foster and Xu, 2003; Foster, 2009; Iorio
et al, 2010; Dong et al, 2010; Caiazza et al, 2011). Increased
expression of Cho/Etn transporters and faster rates of Cho or Etn
uptake (Katz-Brull et al, 2002; Eliyahu et al, 2007; Mintz et al, 2008;
Iorio et al, 2010) also contribute to altered phospholipid metabolite
levels in transformed cells. Ethanolamine phosphoglycerides are
substrates for PLD and their turnover by PLD increases on PKC
activation indicating involvement of PLD1 (Kiss and Anderson,
1989; Hii et al, 1991; Kiss and Tomono, 1995). PtdEtn may even be
an exclusive PLD substrate in some cell lines (Kiss et al, 1994).
Because tumorigenesis influences PKC-stimulated PtdCho turn-
over in prostate epithelial cell lines (Rumsby et al, 2011), we have
now investigated whether EtnPG turnover is linked to PKC and is
also altered by tumorigenesis.

MATERIALS AND METHODS

Cell culture. Benign prostate epithelial cell lines PNT2C2 and
PNT1A and the cancer-derived cell line LNCaP were cultured in
RPMI1640 with added glutamine, HEPES and 10% FBS (R10). The
cancer-derived P4E6 cell line was cultured in keratinocyte serum-
free medium with pituitary extract and epidermal growth factor
additives and 2% FBS (K2A). The cancer-derived metastatic PC3
cell line was cultured in Hams F-12 with 7% FBS (F7). Passage
numbers were: PNT2C2o150; PNT1Ao80; P4E6o50;
LNCaPo50; PC3o50. Cells were passaged by rinsing with Tris-
saline, releasing with Tris-trypsin for 10min at 37 1C and pelleting
in R10 to inactivate trypsin followed by resuspension in their
normal growth medium for continued growth, or in low serum
medium (e.g., R2.5, F2.5, K2) or medium lacking serum for
experiments. All cell lines were Mycoplasma-free and were
genotyped (Powerplex 16, Promega, Southampton, UK; Cat. No.
DC6531) to ensure identity and genomic stability.

Effect of cell density on basal Etn metabolite release. PNT2C2
cells were seeded (in triplicate) into 24-well plates at 2.5-, 5-,
7.5� 104 and 1� 105 in 0.5ml R2.5 medium and labelled with
0.5mCi [1-3H]-Etn chloride (American Radiolabelled Chemicals,
Stevenage, UK) per well for 36 h. Labelling medium was removed,
cells were rinsed once in warm R0 and then incubated at 37 1C for
60min in R0. Cells were further rinsed twice with warm R0 to
remove released [3H]-Etn-labelled metabolites. Finally, 0.5ml R0
containing 1mM unlabelled Etn and PEtn was added. Basal release
of Etn metabolites was monitored by taking 30 ml aliquots of
medium at T¼ 0, 1, 2 and 3 h for scintillation counting (below)
and by replacing medium removed with fresh R0 to maintain

volume. After 3 h, remaining medium was centrifuged to pellet cell
debris. Etn metabolites released from cells were resolved on ion
exchange columns as below.

[3H]-Etn metabolite release. Cells (7.5� 104) were seeded in
triplicate into 24-well plates in R2.5, F2.5 or K2 as appropriate and
labelled with [1-3H]- Etn hydrochloride as above. LNCaP cells
were cultured on poly-L-lysine-coated wells or amine plates (BD,
Oxford, UK) to improve adhesion during rinses. Cells were used
just sub-confluent to minimise changes due to contact inhibition or
cell cycle effects. Labelled cells were rinsed as above and incubated
with 0.5ml serum-free medium containing 1mM Etn hydrochlor-
ide and 1mM PEtn hydrochloride (to minimise rapid [3H]-Etn
reuptake) plus PKC activators/inhibitors (see Figure legends) per
well (Rumsby et al, 2011). Thirty microlitre aliquots of medium
were removed from wells at T¼ 0 and at times indicated in figures;
fresh medium (þ /� inhibitors) was added to wells to maintain
volume. Aliquots were centrifuged at 13 000 r.p.m. to pellet any
cell debris; duplicate 10 ml aliquots were then removed into
Top Count plates for scintillation counting with 100 ml
Microscint-20 (Perkin-Elmer, Beaconsfield, UK). Mean c.p.m.
values from triplicate wells were calculated þ /� s.d. (n¼ 6). At
the end of experiments, media were centrifuged and frozen for later
Etn metabolite analysis.

Separation of Etn and Cho in medium. Aliquots of media were
spotted onto Kieselgel G TLC plates (Merck Millipore, Nottingham,
UK) with standards of [1-3H]-Etn and [3H]-Cho in adjacent lanes.
Plates were dried and developed in methanol (MeOH): 0.5% NaCl
(1:1, v/v). After drying, lanes with standards and media were
divided into nine 1.5-cm sections. Adsorbent in each section was
scraped into scintillation vials with 2ml Ultima Gold XR scintillant
(Perkin-Elmer) to detect positions of standards indicating resolu-
tion of Etn and Cho in the media lanes.

Separation of PtdEtn and PtdCho. [1-3H]-Etn-labelled cells
remaining from release experiments above were extracted once
with 0.5ml MeOH and twice with 0.5ml chloroform
(CHCl3):MeOH (1:2v/v) and 0.5ml CHCl3:MeOH (1:1v/v) to
recover total lipids. Solvent extracts were pooled and dried under
nitrogen. Lipids were redissolved in CHCl3:MeOH (2:1v/v) and
triplicate aliquots resolved by TLC on Kieselgel H plates in
CHCl3:MeOH:H2O (5:2:1 v/v) against authentic PtdEtn and
PtdCho standards (Lipid Products, Nutfield, UK). Positions of
lipids were identified with iodine vapour. Appropriate areas of
adsorbent containing PtdCho and PtdEtn were scraped into vials
with 2ml scintillant (as above) for scintillation counting.

Resolution of GPEtn, PEtn and Etn. Etn metabolites were
resolved by ion exchange chromatography (Kiss et al, 1994).
Radioactivity in triplicate 0.5ml aliquots of each fraction was
measured by scintillation counting to calculate total d.p.m./
fraction. Sodium oleate (1mM) in samples had no effect on the
elution pattern of GPEtn, PEtn and Etn from columns (results not
shown).

Transphosphatidylation. Phospholipase D activity was measured
by detection of PtdBut formation (Rumsby et al, 2011) with TLC
plates developed in CHCl3:MeOH: acetic acid (65:15:2, v/v) after
Chahdi et al, (2003). Lipids were detected with iodine vapour and
areas of adsorbent corresponding to PtdBut, phosphatidic acid
(PtdOH) and PtdCho were scraped into vials with 2ml scintillant
to measure radioactivity. Means of triplicate d.p.m. values were
calculated and PtdBut d.p.m. expressed as a % of PtdCho d.p.m.
Cells in 6-well plates plus controls were treated with phorbol ester
(TPA), 1mM sodium oleate, 15 mM mastoparan 7 or the inactive
form M17 for 30min prior to extraction.

Etn and Cho metabolite release in the presence of serum.
PNT2C2 cells (7.5� 104) in R2.5 in 24-well plates were labelled
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with either 0.5 mCi [1-3H]-Etn or [methyl-3H]-choline chloride
(Perkin-Elmer) as above. Cells were rinsed and finally 0.5ml R0,
R10, R0/TPA or R10/TPA added to triplicate wells. Choline or Etn
metabolite release was then followed up to 180min as above.

Sodium oleate and mastoparan. Sodium oleate (Sigma-Aldrich,
Poole, UK) was suspended in medium at 1mM, warmed to 37 1C
and dispersed by sonication. The pH was adjusted to 7.4 with 0.1M
HCl and the stock 1mM solution diluted with serum-free medium
as appropriate. Oleic acid (Sigma-Aldrich) was dissolved in DMSO
and diluted in medium for use. Mastoparan 7 (Cambridge
Bioscience, Cambridge, UK) and inactive Mastoparan 17 (Sigma-
Aldrich) were dissolved in sterile water to 3mM and then diluted to
5 and 15 mM in medium. Cells were labelled with [1-3H]-Etn as
above.

Ionomycin. Stock 10mM ionomycin was diluted in DMSO to
1mM and added to medium over cells to give final concentrations
of 1mM and 2.5 mM. Basal medium contained DMSO.

Proliferation studies. Effects of Etn and epidermal growth factor
on LNCaP and PC3 cell proliferation were monitored after 48 h by
MTS (Promega). Stimulation of DNA synthesis by Etn and EGF
was also examined using the Click-iT EdU assay with Alexa Fluor
azide as described by the manufacturer (Invitrogen, Paisley, UK).

Effect of Etn on Cho uptake by PC3 cells. PC3 cells (7.5� 104)
were cultured overnight in wells of 24-well plates in F7 medium.
The F7 was then replaced with 0.5ml Hanks balanced salt solution
(HBSS) and cells incubated for 60min at 37 1C. HBSS (0.5ml)
containing 0–50mM Etn was then added. After 5min, 10 ml of
250 mM Cho containing 1 mCi [3H]-Cho was added to each well
giving a final Cho concentration of 5 mM (Lipton et al, 1988). Cells
were incubated for 3min (Lipton et al, 1988) prior to rinsing three
times with cold (4 1C) HBSS. Cells were completely drained of
rinse medium and solubilised in 200 ml RIPA buffer. Radioactivity
in triplicate 20 ml aliquots was measured by scintillation counting.

Statistics. Statistical significance was determined by Student’s
two-tailed t-test as previously (Rumsby et al, 2011). The symbols *,
** and *** denote statistically significant increases or decreases
between unstimulated and stimulated cells or between stimulated
and inhibited cells at Po0.01, Po0.001 and Po0.0001,
respectively.

RESULTS

Prostate epithelial cell lines do not incorporate [1-3H]-Etn into
PtdCho. Incubation of prostate epithelial cell lines with [1-3H]-
Etn for 36 h followed by lipid extraction and TLC resolution of
PtdEtn and PtdCho indicated that between 93 and 97% of the
[3H]-label was associated with PtdEtn with only 3 and 6.7% being
detected in PtdCho (Table 1). [3H]-label detected in Cho released
into medium from [1-3H]-Etn-labelled PNT2C2, PNT1A and PC3
cells after 3-h experiments was also negligible compared with that
in Etn (results not shown). Thus, any Cho metabolites released to
the medium because of PtdCho turnover (Rumsby et al, 2011) will
not interfere with quantitation of [3H]-Etn metabolites.

Basal release of Etn metabolites is not influenced by cell
density. After 36 h of labelling with [1-3H]-Etn, PNT2C2 cells
initially seeded at 1� 105 cells per well were fully confluent
completely covering the well surface whereas cells seeded initially
at 2.5� 104 cells were only 60–70% confluent. The basal ratio of
GPEtn:PEtn:Etn metabolites released by non-confluent and con-
fluent PNT2C2 cells was essentially the same at 3:1:6 (see PNT2C2
in Figure 4) indicating that the ratio of Etn metabolites released
was not influenced by variation in initial cell density.

Basal and TPA-stimulated Etn metabolite release. Unstimulated
cell lines all released [3H]-Etn metabolites to the medium in a
typical 6-h time course (Figure 1), the longest experimental period.
This basal [3H]-Etn metabolite release was linear with time.
Phorbol ester stimulated [3H]-Etn metabolite release from
PNT2C2 and PNT1A over the 6-h time course (Figure 1). TPA
had no significant effect on Etn metabolite release from P4E6 and
LNCaP cells for the first 3 h of the 6-h time course and, for LNCaP
cells not even after 6 h. PC3 cells showed the most significant
increase in [3H]-Etn metabolite release in response to TPA,
stimulation being most marked over the first 3 h (Figure 1). These
effects are reflected in the 3-h TPA stimulated/basal ratio of
1.5:1.3:1.09:0.94:2.2 for PNT2C2:PNT1A:P4E6:LNCaP:PC3 cell
lines, respectively. In repeat experiments at 3 h, PC3 cells routinely
showed the highest TPA:basal stimulation ratio (2.1–3.5-fold)
compared with PNT2C2 (1.8–2.2) and PNT1A cells (1.5–2.4).
P4E6 and LNCaP cell lines showed no reproducible increase in Etn
metabolite release in response to TPA in repeat 3-h stimulations
(Figure 1, Figure 2A and B). Phorbol ester-stimulated Etn
metabolite release by PNT2C2, PNT1A and PC3 cell lines was
inhibited by Ro31-8220, GF109203X (Figure 2A) and D609
(Figure 2B).

Table 1. Distribution of [3H]-label between PtdEtn and PtdCho after
labelling prostate epithelial cell lines with [1-3H]-ethanolamine for 36 h

Cell line
PtdEtn

d.p.m. þ /� s.d.
PtdCho

d.p.m.þ /� s.d.
% [1-3H]
PtdEtn

%[1-3H]
PtdCho

PNT2C2 99666þ /� 1196 3355þ /�332 96.7 3.3

PNT1A 124201þ /� 10205 4726þ /�631 96.3 3.7

P4E6 23464þ /� 4977 1569þ /�85 93.3 6.7

LNCaP 69166þ /� 2095 3997þ /�495 94.5 5.5

PC3 16221þ /� 7141 1060þ /�511 93.9 6.1

Abbreviations: d.p.m.¼disintegrations per minute; PtdEtn¼phosphatidylethanolamine;
PtdCho¼ phosphatidylcholine; s.d.¼ standard deviation. Results are means values of
triplicate TLC separations as described in Methods and are þ /� s.d. (n¼ 3).
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Figure 1. Effect of phorbol ester on Etn metabolite release by benign
and cancer-derived human prostate epithelial cell lines. Cells were
labelled with [1-3H]-Etn as described in Methods. After rinsing, cells
were incubated with serum-free basal medium ( ) or with basal
medium containing 1 mM TPA (’). [3H]-Etn metabolite release to the
medium was measured at time zero and after 1.5, 3 and 6 h. Results are
means þ /� s.d. (n¼6) and are typical of repeats. (***Po0.0001,
**Po0.001 for phorbol ester stimulation against basal).
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D609 reduces TPA-stimulated PLD activity in a transpho-
sphatidylation reaction. D609 at 100 mM and 200 mM significantly
inhibited TPA-stimulated PtdBut formation by PC3 cells in the
transphosphatidylation reaction indicative of an effect on PLD
(Morris et al, 1997). TPA-stimulated PtdBut formation was also
inhibited by 1mM GF109203X (Figure 3). D609 at 100mM had no
inhibitory effect on basal PtdBut formation.

Etn metabolites released by cell lines. Unstimulated cell lines
released [3H]-Etn metabolites to the medium in the order
Etn4GPEtn44PEtn (Figure 4). This order was unchanged when
PNT2C2 and PNT1A were stimulated with TPA (Figure 4) even
though total [3H]-Etn metabolite release was increased (Figure 1).
In contrast, TPA treatment of PC3 cells both increased total [3H]-
Etn metabolite (Figure 1) and Etn release at the expense of GPEtn
and PEtn (Figure 4).

Phorbol ester stimulates Etn metabolite release in the presence
of serum. PNT2C2 cells were used to determine whether
activation of PKC by TPA enhanced Etn metabolite release from
cells already stimulated by serum. R10 medium (10% serum)
increased basal Etn metabolite release by 1.3% (537þ /� 27 to
688þ /� 42 c.p.m./10 ml medium) over a 3-h incubation. Addition
of 1 mM TPA to R10 medium boosted Etn metabolite release by
2.8% (537þ /� 27 to 1484þ /� 61 c.p.m./10 ml medium).

Oleate stimulates Etn metabolite release. Oleate (1mM) activates
PLD2 in cultured mast cells (Sarri et al, 2003). Therefore, this agent
was used to examine whether PLD2 was involved in PtdEtn
turnover (Figure 5). In initial 60-min experiments, PNT2C2 and
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Figure 2. (A). Ro31-8220 and GF109203X inhibit phorbol ester-
stimulated release of Etn metabolites from human prostate epithelial
cell lines. Cells were cultured and labelled with [1-3H]-Etn as described
(Methods). After rinsing, cells were incubated for 3 h with appropriate
serum-free basal (B) medium (þDMSO vehicle) or basal medium
containing 1 mM TPA (T), TPA þ 1mM Ro31-8220 (TR) or TPA þ 1 mM
GF109203X (TG). Results are means þ /� s.d. (n¼ 6) and are typical of
repeats. *** Po0.0001 for inhibitor effects against TPA stimulated
release. (B). Effect of D609 on TPA-stimulated release of [3H]-labelled
Etn metabolites by prostate epithelial cell lines. Cells were seeded,
labelled and rinsed as described (Methods). After rinsing, cells were
incubated for 3 h with appropriate serum-free basal (B) medium
(þDMSO vehicle) or basal medium containing 1 mM TPA (T) or TPA
þ 100mM D609 (TD). Results are mean values þ /� s.d. (n¼6).
***Po0.0001 and **Po0.001 for inhibitor effects against TPA
stimulated release.
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PC3 cells in the transphosphatidylation reaction. PC3 cells were
labelled for 6 h with [3H]-myristate, rinsed in serum-free medium and
stimulated with TPA, TPA þ1 mM GF109203X (TPAþGF) or TPAþ
D609 at 100mM and 200mM in the presence of 0.3% n-butanol. After
60min, cells were rinsed, extracted and PtdBut, PtdOH and PtdCho
resolved as described in Methods. Results are % PtdBut d.p.m. /
PtdCho d.p.m. and are mean values þ /� s.d. (n¼3). For PtdBut
formation, TPA against basal and GF against TPA ***Po0.0001; for
D609 against TPA **Po0.001.
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After rinsing, cells were incubated for 3 h with serum-free basal ( )
medium (þDMSO) or basal medium containing 1 mM TPA (’) Media
were recovered and GPEtn, PEtn and Etn resolved by ion-exchange
chromatography (Methods). Total d.p.m. associated with each fraction
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GPEtnþPEtnþEtn d.p.m. Results shown are mean values þ /� s.d.
(n¼ 3) from a typical experiment. For PC3 cells, GPE, basal against TPA
**P¼ 0.005; PE, basal against TPA, *P¼0.04; Etn, basal against TPA
***P¼ 0.0003.
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PNT1A cells were relatively unresponsive to oleate compared with
tumorigenic cell lines. P4E6 cells especially showed a rapid release
of Etn metabolites in response to oleate even at 500 mM (Figure 5).
In 3-h time course experiments, 1mM oleate stimulated Etn
metabolite release from PNT2C2, P4E6 and PC3 cell lines in a
time-dependent manner (Figure 6A–C). Again, P4E6 cells
responded more rapidly to oleate (Figure 6B) than the other cell
lines. The oleate effect was not inhibited by 1mM GF109203X
(Figure 6A-C) and only partially by 100mM D609 (results not
shown). GlycerylphosphorylEtn and PEtn were the main metabo-
lites released from the three cell lines after oleate stimulation, in all
cases at the expense of Etn (Figure 7A-C).

Mastoparan stimulates Etn metabolite release. The cationic
tetradecapeptide mastoparan selectively activates PLD2 in intact
cells (Chahdi et al, 2003) and at 5 mM and 15 mM concentrations
stimulated [3H]-Etn metabolite release from PNT2C2, P4E6 and
PC3 cell lines (Figure 8A-C). GlycerylphosphorylEtn and PEtn
were the main metabolites released from tumorigenic cell lines
P4E6 and PC3 at the expense of Etn. Treatment of benign-derived
PNT2C2 cells with mastoparan upregulated total Etn metabolite
release (Figure 8A) but Etn metabolites were released in the same
ratio as from unstimulated cells.

Mastoparan but not sodium oleate stimulates PtdBut formation.
Incubation of PNT2C2 cells with 1mM NaOL and n-butanol for
30min did not stimulate PtdBut formation in the transpho-
sphatidylation reaction. In a typical experiment basal PtdBut
formation expressed as % d.p.m. PtdBut/d.p.m. PtdCho was 3.22%
þ /� 1.01 (meanþ /� s.d., n¼ 6) whereas with sodium oleate
stimulation the mean figure was 2.50þ /� 0.28 (s.d., n¼ 5). For
TPA-stimulated cells the PtdBut figure was 5.77% þ /� 0.55 over
basal (see Figure 3). In duplicate experiments, mastoparan-7
stimulated PtdBut formation 1.33/1.7 times over basal in PNT2C2
cells, 2.8/2.6 times in P4E6 cells and 4.7/3.6 times in PC3 cells.
Inactive M17 had no effect on PtdBut formation in any cell line.

Ionomycin stimulates GPEtn release. Ionomycin at 2.5mM but
not at 1 mM stimulated a rapid release of Etn metabolites from
PNT2C2 cells relative to basal (Figure 9A), an effect not observed
with the PC3 cell line (Figure 9B). Ionomycin increased GPEtn
release from PNT2C2 cells at the expense of Etn (Figure 9C) but
had little effect on the ratio of Etn metabolites released from PC3
cells (Figure 9D).

Etn does not stimulate LNCaP or PC3 cell proliferation but
inhibits Cho uptake. Etn at 20, 50 and 100 mM did not stimulate

LNCaP or PC3 cell proliferation in a 48-h MTS assay (Figure 10A).
In the same system, EGF at 20 and 50 ngml� l stimulated LNCaP
cell proliferation but not that of PC3 cells, which are unresponsive
to this growth factor (El Sheikh et al, 2004). However, Etn did not
synergise with EGF to further enhance LNCaP cell proliferation. In
the Click-iT EdU assay, treatment of LNCaP cells with R10
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medium and PC3 cells with F7 medium for 48 h increased the % of
green nuclei relative to total nuclei from 3.8þ /� 1.98 to 20.97þ /
� 1.99 and 3.8þ /� 1.198 to 23.7þ /� 2.8, respectively (results
þ /� s.d., n¼ 3). Etn at 10, 20 and 50mM had no significant
proliferative effect on either LNCaP or PC3 cells. EGF at
10 ngml� 1 increased the % of green relative to total nuclei from
3.8þ /� 1.64% to 10.1þ /� 3.0% (results þ /� s.d., n¼ 3) in
LNCaP cells but had no effect on PC3 cells, in agreement with the
MTS results above. Etn at a concentration of 2.5 mM and higher in
culture medium, which is normally Etn-free, reduces [3H]-Cho
uptake into PC3 cells by about 20% (Figure 10B).

DISCUSSION

Basal Etn metabolite release. The time-dependent release of
[3H]-Etn metabolites to the medium (Figure 1) by all unstimulated

cell lines reflects the normal basal turnover of EtnPGs concentrated
in the cytosolic leaflet of cell membranes (e.g., Vance 2008). None
of the cell lines significantly methylated PtdEtn to PtdCho
(Table 1) in keeping with findings that PtdEtn methylation
pathways are mainly active in hepatocytes (Vance et al, 2007;
Vance and Ridgway 1988). Hence, we can be confident that [3H]-
label released to the medium by cells is derived from turnover of
EtnPGs. Etn is the major metabolite released (Figure 4) by cell
lines. Phospholipase D is not generally involved in the basal
turnover of phospholipids (Hii et al, 1991). However, in
unstimulated LNCaP and PC3 cells, some basal PLD activity could
contribute to Etn release because D609 reduced TPA-stimulated
Etn metabolite release to below basal values (Figure 2B). D609
inhibits PLD in PC3 cells because we show that it blocks the PLD-
specific transphosphatidylation reaction (Figure 3) in agreement
with its effect on PLD in fibroblasts (Kiss and Tomono, 1995).
D609 may inhibit PtdCho-PLC, PLA2 and sphingomyelin synthase
in other cell systems (Muller-Decker, 1989; van Dijk et al, 1997;
Luberto and Hannun, 1998; Kang et al, 2008), but none of these
enzymes release Etn directly from EtnPGs. Basal EtnPG turnover
in the cell lines is not linked to PKC because neither Ro31-8220
nor GF109203X inhibit TPA-stimulated Etn metabolite release to
below basal levels (Figure 2A). Further, GF109203X does not
reduce TPA-stimulated PLD activity to below basal values in the
transphosphatidylation reaction (Figure 3). Ro31-8220 and
GF109203X are widely used PKC inhibitors (Gordge and Ryves
1994). Both inhibit several kinases (Alessi, 1997), but of these, only
PKC is linked to activation of PLD1, and possibly PLD2 (Chen and
Exton, 2004).

Basal Etn release could involve an N-acylPtdEtn-PLD (NAPE-
PLD), N-acylethanolamide (NAE), N-acylEtn-hydrolysing acid
amidase (NAAA) and/or fatty acid amide hydrolase (FAAH)
pathway (Ueda et al, 2010; Coulon et al, 2012). N-acylPtdEtn is a
minor prostate cell phospholipid, but its levels and that of NAE are
elevated in prostate tumours (Schmid et al, 2002). mRNA and
protein for NAAA, NAPE-PLD and FAAH are variously detected
in normal and transformed prostate epithelial cells and cell lines
and PCa tissue (Endsley et al, 2008; Wang et al, 2008). This
pathway is relevant to PCa because NAEs generated by NAPE-
PLD, especially anandamide (20:4 NAE), are endogenous canna-
binoid receptor agonists and levels of cannabinoid receptors are
elevated in PCa cells (Sarfaraz et al, 2005). Stimulation of
cannabinoid receptors in LNCaP cells inhibits cell growth
(Sarfaraz et al, 2005) and induces apoptosis (Sarfaraz et al,
2006). The antiproliferative effects of n-3 polyunsaturated fatty
acids on cancer cells (Berquin et al, 2008) may be partly due to
their conversion to NAE derivatives (Balvers et al, 2010; Brown
et al, 2011) which then act on the cannabinoid receptors (de
Petrocellis et al, 1998; Mimeault et al 2003; Brown et al, 2010).

Basal release of GPEtn by all cell lines suggests the involvement
of a PLA2 with lysophospholipase activity such as cPLA2a (Ghosh
et al, 2006), which is active in PC3 cells (Patel et al, 2008).
PhosphorylEtn is the minor Etn metabolite released by all cell lines
on basal EtnGP turnover perhaps because high intracellular PEtn
levels are maintained for the rate-limiting CTP:phosphoEtn
cytidylyltransferase reaction in EtnGP biosynthesis (Vance 2008).
This would agree with spectroscopic results that PEtn is the major
metabolite detected in intact benign and malignant prostate tissue
(Swanson et al, 2008; Komoroski et al, 2011).

Phorbol ester-stimulated Etn metabolite release. Only the PC3
cell line used as a model of androgen-independent refractory stage
PCa increased Etn release at the expense of GPEtn and PEtn on TPA
treatment; this effect was not observed in LNCaP cells used to model
androgen-sensitive disease. Taking the inhibitory effects of Ro31-
8220, GF109203X and D609 into account, the most plausible
explanation for this result is that a PKC-PLD1 pathway hydrolysing
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EtnPGs is activated in this cell line and not in the other cell lines
examined (McDermott et al, 2004). Basally active PLD2 may also be
involved, but its regulation by PKC is not fully resolved (e.g., Han

et al, 2002; Chen and Exton 2004; Gomez-Cambronero 2011).
Phosphatidylcholine is usually regarded as the main substrate for
PLD1 (Pettitt et al, 2001; Jenkins and Frohman 2005), but our
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findings indicate that PtdEtn and/or PlasEtn species are additional
PLD1 substrates in PC3 cells on PKC stimulation as in other
mammalian cells (Singh et al, 2005; Kiss et al 1994; Kiss and
Tomono 1995). However, in PC3 cells, PtdEtn/PlasEtn is not an
exclusive PLD1 substrate as observed in MCF-7/MDR cells (Kiss
et al, 1994) because Cho release also increases on TPA treatment
(Rumsby et al, 2011). Phorbol ester increases total Etn metabolite
release from benign PNT2C2 and PNT1A cells (Figure 1) as for
Cho metabolites (Rumsby et al, 2011), but this appears to occur by
an upregulation of basal mechanisms of EtnGP turnover because
the GPEtn:PEtn:Etn ratio does not change (Figure 4).

Involvement of PLD2. Oleate at low mM concentrations activates
PLD2 in intact mast cells (Sarri et al, 2003); hence, we tested
whether it would stimulate EtnPG turnover in the PCa cell lines.
Oleate certainly stimulated total Etn metabolite release, but this
was not due to activation of PLD2 because release of Etn decreased
relative to GPEtn and PEtn, and further, oleate did not stimulate
PtdBut formation in the PLD-specific transphosphatidylation
reaction. This result was surprising for PC3 cells, which express

both PLD1 and PLD2 (Gibbs and Meier 2000). The increased
formation of GPEtn by oleate suggests that a PLA2 with lysoPA
activity such as cPLA2a, which requires Ca2þ , could have been
activated (Ghosh et al, 2006). A rise in intracellular Ca2þ could be
triggered by oleate action on L-type Ca2þ channels (e.g., Chang
et al, 2000; Tian et al, 2009) expressed by LNCaP and PC3 cell lines
(e.g., Huang et al, 2005; Sun et al, 2006; Gackiere et al, 2008) and/
or by oleate activation of the fatty acid receptor GPR40 expressed
in PCa cell lines (Rumsby, unpublished), which is linked to a rise in
intracellular Ca2þ (Hardy et al, 2005). Ionomycin increases GPEtn
release at the expense of Etn from PNT2C2 cells supporting the
idea that the observed oleate effect involves a rise in intracellular
Ca2þ . This was not observed with PC3 cells (Figure 9B and D)
highlighting another difference between these prostate epithelial
cell lines. Oleate treatment caused reversible cell rounding, which
might also have allowed Ca2þ entry and cPLA2 activation. These
results indicate that oleate does not activate PLD2 in prostate cell
lines unlike its effects in mast cells (Sarri et al, 2003). The cationic
tetradecapeptide mastoparan reportedly activates PLD2 in intact
mast cells (Chahdi et al, 2003) and we found that it stimulated
PtdBut formation in the PLD-specific transphosphatidylation
reaction. However, it did not specifically stimulate PLD in P4E6
and PC3 cell lines because GPEtn and PEtn were the main
metabolites released suggesting a preferential activation of PLA2

and PtdEtn-PLC as observed in other cell types (Argiolas and
Pisano, 1983; Schnabel et al, 1997; Ferry et al, 2001). With benign
PNT2C2 cells, mastoparan upregulated basal mechanisms of
EtnGP turnover because Etn metabolites were released in the
same ratio as from unstimulated cells.

Relevance to PCa. Upregulated protein expression of PKCa and
increased signalling by growth factors such as EGF that activate
PKC are features of PCa (Cornford et al, 1999; de Miguel et al,
1999; Koren et al, 2004; Lahn et al, 2004; Stewart and O’Brian,
2005). Such observations suggest that a PKC-PLD1 pathway may
be upregulated in PCa cells as is observed for PLD in other cancer
cells and transformed cell lines (Foster and Xu, 2003). Androgen-
dependent LNCaP and androgen-independent PC3 cell lines are
widely used models of early and later stages of PCa, respectively,
and our results suggest that these two cell lines differ in the
regulation of PtdCho and EtnPG turnover by PKC as judged by the
release of Cho and Etn metabolites. Androgen-independent PC3
cells appear to possess a PLD1 pathway that is upregulated on
activation of PKC leading to increased turnover of both EtnPGs
and PtdCho (Rumsby et al, 2011). This pathway and/or the ability
to release Cho and Etn metabolites on PKC activation appears to
be lacking in LNCaP cells. The extra PtdOH generated by the
increased turnover of EtnPG in PC3 cells would maintain a cancer
phenotype through mTOR (Foster, 2009; Toschi et al, 2009) in
addition to that from PtdCho turnover by PLD1. It would also
increase signalling through PtdOH (Wang et al, 2006) by
promoting the membrane association of PtdOH-binding proteins
(Stace and Ktistakis, 2006) including PI4P 5-kinase, which
generates PI(4,5)P2 essential for PLD activity (Jenkins and
Frohman, 2005) and Raf-1 kinase and sphingosine kinase 1, both
regulators of proliferation and apoptosis (e.g., Rizzo et al, 2000;
Spiegel and Milstien 2002). Phosphatidic acid is also implicated in
cell motility associated with metastasis (Mazie et al, 2006; Clarke
et al 2009). Fatty acids in PtdOH derived from PtdEtn will be more
unsaturated than those from PtdCho (Pettitt et al 1997; Weisser
and Krieg 1998) while PtdOH from PlasEtn will contain 1-0-alkyl
or 1-0-alkenyl chains. Such structural differences may result in
EtnPG-derived PtdOH having different signalling, protein inter-
action, membrane fusion and fission properties, all linked to
tumorigenesis (Jenkins and Frohman 2005; Wang et al, 2006).
Phosphatidic acid is also readily converted by PLA2 to lysoPtdOH,
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an autocrine mediator in PCa cells (Daaka, 2002; Xie et al, 2002;
Gibbs et al, 2009) promoting metastatic cell proliferation and
motility.

Etn did not enhance PC3 cell growth as reported for other cell
types (Kano-Sueoka et al, 1979; Murakami et al, 1982; Arthur and
Lu, 1993; Kiss et al, 1997; Sasaki et al, 1997; Kume and Sasaki,
2006). However, at low concentrations, it did reduce Cho uptake as
noted by others (e.g., Yorek et al, 1986; Lipton et al, 1988), hence it
could modulate Cho uptake in vivo. Preferential uptake of Etn at
the expense of Cho (Mintz et al, 2008) will increase EtnPG
synthesis, regulating the membrane PtdCho:EtnPG ratio. This is
tightly controlled because a deficiency of EtnPG causes abnormal
PKC activity (Bazzi et al, 1992; Kano-Sueoka and Nicks, 1993) and
impaired EGF binding to its receptor (Kano-Sueoka et al, 1990) as
well as influencing the membrane association and function of
PtdEtn-binding proteins, such as anti-apoptotic hPEBP4 (Li et al,
2007; Li et al, 2014) and Raf Kinase inhibitor protein, RKIP (Keller
et al, 2005).

The use of spectroscopic methods to resolve phospholipid
headgroup metabolites in the detection, diagnosis and characterisa-
tion of PCa (Kurhanewicz and Vigneron, 2008; DeFeo et al, 2011)
and the suggestion that EtnPG metabolism may be a better marker
for detection of PCa by spectroscopy than PtdCho (Komoroski
et al, 2011) makes it important to understand how turnover of
PtdCho and EtnPGs in PCa cells is regulated. Our results suggest
that signalling pathways from PKC to PLD1 regulating turnover of
PtdCho and EtnPGs differ in LNCaP and PC3 cell lines, two widely
used models of early stage and later refractory stage PCa.
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