
Exogenous IGFBP-2 promotes proliferation,
invasion, and chemoresistance to
temozolomide in glioma cells via the
integrin b1-ERK pathway
S Han1, Z Li1, L M Master1, Z W Master1 and A Wu*,1

1Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang
110001, China

Background: Insulin-like growth factor binding protein-2 (IGFBP-2) is significantly increased in the serum of patients with
malignant gliomas. High plasma IGFBP-2 levels are correlated with poor prognosis in glioma patients. However, the exact role of
exogenous IGFBP-2 in gliomas is unclear.

Methods and results: Using the MTT cell viability assay, cell cycle analysis, and the transwell migration assay, it was demonstrated
that IGFBP-2 treatment stimulated proliferation and invasion in U87 and U251 cell lines and primary SU3 glioma cells. Western blot
analysis and immunofluorescence staining revealed that IGFBP-2 promoted ERK phosphorylation and nuclear translocation.
Moreover, blocking ERK activation using the inhibitor PD98059 markedly reduced the effects of IGFBP-2 in glioma cells. As IGFBP-
2 has an integrin-binding domain, the contribution of integrin b1 to these IGFBP-2-mediated processes was examined.
Neutralisation or knockdown of the expression of integrin b1 inhibited IGFBP-2-induced ERK activation, cell proliferation, and cell
invasion. Significantly, IGFBP-2 induced temozolomide resistance in glioma cells in an integrin b1/ERK-dependent manner.

Conclusions: Exogenous IGFBP-2 induces proliferation, invasion, and chemoresistance in glioma cells via integrin b1/ERK
signaling, suggesting that targeting this pathway could represent a potential therapeutic strategy for the treatment of gliomas.
The identification of this pathway in glioma progression provides insight into the mechanism by which serum IGFBP-2 levels can
predict the prognosis of glioma patients.

Glioblastoma is the most common primary malignant brain
tumour in adults, with a median survival of about 15 months (Yan
et al, 2012). Besides surgery, postoperative radiotherapy plus
chemotherapy is the most effective treatment strategy, and
significantly prolongs survival time in some patients (Stupp et al,
2005). However, a variety of regulators including growth factors,
hormones, and cytokines promote chemoresistance in glio-
blastoma, resulting in treatment failure (Oliva et al, 2011;
Sun et al, 2014).

Insulin-like growth factor binding protein-2 is produced by a
variety of different tissues via complex regulatory processes

(Sandhu et al, 2002). Previous studies have demonstrated that
the expression of IGFBP-2 was significantly increased in
glioblastoma compared with low-grade gliomas and normal brain
tissue (Sallinen et al, 2000; Elmlinger et al, 2001; Wang et al, 2002).
Moreover, IGFBP-2 levels are significantly higher in the sera of
glioblastoma patients and are negatively correlated with patient
survival (Lin et al, 2009; Han et al, 2014). However, the molecular
mechanism by which serum IGFBP-2 affects disease progression
and patient prognosis is unclear. Although endogenous over-
expression of IGFBP-2 has been associated with cell proliferation
or invasion, the findings have been controversial (Wang et al, 2003;
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Fukushima and Kataoka, 2007; Fukushima et al, 2007;
Mehrian-Shai et al, 2007; Holmes et al, 2012) and cannot
effectively explain the prognostic role of serum IGFBP-2. These
results suggest that exogenous IGFBP-2 may have an important
role in regulating the function of glioma cells, and the role of
exogenous IGFBP-2 needs to be clarified.

Insulin-like growth factor binding protein-2 has an Arg-Gly-Asp
(RGD) cell adhesion motif that can potentially bind integrin
receptors, the activation of which can, in turn, activate extracellular
signal-regulated kinases (ERKs). The activated integrin-ERK
pathway has been shown to induce proliferation and invasion by
malignant cells in response to external stimuli (Nakada et al, 2013;
Sun et al, 2013; Kale et al, 2014). The present study investigated the
effects of exogenous IGFBP-2 on integrin-ERK pathway activation,
and on proliferation and invasion by glioma cells. The results
provide a mechanistic explanation for the role of serum IGFBP-2
levels in predicting the prognosis of glioblastoma patients.

MATERIALS AND METHODS

Cell culture. Human glioblastoma cell lines U87, U251, and U373
were purchased from the Institute of Biochemistry and Cell
Biology (Shanghai, China). The human malignant glioblastoma cell
line T98G was obtained from the American Type Culture
Collection (ATCC, Rockville, MD, USA). Primary SU3 glioma
cells (Wan et al, 2012; Han et al, 2013) were kindly provided by
Professor Dong Jun from the Second Affiliated Hospital of
Soochow University (Taipei, Taiwan). Cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum (FBS; Invitrogen, Carlsbad, CA, USA) and
antibiotics (penicillin and streptomycin, each 100Uml� 1).
Cultures were incubated at 37 1C in a humidified chamber with
5% CO2.

Cells were seeded in 24-well plates at 5� 103 cells per well in a
regular medium. After 24 h, the cells were washed with PBS and
cultured in 0.5ml serum-free culture medium for 48 h. The
medium was then collected, and IGFBP-2 in the medium was
examined by ELISA assay as described previously (Han, et al,
2014).

Construction of IGFBP-2-overexpressing cells. The human
IGFBP-2 cDNA was cloned into the pEGFP-N1 plasmid (Clontech,
Mountain View, CA, USA), and the resulting pEGFP-N1-IGFBP-2
plasmid or control pEGFP-N1 was transfected into U87 cells using
Lipofectamine (Invitrogen). Stable cell lines were selected by G418
screening. The efficiency of IGFBP-2 overexpression was evaluated
using western blotting.

IGFBP-2 gene expression knockdown. Specific IGFBP-2-shRNA
(short hairpin RNA) sequences were synthesised as described
previously (Fukushima et al, 2007). The IGFBP-2-shRNA sequence
was 50-ACTGTGACAAGCATGGCCTGT-30 and the control-
shRNA sequence was 50-ATCGCTAGGTCGGCGACATAT-30,
which was cloned into pSUPER-puro and transfected into U251
cells. After 24 h, transfected cells were selected for 10 days with
2mgml� 1 puromycin. Cells stably expressing IGFBP-2-shRNA
were used for further research. The effectiveness of IGFBP-2
silencing was assessed using western blotting.

Integrin b1 gene expression knockdown. U87, U251, and SU3
cells were infected with shRNA lentiviral particles (Santa Cruz
Biotechnology, Santa Cruz, CA, USA) targeting b1-integrin
(sc-35674-V) or control shRNA (sc-108080) according to the
manufacturer’s protocol. After 48 h, subcultured cells were selected
in 1mgml� 1 puromycin for 1 week. The effectiveness of integrin
b1 silencing was assessed using western blotting.

PCR. Total RNA was isolated from SU3, U87, U251, T98G, and
U373 cells using TRIzol reagent (Invitrogen) according to the
manufacturer’s protocol. Total RNA was reverse transcribed into
cDNA (Takara Bio Inc., Shiga, Japan), which served as the
template for the PCR reaction. The primers used to amplify
IGFBP-2 and GAPDH (control) were as follows: IGFBP-2 forward,
50-AGGTTGCAGACAATGGCGAT-30 and IGFBP-2 reverse,
50-GTAGAAGAGATGACACTCGG-30; GAPDH forward, 50-GCA
CCGTCAAGGCTGAGAAC-30 and GAPDH reverse, 50-TGGTG
AAGACGCCAGTGGA-30. Reactions were carried out in a
Gradient Thermal Cycler (Biometra, Goettingen, Germany) using
the following programme: 94 1C for 2min; 30� (94 1C for 30 s,
61 1C for 30 s, 72 1C for 90 s); and 72 1C for 10min. Polymerase
chain reaction products were resolved on a 1% agarose gel
containing ethidium bromide.

Methylation-specific PCR was performed as described previously
(Han et al, 2014) to detect O(6)-methylguanine-DNA-methyl-
transferase (MGMT) promoter methylation status in U87, SU3,
T98G, and U251 cells.

Western blot. Total protein was extracted from SU3, U87, U251,
T98G, and U373 cells using a Total Cell Protein Extraction Kit
(Millipore, Billerica, MA, USA) to measure the expression levels of
IGFBP-2 in different cell lines. In another experiment, SU3, U87,
and U251 cells were seeded at 106 cells per 100mm dish in 10%
FBS-supplemented DMEM. At 60% confluence, cells were serum
starved overnight and monolayers were treated with 500 ngml� 1

recombinant human IGFBP-2 (Research Diagnostics Inc.,
Flanders, NJ, USA) for 5, 10, or 30min at 37 1C. Some cells were
pretreated with an integrin b1-neutralising antibody (MAB1959;
Chemicon International, Temecula, CA, USA) at a concentration
of 2mgml� 1. Total protein was extracted using lysis buffer to
determine ERK and phospho-ERK (pERK) levels. Protein
concentrations were determined using the Coomassie (Bradford)
protein assay. An equivalent amount of protein from each sample
was resolved by 12% SDS–PAGE and transferred to a nitrocellulose
membrane. After blocking, membranes were incubated with anti-
IGFBP-2 (Research Diagnostics Inc.), anti-pERK (Cell Signaling
Technology, Beverly, MA, USA), or anti-ERK antibody (Cell
Signaling Technology) overnight at 4 1C. All antibodies were used
at a 1 : 1000 dilution. Membranes were then washed three times for
5min with TBST/0.1% Tween-20 and incubated with a secondary
antibody. Bands were detected using a Chemiluminescence ECL
Kit (Santa Cruz Biotechnology).

Immunofluorescence. Immunofluorescence stain was performed
as described previously (Han et al, 2013). Briefly, after overnight
serum starvation, cells grown on coverslips were left untreated or
treated with 500 ngml� 1 IGFBP-2 for 30min at 37 1C. The cells
were washed with PBS, fixed, blocked, and probed with anti-pERK
antibody (1 : 100), followed by treatment with a fluorophore-
conjugated secondary antibody. Nuclei were counterstained with
Hoechst 33342. Coverslips were mounted on glass slides and cells
were visualised using a confocal microscope (Olympus FV1000S-
SIM; Olympus, Tokyo, Japan).

MTT cell viability assay. Cells were seeded in 96-well plates at
1� 104 cells per well in 10% FBS-supplemented DMEM. The
following day, the cell monolayers were incubated in serum-free
medium for 24 h, and then treated with 125, 250, or 500ngml� 1

IGFBP-2 for 24, 48, 72, 96, or 120 h. In another experiment, cells
were treated with 100mM temozolomide (TMZ; Tasly Pharmaceu-
tical Co. Ltd, Tianjin, China) alone or with 500 ngml� 1 IGFBP-2
for 24, 48, 72, or 96 h. In some cultures, cells were preincubated with
50mM of the ERK inhibitor PD98059 (Calbiochem, San Diego, CA,
USA) for 16 h or 2mgml� 1 integrin b1-neutralising antibody for
30min before treatment with IGFBP-2. Cell growth was evaluated
using an MTT cell viability assay system according to the
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manufacturer’s protocol. Following the colorimetric reaction, the
optical density was determined at 490nm using a scanning multiwell
spectrophotometer (Tecan Sunrise Remote, Maennedorf, Austria).

Bromodeoxyuridine incorporation assay. Bromodeoxyuridine
(BrdU) incorporation assay was performed to analyse cell
proliferation. Briefly, cells were plated at 2� 103 cells per well in
a 96-well plate and then treated with 500 ngml� 1 IGFBP-2 for
48 h after being serum starved overnight. Bromodeoxyuridine was
then added and further incubated for another 24 h. The
incorporation of BrdU was detected using a colorimetric
immunoassay kit according to the manufacturer’s instructions
(Roche Diagnostics, Mannheim, Germany).

Cell quantification. Cells were seeded in 24-well plates at 5� 103

cells per well in 10% FBS-supplemented DMEM and grown for
24 h. After overnight serum starvation, the cells were then treated
with 125, 250, or 500 ngml� 1 of IGFBP-2 for 48 h. In another
experiment, cells were treated with 100 mM TMZ alone or together
with 500 ngml� 1 IGFBP-2 for 48 h. In some cultures, cells were
preincubated with 50 mM PD98059 for 16 h or 2 mgml� 1 integrin
b1-neutralising antibody for 30min before treatment with IGFBP-2.
Following treatment, cells were washed by replacing the medium
with PBS, and trypsinised by adding 200 ml of 0.25% trypsin/EDTA
solution. The detached cells were counted using a haemocytometer
after trypan blue stain.

Cell cycle analysis. Cells were plated in six-well microtitre plates
and treated with 125, 250, or 500 ngml� 1 IGFBP-2 after overnight
serum starvation. In some cultures, cells were preincubated with
50 mM PD98059 for 16 h or 2mgml� 1 integrin b1-neutralising
antibody for 30min before treatment with IGFBP-2. After 24 h, the
cells were trypsinised and washed once with PBS. The cells were
stained with propidium iodide (PI; 75 mM) in PBS with 0.1% NP-40.
Analysis of DNA content was performed by collecting 10 000
events for cell cycle analysis using a FACSCalibur flow cytometer
and CellQuest software (BD Biosciences, San Jose, CA, USA).

Transwell cell migration assay. Transwell chambers with 8mm
pores (Corning, Corning, NY, USA) were coated with 50 ml
Matrigel (BD Biosciences). Cells (2� 103) treated with 125, 250, or
500 ngml� 1 IGFBP-2 were plated in 100 ml serum-free DMEM
containing 0.1% bovine serum albumin, and added in triplicate to
the transwell chambers. In another experiment, cells were treated
with 100 mM TMZ alone or together with 500 ngml� 1 IGFBP-2. In
some cultures, cells were preincubated with 50 mM PD98059 for
16 h or 2mgml� 1 integrin b1-neutralising antibody for 30min
before treatment with IGFBP-2. Dulbecco’s modified Eagle’s
medium with 20% FBS (600 ml) was added to the bottom chamber.
Cells were allowed to invade the Matrigel-coated filters toward the
lower compartment for 20 h at 37 1C. Cells that had reached the
lower surface of the filter were fixed and stained, and counted
using a microscope. A total of 10 fields were counted for each
transwell filter.

Glioma tissue samples. A total of 154 clinical samples
were collected from the Chinese Glioma Genome Atlas
(http://www.cgcg.org.cn/), including 83 primary glioblastomas
(P), eight anaplastic astrocytomas (AA), 58 astrocytomas (A) and
five normal brain tissue samples (N). Three normal brain samples
were obtained from patients with severe brain trauma who
required surgery, and the remaining two samples were from
patients who underwent surgery for primary epilepsy. All patients
received surgical resection between January 2005 and December
2009. Samples were flash frozen in liquid nitrogen immediately
after resection. Histologic diagnosis was established according to
the 2007 World Health Organisation classification guidelines, and
verified by two neuropathologists. Before the study, the percentage
of tumour cells was evaluated for each sample using a

haematoxylin and eosin-stained frozen section. Only samples with
480% tumour cells were selected for analysis. The study was
approved by the institutional review board at the hospital, and
written informed consent was obtained from every patient.

Microarray analysis. Total RNA was extracted using a mirVana
miRNA Isolation Kit (Ambion, Austin, TX, USA) according to the
manufacturer’s protocol. RNA concentration and quality were
assessed using the NanoDrop ND-1000 spectrophotometer
(Thermo Scientific, Waltham, MA, USA).

A total of 154 samples (83 P, 8 AA, 58 A, and 5 N) were
analysed by microarray using the Agilent Whole Human Genome
Array (Agilent Technologies, Palo Alto, CA, USA) according to the
manufacturer’s instructions. The integrity of total RNA was
measured using an Agilent 2100 Bioanalyzer (Agilent Technolo-
gies). cDNA and biotinylated cRNA were synthesised and
hybridised to the array. The Agilent G2565BA Microarray Scanner
System (Agilent Technologies) and Agilent Feature Extraction
Software (version 9.1, Agilent Technologies) were used for data
acquisition. Probe intensities were normalised using GeneSpring
GX 11.0 (Agilent Technologies).

Statistical analysis. Integrin b1 and ERK expression levels obtained
from microarray analysis of tumorigenic and normal tissue were
subjected to cluster analysis (Cluster 2.20) using the hierarchical
clustering method with average linkage. The result was visualised
using TreeView software (Stanford University, Palo Alto, CA, USA).
Pearson’s correlation between the expression levels of integrin b1 and
ERK was computed using SPSS 13.0 (SPSS Inc., Chicago, IL, USA).
The microarray data set can be accessed at the website http://
www.cgga.org.cn/medical.php?mod=search. Publicly available data
set was also used to verify the expression of integrin b1 and ERK in
gliomas, which can be accessed at http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE4290. The Student’s t-test and ANOVA were
used to assess statistical significance. Each experiment was performed
in triplicate, and all data are presented as the mean±s.e. of three
independent experiments. A two-tailed P-value of o0.05 was
considered significant.

RESULTS

Endogenous IGFBP-2 overexpression or knockdown in glioma
cells affects invasion but not proliferation. The expression level
of IGFBP-2 in four different glioblastoma cell lines and primary
SU3 glioma cells was evaluated using RT–PCR and western blot
analysis (Figure 1A). As U87 cells express endogenous IGFBP-2 at
low levels, they were chosen to generate stable cell lines. Insulin-
like growth factor binding protein-2 expression was stably
upregulated in U87 cells, by transfection with the pEGFP-N1-
IGFBP-2 plasmid (Figure 1B). Despite the differences in the levels
of IGFBP-2 expression, cells did not show marked differences in
their proliferation (Figure 1C). However, significantly higher rate
of invasion was observed in IGFBP-2-overexpressing cells and the
invasive potential was increased nearly one-fold (Po0.01;
Figure 1D) compared with the control cells. Further, we examined
the effect of IGFBP-2 overexpression in U87 cells on ERK signaling
pathway by western blot analysis. We found that ERK phosphor-
ylation was not significantly affected by the levels of IGFBP-2
expression (Figure 1E). Moreover, PD98059, an ERK inhibitor, had
no effect on IGFBP-2 overexpression-induced invasion (Figure 1F).
These results suggest that ERK signaling pathway is not linked to
endogenous IGFBP-2 overexpression.

Furthermore, IGFBP-2 expression was stably knocked down in
relatively high IGFBP-2-expressing U251 cells by transfection with
an IGFBP-2-specific shRNA. The loss of IGFBP-2 expression was
confirmed by western blot (Supplementary Figure 1A). MTT assay
and cell counting showed that the downregulation of IGFBP-2 in
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U251 cells had no significant effect on cell proliferation
(Supplementary Figure 1B–D). However, the knockdown of
IGFBP-2 resulted in a significant reduction of the invasion through
the Matrigel in U251 cells (Supplementary Figure 1E).

Exogenous IGFBP-2 promotes proliferation and invasion by
glioblastoma cells. Subsequently, the effect of exogenous IGFBP-2
on glioblastoma cells was examined using recombinant human
IGFBP-2 purchased from Research Diagnostics Inc. U87 cells were
used to minimise the effects of endogenous IGFBP-2. U251 cells
were used to test the effects of exogenous IGFBP-2 on glioblastoma
cells, which have high levels of endogenous IGFBP-2 expression.
To exclude the possible bias introduced by cell lines that have
undergone multiple passages, primary SU3 glioma cells derived
from fresh clinical samples were also used in this study.

The effects of exogenous IGFBP-2 on the proliferation of U87,
SU3, and U251 cells were investigated at different time points. It
was observed by phase-contrast microscopy that IGFBP-2 treat-
ment significantly stimulated cell growth (Figure 2A). The results
from the MTT assay and cell counting revealed that the IGFBP-2-
induced increase in cell proliferation was dose-dependent
(Figure 2B). Insulin-like growth factor binding protein-2 of 125
and 250 ngml� 1 increased proliferation by 33.8–62.7%, and
IGFBP-2 of 500 ngml� 1 increased proliferation by about 1.14-fold.

To assess whether the observed increase in proliferation in
response to exogenous IGFBP-2 was owing to an increase in the
number of cells entering the cell cycle, the cell cycle profile was
evaluated by PI staining 24 h after treatment. The results showed
that IGFBP-2 promoted the S- and G2/M-phase entry in a dose-
dependent manner in U87, SU3, and U251 cells (Figure 2C).
IGFBP-2 of 125 and 250 ngml� 1 increased the G2/M phase cells
from 0–2.7 to 8.1–17.4%, and IGFBP-2 of 500 ngml� 1 increased
that number toB30%. In addition, BrdU assay also confirmed that
exogenous IGFBP-2 promoted cell proliferation and cell cycle entry
(Supplementary Figure 1G).

To evaluate the effects of exogenous IGFBP-2 on cell migration,
a Matrigel invasion assay was performed using U87, SU3, and

U251 cells. The invasive potential of glioblastoma cells was
significantly increased by IGFBP-2 in a dose-dependent manner
(Figure 3A). Insulin-like growth factor binding protein-2 of 125
and 250 ngml� 1 increased invasive cells by 37.8–87.4%, and
IGFBP-2 of 500 ngml� 1 increased invasive cells by B1-fold
(Figure 3B).

Exogenous IGFBP-2 enhances ERK activation in glioblastoma
cells. To identify the signaling pathway through which IGFBP-2
promotes proliferation and invasion, the activation of ERK
was examined in U87, SU3, and U251 cells, since the ERK
signaling pathway has been associated with IGFBPs
(Chakrabarty and Kondratick, 2006; Kiepe et al, 2008). Cellular
protein extracted from cultures treated with IGFBP-2 was
analysed by western blot. Although the levels of total ERK
protein did not increase, pERK levels were significantly elevated
(2–4.5-fold) with respect to control cells 30min after IGFBP-2
administration (Figure 3C).

The localisation of pERK in glioblastoma cells after IGFBP-2
administration was examined by immunofluorescence. Adminis-
tration of exogenous IGFBP-2 for 30min potentiated ERK
phosphorylation and nuclear translocation (Figure 3D). These
results indicate that exogenous IGFBP-2 enhances the activation of
ERK signaling in glioblastoma cells.

Inhibition of ERK blocks the effects of IGFBP-2 in glioblastoma
cells. To confirm that activation of the ERK signaling pathway is
required for exogenous IGFBP-2-induced proliferation and inva-
sion, U87, SU3, and U251 cells were preincubated with the ERK
inhibitor PD98059. The inhibition of ERK abrogated exogenous
IGFBP-2-induced proliferation, cell cycle progression, and invasion
by glioblastoma cells (Supplementary Figures 2 and 3A, B). These
findings suggest that exogenous IGFBP-2 promotes proliferation
and invasion of glioblastoma cells through ERK signaling.

Integrin b1 knockdown or neutralisation inhibits IGFBP-2-
induced proliferation and invasion. As IGFBP-2 has an RGD
adhesion motif that can potentially bind and activate integrin
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Figure 1. Insulin-like growth factor binding protein-2 overexpression in glioma cells enhances invasion but not proliferation. (A) Insulin-like
growth factor binding protein-2 expression in four glioblastoma cell lines and primary SU3 glioma cells, as determined by RT–PCR and western
blot analysis. (B) pEGFP-N1-IGFBP-2 plasmid or control pEGFP-N1 was effectively transfected into U87 cells. (C) Insulin-like growth factor binding
protein-2 overexpression did not significantly affect cell proliferation as shown by MTT assay and cell counting. (D) Invasion assay showed that
compared with cells transfected with control vector and untransfected cells, the invasive ability of U87-pEGFP-N1-IGFBP-2 cells was markedly
increased. (E) The phosphorylation of ERK was not markedly altered by the levels of IGFBP-2 expression. (F) Inhibition of ERK did not affect the
invasion induced by IGFBP-2 overexpression.
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receptors, it was hypothesised that IGFBP-2 and integrin receptors
can interact in glioblastoma cells. mRNA expression data obtained
by microarray for integrin receptors and ERK in 154 clinical
samples was subjected to cluster and correlation analyses. Integrin
b1 was highly expressed in glioblastoma cells, compared with low-
grade gliomas and normal brain tissue (Po0.001; Supplementary
Figure 3C). Moreover, the expression of integrin b1 was
significantly correlated with that of ERK (R¼ 0.490; Po0.001,
Supplementary Figure 3E). These results were validated on publicly
available data sets (Sun, et al, 2006); (Supplementary Figure 3D).

First, integrin b1 expression was stably knocked down in U87
cells by transfection with an integrin b1-specific shRNA. The loss
of integrin b1 expression was confirmed by western blot analysis
(Figure 4A). Integrin b1 knockdown resulted in a significant
decrease in cell proliferation and invasion. Moreover, integrin b1
knockdown also abrogated exogenous IGFBP-2-induced ERK
activation, tumour cell proliferation, and invasion (Figures 4B–G).

Then, to further investigate the role of integrin b1 in IGFBP-2-
induced proliferation and invasion, U87, SU3, and U251 cells were
pre-treated with anti-integrin b1-neutralising antibody or non-
immune IgG before IGFBP-2 administration. Blocking integrin b1
function by neutralisation inhibited IGFBP-2-induced ERK
activation, tumour cell proliferation, cell cycle progression, and
invasion (Figures 5 and 6A). Thus, IGFBP-2 mediates its effects on
proliferation and invasion through the integrin b1-ERK pathway in
glioblastoma cells.

IGFBP-2 induces chemoresistance to TMZ. In the previous
study, plasma IGFBP-2 levels after standard postoperative radio-
therapy plus chemotherapy were found to be correlated with
prognosis of glioblastoma patients (Han et al, 2014), indicating that
exogenous IGFBP-2 may affect TMZ chemosensitivity. As shown
in Supplementary Figure 3F, MGMT promoter was methylated in
U87, SU3, and U251 cells. In the present study, TMZ adminis-
tration was found to inhibit significantly the proliferation and
invasion of these glioblastoma cells (proliferation was inhibited by
64.2% and invasion was decreased by 44.7%); however, the
presence of IGFBP-2 abrogated this effect. Moreover, inhibition
of ERK, as well as integrin b1 neutralisation, countered the effect of
IGFBP-2 (Figures 6B–E). Nevertheless, endogenous IGFBP-2
overexpression or knockdown had no significant effect on TMZ
chemosensitivity in glioblastoma cells (Supplementary Figures 4
and 5). Taken together, these results suggest that rather than
endogenous IGFBP-2, exogenous IGFBP-2 induces chemoresis-
tance to TMZ in glioblastoma cells via the integrin b1-ERK
signaling pathway.

DISCUSSION

Standard therapy for glioblastoma is postoperative TMZ
administration, initially in conjunction with radiotherapy, and
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subsequently as maintenance therapy. This strategy has given
patients a remarkable survival advantage (Stupp et al, 2005).
However, there are still large numbers of patients who cannot
benefit from this approach owing to the development of
chemoresistance to TMZ; thus, identifying factors that determine
TMZ chemosensitivity to be clinically relevant. Previous studies
have identified several such factors that mediate chemosensitivity
through different mechanisms, including O6-methylguanine-DNA
methyltransferase promoter methylation, isocitrate dehydrogenase
1 mutation, and 1p/19q status among others (Weller et al, 2012;
Wick et al, 2013). Analysing these requires tumour tissue samples
that are not always readily available; therefore, molecular markers
that can be detected in blood samples would be preferable to assess
the response of tumours to chemotherapy and patient prognosis.

It was previously demonstrated that preoperative plasma
IGFBP-2 levels were higher in patients with high-grade gliomas,
as compared with patients with low-grade gliomas and healthy
subjects, and these were significantly correlated with disease
recurrence and disease-free survival in glioblastoma patients who
received postoperative radiotherapy and chemotherapy (Lin et al,
2009). Recently, we have found that after postoperative standard
radiotherapy plus chemotherapy, plasma IGFBP-2 levels were
significantly higher in elderly than in young patients, and could
predict the prognosis of elderly patients (Han et al, 2014).
Moreover, plasma IGFBP-2 levels were negatively correlated with
patients’ Karnofsky performance status. Interestingly, the main
source of serum IGFBP-2 may not have been the tumour in this
case, as the tumour had mostly been removed from the body, and
plasma IGFBP-2 levels were remarkably high in some radiologi-
cally tumour-free patients after combined therapy. One group has
consistently reported a lack of correlation between plasma IGFBP-2
levels and tumour IGFBP-2 expression, as well as tumour size in
glioblastoma patients (Lin et al, 2009). Insulin-like growth factor
binding protein-2 is expressed in many tissues and organs,
including the liver and kidney, and is subject to regulation by

numerous factors, such as treatment regimens and nutritional
status, which significantly influence plasma IGFBP-2 levels (van
den Beld et al, 2003). All these results indicated that plasma
IGFBP-2 may comprised of IGFBP-2 unrelated to glioma cells. As
shown by several researches, increased serum IGFBP-2 levels are
associated with tumour progression in a number of different
cancers including colon, ovarian, lung, and prostate (el et al, 1994;
Lee et al, 1999; Shariat et al, 2002; Baron-Hay et al, 2004).
Therefore, it is possible that exogenous stimulation from serum
IGFBP-2 significantly affects tumour chemosensitivity and pro-
gression; in the present study, the effects of exogenous IGFBP-2 on
the proliferation, invasion, and chemosensitivity of glioma cells
were examined to test this hypothesis.

We examined the levels of IGFBP-2 in the medium of several
glioma cell lines and genetically engineered cells. The IGFBP-2
level in the medium was generally lower than 40 ngml� 1

(Supplementary Figure 1F). However, it was reported that levels
of plasma IGFBP-2 of healthy people and glioblastoma patients
were 458.68±91.41 and 622.3±201.6 ngml� 1, respectively (Lin
et al, 2009), whereas after standard therapy, the plasma IGFBP-2
level of glioblastoma patients was 637.0±52.3 ngml� 1 (Han et al,
2014). The blood–brain barrier (BBB) of glioblatoma patients
might be damaged owing to local inflammatory reaction, seizures
and the use of mannitol, and so on, especially after surgery and
radiochemotherapy (Marchi et al, 2007, 2009). The opening
size of BBB could be as large as allowing the delivery of 70 kDa
molecule (Chen and Konofagou, 2014), while IGFBP-2 is 36 kDa. It
is possible that in vivo the level of IGFBP-2 in the local
environment of glioblastoma cells could be much higher than
40 ngml� 1 (even near the plasma IGFBP-2 levels) owing to the
permeation of serum IGFBP-2 through the leakage of BBB. Thus,
the exogenous IGFBP-2 concentration used in this study was from
125 to 500 ngml� 1.

Insulin-like growth factor binding protein-2 contains an
RGD adhesion motif that is a known integrin-binding domain
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(Kawai et al, 2011), suggesting that exogenous IGFBP-2 may
function through binding integrin on the surface of glioma cells.
Although there is no direct evidence that IGFBP-2 binds to
integrin b1 receptors, this hypothesis was supported by our results.
In the present study, exogenous IGFBP-2 was found to stimulate
proliferation, invasion, and chemoresistance to TMZ in an integrin
b1-dependent manner in glioblastoma cells. The invasion promot-
ing role of IGFBP-2 on glioma cells was supported by Wang et al
(2006) and Mendes et al (2010). Other studies have also described
the integrin-binding function of IGFBP-2, especially of integrin b1,
in various cancer cells. Insulin-like growth factor binding protein-2
specifically bound integrin a5b1 at the cell surface in a Ewing’s
sarcoma cell line, resulting in increased cell migration (Schutt et al,
2004). In addition to cell migration, proliferation and chemore-
sistance can also be stimulated by exogenous IGFBP-2, acting via
integrin receptors, in some tumour cells such as mammary tumour
cells (Perks et al, 2007; Foulstone et al, 2013) and prostate cancer

cells (Uzoh et al, 2011). As observed in the microarray analysis,
integrin b1 is highly expressed in glioblastoma clinical samples,
suggesting the possibility of a physical interaction with IGFBP-2,
and predicting poor outcome for TMZ chemotherapy and rapid
progression of glioblastoma in patients with high serum IGFBP-2
levels. This was verified by the study of Lin et al (2009) and our
study Han et al (2014).

Integrin activation can, in turn, activate ERK signaling, which
transduces cell-specific growth signals and is a major participant in
cancer-related cellular processes (Lin et al, 1997; Renshaw et al,
1997). Expression of integrin b1 was significantly correlated with
that of ERK in glioma clinical samples, reflecting an interaction
between the two signaling pathways. In this study, exogenous
IGFBP-2 was shown to activate ERK in an integrin b1-dependent
manner in glioblastoma cells, and this was essential for IGFBP-
2-induced proliferation, invasion, and chemoresistance to TMZ.
Therefore, the effects of exogenous IGFBP-2 were mainly exerted
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through the integrin b1-ERK signaling pathway. After IGFBP-2
administration, the cellular morphology might change (Figure 3D)
as a result of the interaction between IGFBP-2 and integrin b1
(Wu et al, 2011). Similar phenomena were also present in tumours
other than glioblastoma. Exogenous IGFBP-2 stimulated prolifera-
tion and activated the ERK pathway in NIH-OVCAR3 human
epithelial ovarian carcinoma cells (Chakrabarty and Kondratick,
2006), and promoted proliferation in rat growth plate chondro-
cytes via MAPK/ERK1/2. This activity of IGFBP-2 was associated
with cell membrane binding (Kiepe et al, 2008). In contrast,
endogenous IGBP-2 overexpression may activate different signal-
ing pathways and have other effects as shown by this study.
Consistently, Mendes et al (2010) reported that rather than ERK,
JNK was specifically involved in IGFBP-2-mediated migration in
IGFBP-2-overexpressing glioma cells. Different from exogenous
IGFBP-2, which affects both invasion and proliferation, endogen-
ous IGFBP-2 in glioblastoma cells may not regulate cell growth
(Wang et al, 2003). And, endogenous IGFBP-2 overexpression
cannot increase the IGFBP-2 in the medium to a high enough
level (Supplementary Figure 1F). Thus, exogenous IGFBP-2
administration is more suitable for exploring the mechanisms
by which serum IGFBP-2 mediates chemosensitivity and
tumour recurrence since, as stated above, serum IGFBP-2 may
not originate from the tumour. Moreover, our study emphasises
the significance of therapeutic intervention for glioblastoma
patients to decrease plasma IGFBP-2 levels. The effectiveness of
chemical reagents or specific antibody targeting plasma IGFBP-2
should be explored in future in vivo studies using suitable animal
models.

CONCLUSIONS

To summarise, in the present study, exogenous IGFBP-2 was
shown to stimulate proliferation, invasion, and chemoresistance to
TMZ via the integrin b1-ERK pathway in glioblastoma cells. These
findings have clinical implications. First, they reveal a mechanism
by which serum IGFBP-2 can affect the prognosis of glioblastoma
patients who received postoperative standard radiotherapy plus
TMZ chemotherapy. Second, endogenous IGFBP-2 overexpression
and exogenous IGFBP-2 stimulation may have different patho-
physiologic effect via different signaling pathways. Furthermore,
targeting the integrin b1-ERK pathway may represent a new
approach for the treatment of glioblastoma in patients with high
serum IGFBP-2 levels.
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