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Similar blood-borne DNA methylation
alterations in cancer and inflammatory
diseases determined by subpopulation
shifts in peripheral leukocytes
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Background: Although many DNA methylation (DNAm) alterations observed in peripheral whole blood/leukocytes and serum
have been considered as potential diagnostic markers for cancer, their origin and their specificity for cancer (e.g., vs inflammatory
diseases) remain unclear.

Methods: From publicly available datasets, we identified changes in the methylation of blood-borne DNA for multiple cancers
and inflammatory diseases. We compared the identified changes with DNAm difference between myeloid and lymphoid cells
extracted from two datasets.

Results: At least 94.7% of the differentially methylated DNA loci (DM loci) observed in peripheral whole blood/leukocytes and
serum of cancer patients overlapped with DM loci that distinguish between myeloid and lymphoid cells and >99.9% of the
overlapped DM loci had consistent alteration states (hyper- or hypomethylation) in cancer samples compared to normal controls
with those in myeloid cells compared to lymphoid cells (binomial test, P-value <2.2 x 10~ "4). Similar results were observed for DM
loci in peripheral whole blood/leukocytes in patients with rheumatoid arthritis or inflammatory bowel diseases. The direct
comparison between DM loci observed in the peripheral whole blood/leukocytes of patients with inflammatory diseases and DM
loci observed in the peripheral whole blood of patients with cancer showed that DM loci detected from cancer and inflammatory
diseases also had significantly consistent alteration states (binomial test, P-value <2.2x 10~ 16),

Conclusions: DNAm changes observed in the peripheral whole blood/leukocytes and serum of cancer patients and in the
peripheral whole blood/leukocytes of inflammatory disease patients are predominantly determined by the increase of myeloid
cells and the decrease of lymphoid cells under the disease conditions, in the sense that their alteration states in disease samples
compared to normal controls mainly reflect the DNAm difference between myeloid and lymphoid cells. These analyses highlight
the importance of comparing cancer and inflammatory disease directly for the identification of cancer-specific diagnostic
biomarkers.

DNA methylation (DNAm) is an important epigenetic component to therapeutic interventions (Maier et al, 2005), and find cancer
of carcinogenesis (Robertson, 2005). Historically, DNAm has been  diagnostic biomarkers (Brock et al, 2008). Because blood sampling
measured in various cancer tissues to understand cancer is less invasive and easy to handle (Lonneborg et al, 2009; Li et al,
pathogenesis (Christensen et al, 2010), evaluate patient responses  2012), investigators have attempted to identify diagnostic DNAm
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alterations in peripheral whole blood/leukocytes (Teschendorff
et al, 2009; Marsit et al, 2011; Langevin et al, 2012) and serum
(Fujiwara et al, 2005; Wang et al, 2010; Pedersen et al, 2011;
Garcia-Closas et al, 2013) from patients with cancer such as
ovarian (Teschendorff et al, 2009), breast (Garcia-Closas et al,
2013) and head and neck squamous cell carcinoma (HNSCC;
Langevin et al, 2012). Although some DNAm alterations can
distinguish cancers from normal controls (Teschendorff et al, 2009;
Marsit et al, 2011; Langevin et al, 2012), it is currently still unclear
if these DNAm modifications can distinguish cancers from other
diseases, especially inflammatory diseases.

A change commonly observed in peripheral leukocytes of cancer
patients is an increase in the number of myeloid cells and a
decrease in the number of lymphoid cells (Kuss et al, 2004; Cho
et al, 2009; Accomando et al, 2012; Houseman et al, 2012). As
different leukocyte subtypes have different DNAm patterns, shifts
in leukocyte subpopulations can lead to DNAm alterations in the
peripheral whole blood of cancer patients (Koestler et al, 2012;
Reinius et al, 2012). However, how and to what extent the
population shifts of leukocyte cells could contribute to the DNAm
alterations in the peripheral whole blood/leukocytes of cancer
patients are still unclear. More importantly, similar changes in
subpopulations of peripheral leukocytes also have been observed in
various inflammatory diseases such as inflammatory bowel disease
(IBD; Hanai et al, 2004), chronic hepatitis (Zhang et al, 2011),
chronic obstructive pulmonary disease (Domagala-Kulawik et al,
2007) and rheumatoid arthritis (RA; Liu et al, 2013). This suggests
that the blood-borne DNAm alterations observed in inflammatory
diseases, similarly as in cancer, could also be affected by
population shifts in leukocyte subpopulations. This similarity
may confound the use of blood-borne DNAm alterations in cancer
patients as cancer-specific diagnostic markers because such
markers may not be able to distinguish inflammatory diseases
from cancer.

In serum, researchers often attempt to identify cancer-specific
diagnostic biomarkers by testing candidate aberrant DNAm
modifications previously found to be hypermethylated in cancer
tissues (Ichikawa et al, 2004; Fujiwara et al, 2005; Van De Voorde
et al, 2012), hypothesising that serum exhibits signals of circulating
cell-free DNA released from necrotic tumour cells (Lonneborg
et al, 2009). However, especially in early cancer stages, limited
DNAm signals originating from cancer tissues may be masked by
DNAm signals released from peripheral leukocytes that tend to
undergo apoptosis more in cancer as well as in inflammatory
diseases (Courtney et al, 1999; Saito et al, 2000; Yoshikawa et al,
2008; Saito et al, 2013). Thus, DNAm alterations in the serum of
patients with cancer or inflammatory diseases could also be

affected by population shifts in leukocyte subpopulations, con-
founding the use of DNAm alterations in serum as cancer-specific
diagnostic markers.

Considering that DNAm patterns of leukocytes originating from
a common (myeloid or lymphoid) progenitor tend to be similar
whereas DNAm patterns of leukocytes originating from different
progenitors tend to be different (Reinius et al, 2012) and that the
proportion of myeloid cells tends to increase while the proportion
of lymphoid cells tends to decrease in both cancer and
inflammatory diseases (Houseman et al, 2012; Liu et al, 2013),
we hypothesised that DNAm changes observed in the peripheral
whole blood/leukocytes and serum of patients with cancer or
inflammatory diseases would reflect the differential DNAm
between myeloid and lymphoid cells. In this paper, using publicly
available DNAm profiles of peripheral whole blood/leukocytes
from patients with various cancers (HNSCC, ovarian, small-cell
lung cancer (SCLC), and pancreatic cancer) and various inflam-
matory diseases (RA and IBD), we revealed that almost all
alteration states (hyper- or hypomethylation) of differentially
methylated DNA loci (DM loci) observed for cancer and
inflammatory diseases compared to normal controls were con-
sistent with those in myeloid cells compared to lymphoid cells.
Furthermore, we also showed that almost all of the alteration states
of DM loci observed in the serum of cancer patients were
consistent with those in myeloid cells compared to lymphoid cells.
In this sense, DNAm changes in the peripheral whole blood/
leukocytes of patients with cancer or inflammatory diseases, as well
as in cancer serum, are predominantly determined by population
shifts in the myeloid and lymphoid cells. Finally, we report that
DNAm alterations observed in the peripheral whole blood/
leukocytes of patients with inflammatory diseases were consistent
with those observed in the peripheral whole blood of cancer
patients. Our analyses suggest that current studies for finding
blood-borne DNAm biomarkers between cancer patients and
normal controls might provide little information on the identifica-
tion of cancer-specific diagnosis biomarkers, highlighting the
importance of comparing cancer and inflammatory disease
directly.

MATERIALS AND METHODS

Data sources. All genome-wide DNAm profile datasets (Table 1)
were generated using either the Illumina 450k Human DNA
methylation platform (Illumina, San Diego, CA, USA) or the
Human Methylation 27 Bead Array platform (Illumina). Datasets
were downloaded from the Gene Expression Omnibus (GEO)

Table 1. Datasets analysed in this study

a .
Dataset Sample size Platform® GEO accession ID Reference
N_MTL1 46 27k GSE39981 Accomando et al, 2012
N_MTL2 48 450k GSE35069 Reinius et al, 2012

Case Control

HNSCC_PB 92 92 27k GSE30229 Langevin et al, 2012
HNSCC_SR 12 12 450k GSE40005
OVC_PB 131 274 27k GSE19711 Teschendorff et al, 2009
RA_PL 354 335 450k GSE42861 Liu et al, 2013
Abbreviations: GEO =Gene Expression Omnibus database; HNSCC =head and neck squamous cell carcinoma; MTL=myeloid and lymphoid cells; N=normal; OVC =ovarian cancer;
PB = peripheral whole blood; RA =rheumatoid arthritis; PL = peripheral leukocytes; SR = serum.
®Each dataset is denoted by phenotype followed by sample type.
bo7k represents the Human Methylation 27 Bead Array platform and 450k represents the lllumina 450k Human DNA methylation platform.
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database (Barrett et al, 2009). In all, 25978 CpG loci located within
the proximal promoter regions of the transcription start sites of
14 113 genes were measured in both platforms, which were used as
background CpG loci in this study.

Specifically, in the N_MTL1 dataset, DNAm profiles of normal
human leukocyte subtypes were divided into two groups: one
group was composed of DNAm profiles of myeloid cells including
monocytes (n=15), granulocytes (n=4) and neutrophils (n=4)
and the second group was composed of DNAm profiles of
lymphoid cells including B cells (n=5), NK cells (Pan NKR cells,
CD16 4+ NK cells, CD16 — NK cells, CD8 4+ NK cells and CD8 —
NK cells, n=12) and T cells (CD4 + T cells, CD8 + T cells, NKT
cells, Pan T cells and Tregs, n=16; Accomando et al, 2012).
Similarly, DNAm profiles in the N_MTL2 dataset were divided
into two groups according to origin (myeloid or lymphoid;
Reinius et al, 2012).

The HNSCC_PB dataset included DNAm profiles of peripheral
whole blood samples for 92 HNSCC patients and 92 normal
controls (Langevin et al, 2012). The HNSCC_SR dataset included
DNAm profiles of serum samples for 12 HNSCC patients and 12
normal controls. The OVC_PB dataset included DNAm profiles of
peripheral whole blood samples for 274 pre-treatment ovarian
cancer patients and 131 normal controls after excluding samples of
post-treatment ovarian cancer patients (Teschendorff et al, 2009).
In addition, two reported lists of aberrant DNAm detected in
peripheral leukocytes of pancreatic cancer (Pedersen et al, 2011)
and SCLC (Wang et al, 2010) patients were collected.

The RA_PL dataset included DNAm profiles of peripheral
leukocytes samples for 354 RA patients and 335 normal controls
(Liu et al, 2013). In addition, a reported list of aberrant DNAm
detected from peripheral whole blood of IBD patients was collected
to validate our results (Nimmo et al, 2012).

Data preprocessing. For each CpG locus, the detected P-value
reported by the Bead Studio (Illumina) was used to evaluate the
methylation signal reliability. If the detected P-value of a CpG
locus was > 0.05, then the DNAm signal was considered unreliable
and its methylation level was considered to be missing. A profile
with >10% missing values was deleted. After examining all
DNAm profiles, two and four profiles were excluded from
HNSCC_PB and OVC_PB datasets, respectively. The missing
values in the remaining profiles were estimated by the k-nearest
neighbor algorithm (k =1; Troyanskaya et al, 2001). For a CpG
locus, the methylation level () was calculated by

max(M, 0)

ﬁz:|[ﬂ44A4w+1oo

(1)

where M and U represent the methylated and unmethylated signal
intensity of this locus, respectively (Bibikova et al, 2006). The
methylation level (f3) takes values ranging from 0 to 1. A value of 0
indicates no methylation and 1 indicates complete methylation.

Detection of differentially methylated CpG loci. We employed
the student’s t-test to detect differentially methylated CpG loci
(denoted as DM loci) between two groups of samples with a false
discovery rate (FDR; Benjamini and Hochberg, 1995) <0.01. We
also required that the absolute difference of the average methyla-
tion levels of a DM locus between two groups (Af) was >0.03
(Wang et al, 2010).

Consistency analysis of two lists of DM loci. If the average
methylation level of a DM locus detected in a dataset was higher or
lower for the case compared to the control, we defined the
alteration state of this locus as hypermethylated or hypomethy-
lated. Suppose two DM loci lists selected separately from two
datasets share k DM loci among which s loci have the same
alteration states in these two datasets, then the probability of
observing at least s loci by chance can be calculated according to

the following cumulative binomial distribution model (Bahn,
1969):

P——L—ii(f)ﬂ@—pff (2)

where p = 0.5 represents the probability of a locus having the same
alteration state in two datasets by random chance. The alteration
states of DM loci in the two lists are considered significantly
consistent if the binomial P-value is smaller than 0.05.

DNAm alterations determined by shifts in myeloid and
lymphoid cell populations. First, we hypothesised about DNAm
alterations in the peripheral whole blood/leukocytes of a disease
sample. The assumption was that the increase of myeloid cells and
the decrease of lymphoid cells are chief contributors to DNAm
alterations observed in the peripheral whole blood/leukocytes for a
disease. For a DNA locus, suppose its average DNAm level in
myeloid and lymphoid cells are f3,,, and f, respectively, then the
DNAm level in the normal whole blood/leukocytes can be
represented as

ﬁnormal = ﬁmXPm+ﬁ1><P] (3)

where P, and P| (P, =1 — P,,) represent the proportion of myeloid
and lymphoid cells in the peripheral whole blood of a normal
sample, respectively.

In a disease sample, the DNAm level of the locus can be
represented as

ﬁdisease = (ﬁm+Aﬁm) X (Pm+Ak)+(ﬁl+Aﬁ1) X (Pl*Ak) (4)

where Ak represents the changed proportion of myeloid cells or
lymphoid cells; Afi,, and Ap; represent the difference of DNAm
level of myeloid cells and the difference of DNAm level of
lymphoid cells between disease sample and normal control,
respectively.

The difference in DNAm level of this locus between disease
sample and normal control should be

Aﬁ = ﬁdisease_ﬁnormal
= AkX (B —P1)+(PmtAk) X AB 4 (Pi—Ak) X ABy (5)

Thus, if there is no DNAm level change of this locus in myeloid
and lymphoid cells under the disease condition (i.e., Afi,, =0 and
Ap;=0), the DNAm level difference between disease sample and
normal control is determined by the proportion changes of
myeloid and lymphoid cells and the alteration state of this locus in
the disease will be consistent with that in myeloid cells compared
to lymphoid cells. When there are DNAm alterations in myeloid
and/or lymphoid cells but their influence ((P,+ Ak) x Af,+
(Pi—Ak) x Af) is smaller than the influence of proportion
changes (Ak X (B, — f1)), the alteration state of this locus in the
disease will also be consistent with that in myeloid cells compared
to lymphoid cells, although the alterations in myeloid and/or
lymphoid cells could affect the extent of the DNAm level difference
between disease sample and normal control.

In serum, the cell-free DNA may come from multiple sources
including the normal tissue cells, the cells with pathological
changes in disease tissue and apoptotic or necrotic leukocytes
under the disease condition. Suppose that the cell-free DNA from
normal tissue cells are appropriately equal in disease and normal
serum, then the DNAm level difference of a CpG locus between
disease sample and normal control can be represented as:

AB =AK X (B =)+ (Pm+AK )X AR +(P—AK ) x AP+
Pox (B (Bt M) % (Pt AR )+ (B ABI) < (Pi—AK) )

(6)
where Ak’ represents the changed proportion of cell-free DNA
from myeloid and lymphoid cells under the disease condition,
which is determined by the proportion changes and the apoptosis
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rates of these two cell types. P; represents the proportion of cell-
free DNA from the disease tissue cells, and f; represents the
corresponding DNAm level. According to formula (6), apart from
cell-free DNA from myeloid and lymphoid cells, the DNAm level
difference between disease sample and normal control could also
be influenced by cell-free DNA from the disease tissue cells.
Similarly, as in peripheral whole blood/leukocytes, if the influences
of other factors, namely the DNAm level changes in myeloid and
lymphoid cells ((Py, + AK') x ABy+ (PL— AK') x Afy) and the cell-
free DNA from disease tissue cells (P;x (f;— ((fm + APm) X
(P + AK )+ (Br+ AP x (PL—AK')))), are smaller than the
influence of the proportion changes of cell-free DNA from myeloid
and lymphoid cells (AK’ x (i, — 1)), the DNAm alteration state of
this locus in disease sample compared to normal control could be
consistent with that in myeloid cells compared to lymphoid cells.

In peripheral whole blood/leukocytes and serum, if the
alteration state of a locus in disease sample compared to normal
control is observed to be consistent with that in myeloid cells
compared to lymphoid cells, we consider that the DNAm alteration
of this locus in disease sample is predominantly determined by the
proportion changes of myeloid and lymphoid cells under the
disease condition according to the above deduction, although other
factors could affect the extent of the DNAm alterations.

RESULTS

The DNAm difference between myeloid and lymphoid cells.
With FDR<0.01 and A >0.03, 4385 and 7668 DM loci between
myeloid and lymphoid cells were identified from the N_MTL1
and N_MTL2 datasets, respectively. Among the 4385 DM loci
detected from the first dataset, 94.2% were also detected from the
second dataset and all of them showed the same alteration states in
the two datasets, indicating that the DM loci identified from both
datasets were significantly consistent (binomial test, P-value
<22 x 10~ '°). Integrating the DM loci extracted from the two
datasets, we obtained 7924 DM loci between myeloid and
lymphoid cells, referred to as the M-L DM loci list.

Then, we detected the DM loci lists for each pair of myeloid cell
subtype and lymphoid cell subtype from N_MTL2 dataset and
compared these lists with the M-L DM loci list. The result showed
that most of the DM loci in these lists were overlapped with M-L
DM loci list and at least 98.2% of the overlapped DM loci had the
same alteration states (binomial test, all P-value <2.2 x 1016,
Supplementary Table S1). For example, for the 4551 DM loci
detected between granulocytes and CD4 + T cells, 91.1% of them
were also found to be differentially methylated between myeloid
and lymphoid cells and 99.9% of them had the same alteration
states in granulocytes compared to CD4+ T cells with their
alteration states in myeloid cells compared to lymphoid cells
(binomial test, P-value <22 x 10~ '®). These results suggested
that it should be reasonable to classify the peripheral leukocyte cells
into two groups (myeloid and lymphoid cells) to analyse the
influence of cell population shifts to the observed blood-borne
DNAm alterations under the cancer or inflammation condition.

Blood-borne DNAm alterations for cancer. First, we analysed
the DNAm alteration states of the DM loci observed in the
peripheral whole blood of cancer patients. From the HNSCC_PB
dataset for peripheral whole blood of HNSCC patients, we detected
546 DM loci in HNSCC with FDR<0.01 and 4>0.03. Among
these DM loci, 98.7% were included in the M-L DM loci list and
their methylation alteration states in HNSCC samples (compared
to normal controls) were consistent with their alteration states in
myeloid cells (compared to lymphoid cells), which was unlikely to
be observed by chance (binomial test, P-value <2.2 x 101,
Figure 1). Similarly, among the 839 DM loci detected from the

OVC_PB dataset for ovarian cancer peripheral whole blood, 98.8%
were included in the M-L DM loci list and their methylation
alteration states in ovarian cancer were consistent with their
methylation alteration states in myeloid cells (binomial test,
P-value <22 x 10 '°).

Then, we analysed DNAm alterations in cancer peripheral
leukocytes using a list of 96 DM loci for pancreatic cancer
(Pedersen et al, 2011) and a list of 36 DM loci for SCLC; Wang
et al, 2010) extracted from the published literatures. Among the 96
DM loci for pancreatic cancer, 12 loci were measured in the
platforms analysed in this study and all were included in the M-L
DM loci list. All of their alteration states in pancreatic cancer were
consistent with those in myeloid cells (binomial test, P-value = 2.44
x 10~ *). Similarly, among the 36 DM loci for SCLC, 11 loci were
measured in the platforms analysed in this study and all were
differentially methylated in myeloid cells compared to lymphoid
cells with the same alteration states in SCLC (binomial test,
P-value =4.88 x 10 ).

Finally, we examined the DNAm alterations observed in cancer
serum compared to normal controls. Using the HNSCC_SR
dataset, we detected 4608 DM loci in HNSCC serum, among which
94.7% were included in the M-L DM loci list and 99.9% of their
methylation alteration states in HNSCC serum were consistent
with their alteration states in myeloid cells (binomial test, P-value
<22x10719).

Our data suggested that almost all aberrant DNAm loci
observed in the peripheral whole blood/leukocytes and serum of
cancer patients compared to normal controls were predominantly
determined by the population shifts in myeloid and lymphoid cells,
in the sense that their alteration states in disease samples compared
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Figure 1. Overlap of the DM loci of cancer and inflammatory diseases
with M-L DM loci. For each dataset, light and dark grey bars represent
percentages of DM loci detected in this dataset that overlapped/did
not overlap with the M-L DM loci list, respectively. DM loci numbers
are depicted in brackets after the corresponding percentages.

DM = differentially methylated; M-L DM loci =DM loci in myeloid cells
compared to lymphoid cells; HNSCC_PB and OVC_PB =DM loci
detected from peripheral whole blood of head and neck squamous cell
carcinoma and ovarian cancer samples, respectively; HNSCC_SR=DM
loci from the serum samples of head and neck squamous cell
carcinoma; PAC and SCLC =DM loci from peripheral leukocytes of
pancreatic and small-cell lung cancer samples, respectively; RA_PL and
IBD =DM loci detected from peripheral leukocytes of rheumatoid
arthritis samples and peripheral whole blood of inflammatory bowel
disease samples, respectively.
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to normal controls mainly reflect the DNAm difference between
myeloid and lymphoid cells (see Methods). As the substantial
correlations among multiple tests would potentially distort the
estimation of the true proportion of DM loci (Leek and Storey,
2007), we further compared the DM loci lists detected from
HNSCC_PB, OVC_PB and HNSCC_SR datasets using different
thresholds of P-value with M-L DM loci list. The results showed
that the DNAm alteration states of DM loci detected with different
P-value thresholds also mainly reflected the DNAm difference
between myeloid and lymphoid cells (Table 2). The results also
showed that more stringent thresholds will reduce the number of
detected DM loci overlapped with the M-L DM loci list. Thus, a
few DNAm alterations detected from the peripheral whole blood/
leukocyte and serum of cancer patients were not included in the
M-L DM loci list with FDR<0.01 (Figure 1). This could also be
explained by the fact that the M-L DM loci list included only a
portion of all DM loci between myeloid and lymphoid cells. For
example, among the 242 DM loci detected in the HNSCC serum
but not included in the M-L DM loci list, 58 loci tended to be
significantly different (with an unadjusted P-value <0.05) between
myeloid and lymphoid cells in both the N_MTL1 and N_MTL2
datasets and all their methylation states in HNSCC serum were
consistent with their methylation states in myeloid cells. Of
particular interest, the alteration states of four DM loci observed in
HNSCC serum were inconsistent with respect to their alteration
states in myeloid cells. However, since all the differential DNAm
loci were determined at a certain FDR control level, we could not
exclude the possibility that this observation was introduced by the
false positives for the cancer and/or for the M-L DM loci list.

Blood-borne DNAm alterations for inflammatory diseases.
Then, we examined whether the alteration states of blood-borne
DNAm alterations observed for inflammatory diseases were
consistent with their alteration states in myeloid cells compared
to lymphoid cells (Figure 1). Using the RA_PL dataset for
peripheral leukocytes of RA patients, we identified 841 DM loci
in RA with FDR<0.01 and Af>0.03, among which 98.1% DM
loci were included in the M-L DM loci list and all methylation

Table 2. The consistency of DM loci detected at different significant

levels for cancer and inflammation diseases with M-L DM loci list

DM | Overlapped Consistent Binomial
Dataset loci® DM loci® DM loci€ (%) P-value?
FDR<0.05 and A$>0.03
HNSCC_PB 614 606 (98.7%) 100 <22x10° "¢
OVC_PB 867 847 (97.6%) 99.8 <22x10°1¢
HNSCC_SR | 5618 | 5181 (92.2%) 99.9 <22x10° "¢
RA_PL 842 825 (98.0%) 100 <22x10°1¢
P<0.05 and A$>0.03
HNSCC_PB 679 655 (96.5%) 99.8 <22x10° "¢
OVC_PB 879 856 (97.4%) 99.9 <22x10° 1
HNSCC_SR | 6113 | 5513 (90.2%) 99.9 <22x10° "¢
RA_PL 843 825 (97.9%) 100 <22x10° ¢

Abbreviations: DM = differentially methylated; FDR=false discovery rate; HNSCC = head
and neck squamous cell carcinoma; M-L DM loci=DM loci in myeloid cells compared to
lymphoid cells; OVC=ovarian cancer; PB=peripheral whole blood; PL=peripheral
leukocytes; RA=rheumatoid arthritis; SR =serum.

®The number of DM loci identified from each dataset with different significant levels.
BThe number of identified DM loci overlapped with M-L DM loci list and corresponding
percentage.

“The percentage of overlapped DM loci having the consistent alteration states with those in
myeloid and lymphoid cells.

%The binomial distribution P-value.

alteration states in RA were consistent with their alteration states
in myeloid cells (binomial test, P-value <2.2 X 10~ '%). Similar
result was observed for DM loci detected with low-stringency
thresholds (FDR < 0.05 and P<0.05; Table 2). For the 1117 DM
CpG loci previously reported for IBD (Nimmo et al, 2012), 1043
were measured in all platforms analysed in this study, among
which 80.6% were included in the M-L DM loci list and 98.8% of
their methylation alterations in IBD were consistent with those in
myeloid cells (binomial test, P-value <2.2 x 10~ '®). There were
10 loci whose methylation alteration states in IBD were incon-
sistent with their alteration states in myeloid cells. However, we
could not exclude the possibility that this observation was
introduced by false positives for IBD and/or for the M-L DM
loci list.

The above results clearly showed that almost all DNAm
alterations observed in the peripheral leukocytes of RA and
peripheral whole blood of IBD patients were predominantly
determined by the shifted subpopulations of myeloid and
lymphoid cells, in the sense that their alteration states in disease
samples compared to normal controls mainly reflect the DNAm
difference between myeloid and lymphoid cells. Although some
DM loci observed for these inflammatory diseases were not
included in the M-L DM loci list, they could be explained by the
incompleteness of the M-L DM loci list. Notably, although no data
were available for analysing DNAm alterations in inflammatory
disease patients’ serum, it is reasonable that DNAm alterations in
inflammatory disease serum could also be determined by the
shifted subpopulations of myeloid and lymphoid cells, which also
undergo greater apoptosis in inflammatory diseases (Courtney
et al, 1999).

Comparisons of blood-borne DNAm alterations in cancer and
inflammatory disease. As described above, blood-borne DNAm
alterations observed in both cancer and inflammatory disease
patients were determined by shifted populations of myeloid and
lymphoid cells, suggesting that blood-borne DNAm alterations in
cancer patients were consistent with the blood-borne alterations in
inflammatory disease patients. Thus, we compared DNAm
alterations observed in the peripheral whole blood (or peripheral
leukocytes) from both patient types.

Among the 546 DM loci identified from the HNSCC_PB
dataset, 75.6% were significantly altered in RA peripheral
leukocytes and all methylation alteration states in HNSCC were
consistent with those in RA (binomial test, P-value <2.2 x 10~ '6).
For the remaining 133 DM loci detected in HNSCC peripheral
whole blood samples, 125 tended to be differentially methylated in
RA peripheral leukocytes (unadjusted P-value <0.05) and all of
their alteration states in HNSCC were consistent with those in RA.
Similarly, among the 839 DM loci identified from the OVC_PB
dataset, 65.7% were significantly altered in RA peripheral
leukocytes and all methylation alteration states in ovarian cancer
were consistent with those in RA (binomial test, P-value
<22 x 10 '®). Among the remaining 288 DM loci in ovarian
cancer samples, 270 loci tended to be differentially methylated in
the peripheral leukocytes of RA patients (unadjusted P-value
<0.05) and only one of these loci had an inconsistent alteration
states in ovarian cancer and RA.

Among the 546 DM loci identified from the HNSCC_PB
dataset, 61.3% were included in the DM loci list previously
reported for IBD and all were similar with respect to alteration
states in these two diseases (binomial test, P-value <2.2 x 10~ °).
Among the 839 DM loci identified from the OVC_PB dataset,
48.3% were included in the IBD DM loci list and all except one
were of the same alteration states in these two diseases (binomial
test, P-value <2.2 x 10~ '°). The low coverage of the DM loci of
HNSCC and ovarian cancer by the IBD DM loci list could be due
to the incompleteness of the IBD DM loci list. These data suggest

www.bjcancer.com | DOI:10.1038/bjc.2014.347

529


http://www.bjcancer.com

BRITISH JOURNAL OF CANCER

Blood-borne DNA methylation alterations in cancer

that DNAm alterations in the peripheral blood of HNSCC and
ovarian cancer patients were consistent with alterations in the
peripheral leukocytes of RA and peripheral whole blood of IBD
patients.

DISCUSSION

Our results indicate that most, if not all, DNAm alterations
observed in the peripheral whole blood/leukocytes of cancer
patients are predominantly determined by the population shifts in
myeloid and lymphoid cells, in the sense that their alteration states
in cancer samples compared to normal controls mainly reflect the
DNAm difference between myeloid and lymphoid cells. Our
analyses indicate that DNAm alterations observed in the serum of
cancer patients also mainly reflect the DNAm difference between
myeloid and lymphoid cells. Therefore, the signals of circulating
cell-free DNA from cancer cells could be largely masked by the
signals of cell-free DNA from myeloid and lymphoid cells. This can
explain previous reports that DM loci found in cancer tissues
infrequently appear in serum (Ichikawa et al, 2004; Fujiwara et al,
2005; Van De Voorde et al, 2012). Therefore, preselecting
candidate blood-borne DNAm biomarkers from DNAm loci
previously found to be hypermethylated in cancer tissues is a
misleading strategy (Ichikawa et al, 2004; Fujiwara et al, 2005; Van
De Voorde et al, 2012). To avoid the influence of shifted
populations of myeloid and lymphoid cells, a reasonable approach
may be to focus on finding blood-borne DNAm biomarkers of
cancer from those DNA loci that tend to have similar amounts of
DNAm in myeloid and lymphoid cells. Unfortunately, by analysing
the 242 DM loci in HNSCC serum detected from the HNSCC_SR
dataset (but not included in the M-L DM loci list), we found no
evidence for the feasibility of this approach. From these 242 DM
loci, we selected 40 DM loci that were unlikely to be differentially
methylated between peripheral myeloid and lymphoid -cells
according to the criterion that their unadjusted P-values in both
the N_MTLI and N_MTL2 datasets were >0.2. Among these 40
DM loci, 16 were hypermethylated in the HNSCC serum samples
compared to normal controls but none were hypermethylated in
the HNSCC tissue samples compared to normal controls in the
dataset for HNSCC from The Cancer Genome Atlas database
(Mclendon, 2008). According to this analysis, we could not
determine whether these DM loci originated from circulating DNA
released from cancer tissues, the clarification of which may require
more data and experiment validation.

Our results also showed that DNAm alterations observed in the
peripheral whole blood/leukocytes of patients with inflammatory
diseases compared to normal controls are significantly consistent
with those observed in cancer patients compared to normal
controls. This phenomenon is likely caused by the similar
proportion changes of myeloid and lymphoid cells under the
disease conditions. In fact, not only the myeloid/lymphoid
proportions, but also the leukocyte subtype proportions tended
to have similar changes under cancer or inflammation condition.
According to the estimation reported by previous studies
(Houseman et al, 2012; Liu et al, 2013), the proportions of T
cells, B cells and NK cells tended to decrease while monocytes and
granulocytes tended to increase under both the cancer and
inflammation conditions. Although we were unable to examine
the consistency of the blood-borne DNAm alterations between
particular types of cancer and their corresponding inflammatory
diseases due to limited data sources, we hypothesise that they
would be similar due to similar trends of population shifts of
peripheral myeloid and lymphoid cells for both cancers (Kuss et al,
2004; Cho et al, 2009; Accomando et al, 2012; Houseman
et al, 2012) and inflammatory diseases (Hanai et al, 2004;

Domagala-Kulawik et al, 2007; Zhang et al, 2011). Therefore, the
blood-borne DNAm alterations detected from cancer samples
compared to normal controls might be difficult to distinguish
cancer from inflammatory diseases.

Hopefully, subtle differences of peripheral leukocyte subpopula-
tion shifts between cancer and inflammatory patients may exist,
which could lead to DNAm differences between cancer and
inflammatory patients. For example, according to the estimated
proportions of leukocyte subtypes in peripheral bloods of HNSCC,
OVC and peripheral leukocytes RA patients (Houseman et al,
2012; Liu et al, 2013), we found that the average proportion of
myeloid cells increased 8.0% and 9.5% in HNSCC and OVC
patients, respectively, while increased 12.3% in RA patients
compared to normal controls. To detect such subtle DNAm
difference between cancer and inflammatory diseases, a direct
comparison of cancer and inflammatory disease samples is needed.
It is also possible that DNAm alterations occurring in specific
leukocyte subtypes in cancer or inflammatory diseases could serve
as diagnostic biomarkers to distinguish cancer from inflammatory
diseases. Actually, it has been found that, compared to normal
controls, expression of some interferon-stimulated genes (ISGs)
tends to be significantly downregulated in peripheral CD4+ T,
CD8+ T and B cells of patients with melanoma, breast and
gastrointestinal cancers (Critchley-Thorne et al, 2007; Critchley-
Thorne et al, 2009), whereas some of these ISGs tend to be
significantly upregulated in peripheral CD4+ T, CD8+ T and B
cells of patients with inflammatory diseases such as systemic lupus
erythematosus (Becker et al, 2013). A complicated method has
been proposed to identify DNAm alterations occurring in specific
leukocyte subtypes of patients with a particular disease from
peripheral whole blood/leukocyte samples by adjusting the
influence of the leukocyte subpopulation shifts (Liu et al, 2013).
Nevertheless, the estimation of the leukocyte proportions required
by this method tends to be rough as it depends on the
proper selection of cell-type-specific markers (Zhong et al, 2013).
Obviously, it would be more efficient to measure and compare cell-
type-specific DNAm profiles for cancer and inflammatory diseases
to identify cancer-specific diagnostic biomarker.
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