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Background: Cutaneous squamous cell carcinoma (cSCC) is one of the most common malignancies in fair-skinned populations
worldwide and its incidence is increasing. Despite previous observations of multiple genetic abnormalities in cSCC, the oncogenic
process remains elusive. The purpose of this study was to elucidate key molecular events associated with progression from
premalignant actinic keratoses (AKs) to invasive cSCC by transcriptome profiling.

Methods: We combined laser capture microdissection with the Affymetrix HGU133 Plus 2.0 microarrays to profile 30 cSCC and 10 AKs.

Results: We identified a core set of 196 genes that are differentially expressed between AK and cSCC, and are enriched for
processes including epidermal differentiation, cell migration, cell-cycle regulation and metabolism. Gene set enrichment analysis
highlighted a key role for the mitogen activated protein kinase (MAPK) pathway in cSCC compared with AK. Furthermore,
the histological subtype of the tumour was shown to influence the expression profile.

Conclusion: These data indicate that the MAPK pathway may be pivotal to the transition from AK to cSCC, thus representing a
potential target for cSCC prevention. In addition, transcriptome differences identified between cSCC subtypes have important
implications for future development of targeted therapies for this malignancy.

Skin cancers are by far the most common malignancies in fair-
skinned populations, with an incidence now reaching epidemic
proportions (Madan et al, 2010; Rogers et al, 2010). There are
B700 000 cases of cutaneous squamous cell carcinoma (cSCC)
diagnosed each year in the United States and the frequency is rising
worldwide (de Vries et al, 2005; Skin Cancer Foundation, 2010).
While the overall survival of patients with cSCC is high, these
tumours are associated with considerable morbidity and pose a
substantial financial burden for health-care systems. When cSCC

metastasises, the prognosis is poor, with a 5-year survival rate of
o25% (Rowe et al, 1992; Kraus et al, 1998). Immunosuppressed
patients such as organ transplant recipients (OTRs) and individuals
with chronic lymphocytic leukaemia are at significantly increased
risk for cSCC and are prone to multiple and often aggressive
tumours (Euvrard et al, 2003; Harwood et al, 2006, 2013).

An estimated 65% of cSCC arise from precursor lesions termed
actinic keratoses (AKs) (Criscione et al, 2009). Actinic keratosis is
associated with epidermal atypia and is thought to represent a
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continuum of progression from dysplastic keratinocytes to cSCC.
Actinic keratoses affect up to 18% of people in the United
Kingdom over 60 years of age, rising to 64% in Australia (Frost
et al, 2000; Memon et al, 2000). They are the strongest independent
risk factor for cSCC development, and often present as multiple
lesions, producing ‘field cancerisation’ if confluent. The precise rate
of progression is unknown, however, a study from the United
States that prospectively followed 169 patients with a total of 7784

AK estimated the risk of progression for an individual lesion was
2.57% at 4 years (Criscione et al, 2009). Evidence for progression of
AK to cSCC is also provided by genetic studies that report AKs
have a similar karyotypic profile to cSCC, but display a reduced
degree of complexity, consistent with an earlier stage of tumour
development (Ashton et al, 2003).

Despite the frequency of cSCC, their underlying molecular
pathogenesis is poorly characterised, especially the changes

Table 1. Sample characteristics

Sample name AK/SCC Patient no. Differentiation status Immune status Gender Location Age (years)

AK1 AK 8 NA IC M Leg 52

AK2 AK 10 NA IS M Scalp 65

AK3 AK 9 NA IS M Hand 69

AK4 AK 11 NA IC M R hand 89

AK5 AK 2 NA IS F Hand 71

AK6 AK 1 NA IS M Hand 63

AK7 AK 4 NA IS M Hand 57

AK8 AK 5 NA IS M Hand 57

AK9 AK 6 NA IS M Scalp 72

AK10 AK 7 NA IC M Hand 80

SCC1 SCC 1 WD IS M Elbow 63

SCC2 SCC 2 WD IS F Hand 69

SCC3 SCC 3 WD IC M Calf 74

SCC4 SCC 4 WD IS M Upper arm 56

SCC5 SCC 5 WD IS M Hand 49

SCC6 SCC 9 WD IS M Scalp 70

SCC7 SCC 10 WD IS M Temple 64

SCC8 SCC 11 WD IC M Temple 88

SCC9 SCC 14 WD IC M Temple 77

SCC10 SCC 15 WD IC M Pinna NA

SCC11 SCC 16 WD IS M Neck 30

SCC12 SCC 22 WD IS M Scalp 56

SCC13 SCC 23 WD IS F Finger 47

SCC14 SCC 30 WD IC M Groin 67

SCC15 SCC 31 WD IS M Forearm 46

SCC16 SCC 6 MD IS M Pinna 73

SCC17 SCC 8 MD IC M Chest 52

SCC18 SCC 17 MD IC M Temple 77

SCC19 SCC 21 MD IS F Shin 66

SCC20 SCC 24 W-MD IS M Pinna 80

SCC21 SCC 25 MD IS M Pinna 58

SCC22 SCC 26 MD IS M Neck 41

SCC23 SCC 27 MD IS M Chest 51

SCC24 SCC 28 MD IC M Temple 69

SCC25 SCC 12 M-PD IC F Calf 86

SCC26 SCC 13 M-PD IS F Finger 59

SCC27 SCC 18 M-PD IS F Foot 73

SCC28 SCC 19 PD IS M Cheek 75

SCC29 SCC 20 PD IS M Pinna 68

SCC30 SCC 29 M-PD IS M Neck 67

Abbreviations: AK¼ actinic keratosis; F¼ female; IC¼ immunocompetent; IS¼ immunosuppressed; M¼male; MD¼moderately differentiated; NA¼ not available; PD¼poorly differentiated;
SCC¼ squamous cell carcinoma; WD¼well differentiated.
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involved in progression from AK to cSCC. Recent exome-level
sequencing of cSCC revealed a huge mutational burden of B1 per
30 000 base pairs of coding sequence (Durinck et al, 2011). This
makes cSCC the most highly mutated human malignancy,
compounding the difficulty in defining ‘driver’ molecular events
underlying their development. Evidence to date supports impor-
tant tumour suppressor roles for TP53 and NOTCH, but the
contribution of additional genes and pathways is unclear (Durinck
et al, 2011; Wang et al, 2011). Earlier studies demonstrated
considerable karyotypic complexity in cSCC, with frequent gains
on chromosomes 3q, 8q and 20q and losses of 3p, 4p, 9p, 13q, 17p
and 17q (Quinn et al, 1994; Popp et al, 2002; Ashton et al, 2003;
Clausen et al, 2006; Purdie et al, 2007, 2009). Our previous
genome-wide analysis using single-nucleotide polymorphism
(SNP) microarrays revealed that well-differentiated (WD) tumours
display a distinct genetic profile from moderately (MD) and poorly
differentiated (PD) tumours, indicating that these may represent a
separate subgroup of cSCC (Purdie et al, 2009). However, current
published expression microarray studies have failed to corroborate
this at the level of gene expression and have yielded little consensus
on the genes that are differentially expressed in cSCC (Van Haren
et al, 2009). This can be largely attributed to small sample sizes,
non-microdissected tumour specimens and the absence of
correlation with cSCC grade among the tumours analysed
(Haider et al, 2006; Kathpalia et al, 2006; Nindl et al, 2006).

The purpose of our study was to identify potential ‘drivers’ in
the transition from AK to cSCC by comparing the transcriptome of
tumour cells isolated by laser capture microdissection from cSCC,
with that of dysplastic keratinocytes from AKs. We have identified
a series of differentially expressed genes (DEGs) in cSCC and have
demonstrated key biological processes that distinguish cSCC from
AK. Furthermore, an enrichment of DEGs has been demonstrated
in key pathways such as the mitogen activated protein kinase
(MAPK) pathway, implicating this pathway in the evolution of
cSCC from precursor lesions.

MATERIALS AND METHODS

Tumour samples. Fresh-frozen biopsies of normal skin, AK and
cSCC were obtained at the time of surgical excision and
immediately snap-frozen in liquid nitrogen. All patients provided
informed consent in accordance with ethical approval from the
East London and City Health Authority local ethics committee.
For microarray analysis, patient material was preferentially included
where matched AK and cSCC lesions were available from the same
patient. Subsequent samples were chosen to represent a range of
histological diagnoses from both immunosuppressed and immu-
nocompetent patients. In total, 10 AKs and 30 primary cSCC
(9 matched to AK) were analysed. The cSCC comprised 15 WD,
9 MD (including 1 cSCC admixed with an additional WD
component, W-MD) and 6 PD (including 4 cSCC admixed with an
MD component, M-PD). The samples were derived from 10
immunocompetent patients, 20 OTRs and 1 patient with chronic
lymphocytic leukaemia, reflecting the spectrum of patients
presenting with cSCC to our institution. Patient and sample
characteristics are detailed in Table 1.

Expression microarray analysis. Laser capture microdissection
and RNA extraction were performed as previously described
(Lambert et al, 2012), such that all samples were estimated to be a
minimum 90% enrichment for tumour or dysplastic cells. RNA
quality and concentration was measured using the Agilent
Bioanalyser (Agilent, Berkshire, UK). Ten nanograms of RNA
was used as a template for whole transcriptome amplification and
cDNA synthesis using the NuGen WT-ovation Pico RNA
Amplification System according to the manufacturer’s instructions

(NuGen, San Carlos, CA, USA). Five micrograms of amplified
cDNA was labelled with the FL-ovation Biotin Kit (NuGen) and
hybridised to the Affymetrix HGU133 Plus 2.0 microarrays
(Affymetrix, Santa Clara, CA, USA), comprising 54 675 features.

Table 2A. Differentially expressed genes downregulated between AK
and cSCC, as identified by both ANOVA and eBayes

Gene
name

Log2
FC

Adj
P-value

Gene
name

Log2
FC

Adj
P-value

FLG2 � 6.0 2.96E� 02 LOC283070 �2.2 3.36E�03

KRT9 � 5.8 8.31E� 04 SEPP1 �2.1 1.57E�02

KRT77 � 5.4 8.31E� 04 SERTAD4 �2.0 1.34E�03

FLG � 5.3 3.30E� 02 GLDN �1.9 2.87E�02

LOR � 5.2 1.73E� 02 UBL3 �1.9 3.34E�03

LCE1B � 5.2 3.67E� 02 LYPLAL1 �1.9 2.41E�02

SERPINB12 � 5.2 1.55E� 02 ARL5A �1.8 8.24E�03

AZGP1 � 4.9 6.23E� 04 HNRPLL �1.8 3.14E�02

CD36 � 4.7 5.44E� 04 BOC �1.8 7.15E�03

AADACL2 � 4.1 1.43E� 02 GGTA1 �1.8 2.91E�02

HPGD � 3.8 3.22E� 03 ELOVL6 �1.7 4.14E�03

SERPINA12 � 3.6 4.57E� 02 SPATA6 �1.7 1.07E�02

TNFRSF19 � 3.3 4.82E� 02 C1orf96 �1.7 2.05E�03

MUC15 � 3.3 6.07E� 03 IDE �1.7 1.44E�02

MFAP3L � 3.3 1.63E� 02 CREBL2 �1.7 1.55E�03

ATP6V1C2 � 3.2 4.90E� 03 PGRMC2 �1.6 3.43E�02

ELOVL4 � 3.1 3.34E� 03 KRT10 �1.6 1.51E�02

BPIL2 � 3.1 3.46E� 03 SLC30A1 �1.6 7.91E�04

TGFBR3 � 3.0 5.44E� 04 ZDHHC23 �1.5 1.55E�02

EDNRB � 2.9 1.82E� 05 TMEM45A �1.5 3.36E�03

PDZD2 � 2.9 1.55E� 03 ATP7A �1.5 1.45E�02

ITM2A � 2.9 1.67E� 02 C5orf41 �1.5 3.86E�02

MARCH3 � 2.8 7.15E� 03 KIAA1370 �1.5 7.15E�03

LAMB4 � 2.8 4.69E� 02 OLFM2 �1.4 3.86E�02

EGR3 � 2.7 7.76E� 03 PARM1 �1.4 2.25E�02

ZNF682 � 2.7 1.53E� 02 TCP11L2 �1.4 8.24E�03

METTL7A � 2.6 1.21E� 03 SECISBP2L �1.3 1.64E�02

RORA � 2.6 5.18E� 04 MIPEP �1.3 3.66E�02

QPCT � 2.5 1.19E� 02 OXCT1 �1.3 2.87E�02

LGR6 � 2.5 2.19E� 02 ATAD2B �1.3 3.72E�02

ID4 � 2.5 3.28E� 02 CNOT6L �1.2 2.32E�02

HLF � 2.5 4.57E� 03 SLC26A11 �1.2 1.45E�02

GRAMD1C � 2.4 2.35E� 03 RNLS �1.2 3.01E�02

LONRF1 � 2.3 8.31E� 04 ACVR2A �1.2 2.05E�03

PPM1L � 2.3 2.20E� 02 CEP68 �1.2 2.05E�02

GLRX � 2.2 2.43E� 03 DYNC1LI1 �1.1 6.22E�03

ITGBL1 � 2.2 2.18E� 02 TANC1 �1.1 1.34E�02

FAM13C � 2.2 1.07E� 02 ATG2B �1.1 1.21E�03

MATN2 � 2.2 3.13E� 02 WDFY3 �1.1 2.97E�02

CADM1 � 2.2 1.36E� 02 KIAA1012 �1.0 1.57E�02

GAS7 � 2.2 9.34E� 04 NARG1L �1.0 2.57E�02

TRAM1L1 � 2.2 4.33E� 02

Abbreviations: AK¼ actinic keratosis; ANOVA¼ analysis of variance; cSCC¼ cutaneous
squamous cell carcinoma; FC¼ fold change.
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All procedures were performed according to the manu-
facturer’s recommended protocol. Raw data for all samples are
available through the Gene Expression Omnibus (GEO: http://
www.ncbi.nlm.nih.gov/geo/), accession number GSE45216.

Statistical analysis. Quality control analysis was performed as
recommended for Affymetrix microarrays using the R/Bioconductor
statistical programming environment (Tumor Analysis Best
Practices Working Group, 2004). All subsequent data analysis
procedures were also performed in R. Data were normalised using
GCRMA and filtered using a variance of X0.1. Differential gene
expression analysis was performed using the normalised and
filtered set of probes with ANOVA and eBayes. An adjusted
Pp0.05 after correction for multiple testing (Benjamini–
Hochberg) was considered as significantly different between the
two groups. Gene set enrichment analysis (GSEA) was performed
as previously described using the C1, C2, C3 and C5 gene sets
(Subramanian et al, 2005; Hamoudi et al, 2010). Leading edge
analysis was performed to identify the most biologically important
genes within sets that were identified as differentially regulated
between AK and SCC. Gene ontology (GO) was performed using
the online bioinformatic tool DAVID. To assess the effect of
differentiation status and immune status on the expression profile,
unsupervised hierarchical clustering of the GCRMA normalised
and filtered probes (n¼ 22 926) was performed using Ward
average linkage. A Fisher’s exact test was used to measure the
compactness of clustering for each variable.

Quantitative real-time PCR. Quantitative real-time PCR
(qRT-PCR) was performed on an independent set of biopsies.
Total RNA was extracted from fresh-frozen biopsies by homo-
genisation under liquid nitrogen. In total, RNA was extracted from
five normal skin samples, nine AKs, nine WD SCC and 9 MD SCC
using the RNeasy Mini kit with on-column DNAse digestion
(Qiagen, Manchester, UK) according to the manufacturer’s
instructions. First-strand cDNA was synthesised from 500 ng
RNA using Superscript III First-Strand Synthesis SuperMix, with a
combination of 2.5mM oligo dT and random primers (2.5 ng ml� 1)
(Invitrogen, Paisley, UK). cDNA was diluted 1 : 10 before real-time
quantitative PCR (QPCR) analysis. Quantitative PCRs were run in
triplicate on the ABI 7500 Real time PCR machine (Invitrogen)
using 1 ml diluted cDNA and Brilliant II SYBR Green QPCR
Mastermix (Stratagene, Wokingham, UK) with the two-step
cycling protocol recommended by the manufacturer. The PCR
primers were intron spanning with the exception of those for JUN,
which has a single exon (primer sequences are available in
Supplementary methods). Relative expression data were calculated
by the equation 2DDCt, using the endogeneous control gene RPS9 as

Table 2B. Differentially expressed genes upregulated between AK and
cSCC, as identified by both ANOVA and eBayes

Gene
name

Log2
FC

Adj
P-value

Gene
name

Log2
FC

Adj
P-value

MMP1 4.6 3.46E� 02 CDC42BPB 1.4 6.22E� 03

MMP10 4.4 3.77E� 04 S100A6 1.4 4.56E� 02

CXCL1 4.1 7.91E� 04 IL4R 1.4 1.33E� 02

INHBA 3.7 6.07E� 03 SPATS2 1.4 3.72E� 02

SPP1 3.7 7.91E� 04 ZCCHC10 1.4 1.33E� 02

PTHLH 3.5 7.81E� 04 SRM 1.4 4.39E� 02

SH2D5 3.5 2.91E� 03 JAG1 1.4 4.14E� 02

ALDH1A3 3.3 1.85E� 02 JOSD1 1.4 1.43E� 02

LAMC2 3.1 2.35E� 03 ZYX 1.3 2.76E� 02

GPRC5A 2.9 3.88E� 02 NOLC1 1.3 2.87E� 02

PLAUR 2.8 3.77E� 04 GLT25D1 1.3 3.03E� 02

GPR68 2.7 2.17E� 02 CTSB 1.3 2.97E� 02

STC1 2.3 4.33E� 02 YKT6 1.3 2.90E� 02

ERO1L 2.2 3.46E� 03 HIST1H2BI 1.3 2.37E� 02

ANXA2 2.2 1.97E� 02 HN1L 1.3 4.53E� 02

MTHFD1L 2.2 1.43E� 02 FLNB 1.3 2.95E� 02

SLC16A3 2.2 1.33E� 03 MAP3K13 1.3 3.75E� 02

EIF4EBP1 2.2 1.64E� 02 PLEC1 1.3 1.73E� 02

PLAU 2.2 6.31E� 03 RPS6KA4 1.3 2.05E� 03

FLNA 2.1 1.08E� 03 IFRD2 1.3 1.19E� 02

IGF2BP2 2.1 2.35E� 03 ANKLE2 1.2 2.97E� 02

ITGA5 2.1 8.31E� 04 TSC2 1.2 3.32E� 02

HRH1 2.1 4.20E� 02 SLC9A1 1.2 5.44E� 04

KLF7 2.1 8.19E� 03 TES 1.2 2.16E� 02

FAM83A 2.0 2.16E� 02 LRRC8A 1.2 3.01E� 02

TRIP10 2.0 7.15E� 03 N4BP1 1.2 6.07E� 03

NRP2 2.0 1.85E� 02 DNAJC8 1.2 7.11E� 03

PDIA5 2.0 2.43E� 03 PLOD1 1.2 1.96E� 03

SERPINB1 2.0 1.45E� 02 S100A13 1.2 2.88E� 02

SRGAP1 1.9 1.43E� 02 PDXK 1.2 3.30E� 02

TYMP 1.9 2.29E� 02 TCF3 1.1 3.34E� 03

SESTD1 1.8 2.88E� 02 PVR 1.1 3.63E� 03

RASIP1 1.8 1.57E� 02 VPS72 1.1 1.08E� 02

C11orf17 1.8 1.72E� 02 PAK2 1.1 1.22E� 02

NOP56 1.8 1.40E� 02 CAD 1.1 2.26E� 02

C16orf57 1.8 1.05E� 02 RUVBL1 1.1 4.06E� 02

TGFA 1.7 1.19E� 02 TICAM1 1.1 3.63E� 03

MET 1.7 5.00E� 03 B4GALT1 1.1 1.57E� 02

CARHSP1 1.7 1.05E� 02 GPR153 1.1 8.57E� 04

ZAK 1.7 5.44E� 04 HNRNPU 1.1 2.97E� 02

HN1 1.7 2.11E� 02 ZNF697 1.1 7.15E� 03

FTL 1.6 1.84E� 02 CDC27 1.0 1.55E� 03

TNFRSF12A 1.6 7.15E� 03 MARK3 1.0 3.52E� 02

CDCP1 1.6 7.66E� 03 CEBPD 1.0 4.02E� 02

RFTN1 1.6 3.30E� 02 AP2A2 1.0 3.34E� 03

KLF6 1.6 4.74E� 02 ZBED4 1.0 3.98E� 02

TRIO 1.6 4.06E� 02 CTSLL3 1.0 1.69E� 02

EHD2 1.5 4.73E� 02 BRD9 1.0 3.86E� 02

Table 2B. ( Continued )

Gene
name

Log2
FC

Adj
P-value

Gene
name

Log2
FC

Adj
P-value

TCOF1 1.5 4.57E�02 SF3A2 0.9 1.33E�03

NRIP3 1.5 3.34E�03 HEATR2 0.9 3.75E�02

CDH3 1.5 2.60E�02 RFT1 0.9 2.06E�02

JUN 1.5 1.50E�02 SOCS1 0.8 1.28E�02

CDC20 1.5 6.14E�03 GTSE1 0.8 3.77E�04

RRBP1 1.5 2.17E�02 GALE 0.7 2.37E�02

BOP1 1.4 1.73E�02 ATP13A1 0.7 4.89E�02

SDC4 1.4 4.89E�02 VPS37B 0.6 3.72E�02

VEGFA 1.4 4.12E�02

Abbreviations: AK¼ actinic keratosis; ANOVA¼ analysis of variance; cSCC¼ cutaneous
squamous cell carcinoma; FC¼ fold change.
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the internal reference. Data were normalised to the mean Ct value
from five normal (non-lesional) skin samples. For each sample,
cDNA synthesis was also performed in the absence of reverse
transcriptase to exclude the possibility of genomic contamination.
Statistical analysis was performed using a two-tailed t-test, with a
Po0.05 considered as statistically significant.

RESULTS

Genes involved in epidermal differentiation, angiogenesis, taxis,
proliferation and adhesion are differentially expressed between
AK and cSCC. To identify DEGs between AK and cSCC,
expression microarray data from 30 cSCC and 10 AKs were
analysed by two different statistical algorithms: ANOVA and
eBayes (Supplementary Table 1). The probes that were identified as
differentially expressed by both methods were considered as a
robust set of DEGs between AK and cSCC (adjusted Po0.05).
In total, this included 239 probes (131 were upregulated in the cSCC
and 108 were downregulated), which corresponded to 196
annotated genes (Tables 2A and B). This probe list notably
included two upregulated genes that have been consistently
identified as overexpressed in cSCC from previous microarray
studies (MMP1 and CDH3), as well as downregulation of the
differentiation-specific keratin, KRT10, which is also consistently
reported in cSCC (Van Haren et al, 2009).

Clustering of the samples using these probes revealed two main
groups, one containing the majority of cSCC (20 out of 30) and the
second containing the AK and remaining 10 cSCC (Figure 1). The
cluster containing only cSCC included 73% (11 out of 15) of the
MD–PD tumours, compared with 40% (6 out of 15) of the WD
tumours, although this difference did not reach statistical
significance using a two-tailed Fisher’s exact test. There were no

other significant clinical or pathological features relating to age at
diagnosis, gender, immune status or tumour location (sun exposed
vs non-sun exposed) that accounted for separation of the cSCC
across the two groups. Careful laser capture microdissection of
tissue samples used for RNA extraction makes it unlikely that
stromal contamination was responsible for the clustering of some
cSCC with the AK samples. Rather, it may indicate that there is a
spectrum of tumour development. AK10 was clustered on an
outlying clade within the same cluster as the other AK samples.
There were no outstanding clinical or pathological features of this
case (male, aged 80, immunocompetent, sun-exposed site) that
accounted for its position within the clustering, again suggesting
that it could represent natural variation among the samples.

To identify biological processes represented by the DEGs, GO
was performed using the online bioinformatic tool, DAVID. This
revealed terms associated with angiogenesis, epidermal develop-
ment and differentiation, taxis, proliferation and adhesion
(Supplementary Table 2). In keeping with these ontology terms,
some of the genes that showed the largest fold-change down-
regulation in the cSCC were those involved in terminal epidermal
differentiation, including filaggrin (FLG), filaggrin family member
2 (FLG2), loricrin (LOR) and late cornified envelope 1B (LCE1B).
Those that were strongly upregulated in cSCC included the matrix
metallopeptidases MMP1 and MMP10, and a set of genes
associated with migration and focal adhesion (including filamin
A (FLNA), FLNB, integrin alpha 5 (ITGA5), jun proto-oncogene
(JUN), met proto-oncogene, laminin-5 gamma2 chain (LAMC2),
p21 protein (Cdc42/Rac)-activated kinase 2 (PAK2), vascular
endothelial growth factor A (VEGFA) and Zyxin (ZYX).

qRT-PCR validates microarray differential gene expression
analysis. To validate the findings of the microarray analysis, eight
genes identified by both statistical methods (ACVR2A, ID4,
INHBA, JUN, MET, MMP10, PAK2 and PTHLH) were assessed
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Figure 1. Heat map of 239 overlapping differentially expressed probes identified by ANOVA and eBayes analysis of cSCC vs AK.
Characterisation bars beneath the dendrogram highlight key clinicopathological variables. Abbreviations: AK¼ actinic keratosis;
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by qRT-PCR in an independent series of 27 lesions (9 AKs, 9 WD
SCC and 9 MD SCC). In addition, a further three genes that were
identified by the ANOVA only were validated (ADAM17, ANXA1
and PLK1), as well as MAPK1 that was identified by eBayes only.
In all cases, the qRT-PCR data confirmed significant upregulation
or downregulation between the AK and either the WD SCC, MD
SCC or combined values (WDþMD), suggesting good reliability
for the genes identified by this microarray study (Figure 2).

GSEA identifies overrepresentation of members of the MAPK
pathway genes in cSCC. GSEA was performed to investigate the
expression of genes within a priori established gene sets, to identify
whether a group of genes that share a defined category (such as
biological function, pathway or chromosomal location) show
collective differences in expression between AK and cSCC. This is a
useful tool for extrapolating biologically relevant information from
microarray studies, and is particularly robust as it focuses on a
group of genes that share a category, rather than individual genes
that may be subject to signal-to-noise background. In total, 28
significantly enriched gene sets were identified (Pp0.05, FDR
o0.25). These could be broadly classified into four categories:
signal transduction or apoptosis, cell cycle or replication, metabolic
processes or cell motility and miscellaneous (which included gene
sets related to the expression profile of other cancer types) (Table 3;
Figure 3A and B). Analysis of the leading edge genes underlying
the enrichment of each individual gene set revealed that many were
consistently represented, suggesting that they strongly influenced

the expression pattern in SCC. These included multiple members
of the MAPK family (including JUN, FOS,MET,MAPK1,MAP2K2
and MAP3K5) and the apoptotic response (including PAK2, BAX,
DEDD, DAXX and DFFA), suggesting that the interplay of the
MAPK pathway and apoptotic response may be a critical
determinant of AK to cSCC progression. No gene sets were
identified from chromosomal and cytogenetic locations or
conserved cis-regulatory motifs.

WD tumours display a distinct expression profile to MD and PD
cSCC. To investigate the effect of different variables on the
expression profile of the SCC, unsupervised hierarchical clustering
of the cSCC only was performed. This revealed two main clusters:
cluster 1 contained predominantly WD tumours and cluster 2
contained mostly MD and PD tumours (Figure 3C). The clusters
show that WD tumours form the most significant cluster
(P¼ 0.002) with 13 out of 15 (86.7%) WD tumours in cluster 1,
clearly separating them from the majority of MD and PD tumours
(Figure 3D). Moderately differentiated and PD tumours themselves
form weaker clusters (P¼ 0.05 and P¼ 0.06, respectively), however
when combined they show a highly significant clustering pattern
(P¼ 0.002). This is in keeping with the histological heterogeneity
of higher grade SCC, which often shows areas of varying
differentiation rather than a consistent differentiation status across
the whole tumour. Immune status showed no influence on
clustering across all tumours, with around half of each status
present in both clusters (P¼ 0.55 for both).
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Differential gene expression analysis (eBayes and ANOVA)
identified no DEGs between WD cSCC and their MD/PD
counterparts after correction for multiple testing, likely due to
the small number of samples in each subgroup. Similarly, no genes
were identified as differentially expressed between tumours from
immunosuppressed vs immunocompetent patients (examined
within the category of WD cSCC only to avoid bias from the
differentiation status of the tumours).

DISCUSSION

Cutaneous SCC is the most highly mutated of all cancers, and
consequently displays a complex genetic background (Durinck
et al, 2011). Our study identified a set of 196 DEGs between AK
and cSCC, with enrichment for genes involved in loss of
differentiation (including downregulation of FLG, FLG2, LOR,
LCE1B, KRT9 and KRT10 in cSCC), and gain of invasive properties

such as extracellular matrix remodelling and cell migration. We
have identified the MAPK pathway as pivotal to many of these
processes, and specifically found the oncogenes JUN and MET to
be overexpressed in cSCC. This is particularly significant as the
contribution of oncogenes to cSCC development has remained
elusive, despite the identification of a number of key tumour
suppressor genes such as TP53, CDKN2A and, recently, NOTCH
(Jonason et al, 1996; Brown et al, 2004; Durinck et al, 2011; Wang
et al, 2011). Furthermore, we have shown that WD cSCC display a
distinct expression profile to MD or PD tumours, which has
implications for future targeted therapies.

Actinic keratoses represent a precancerous stage in cSCC genesis,
and provide an opportunity to characterise processes relevant to the
progression of skin carcinogenesis. Many previous expression
microarray studies of the transition from AK to cSCC have
identified few (o10), or no, DEGs between these two disease states
(Nindl et al, 2006; Padilla et al, 2010; Ra et al, 2011). In a systematic
review of six microarrays studies, it was suggested that the low
consensus for differential gene expression in cSCC resulted from

Table 3. GSEA analysis

GSEA category Size Source ES NES
NOM
P-value

FDR
q-value Tag % Gene %

Signal transduction or apoptosis

MAPK signalling pathway 121 HSA04010 � 0.36389 �1.5201 0.0245 0.2425 0.322 0.176
TNFR1 pathway 20 na � 0.48995 �1.7601 0.0080 0.1775 0.25 0.0566
FAS pathway 21 na � 0.47668 �1.6076 0.0351 0.2479 0.381 0.156
ST FAS signalling pathway 36 na � 0.61198 �2.0475 0.0000 0.0167 0.361 0.156
Death pathway 20 na � 0.57202 �1.7337 0.0120 0.1189 0.4 0.156
MET pathway 25 na � 0.46801 �1.5399 0.0440 0.2416 0.4 0.181

Cell cycle or replication

M phase 65 GO:0000279 � 0.62169 �1.8425 0.0197 0.1063 0.631 0.246
M phase of mitotic cell cycle 54 GO:0000087 � 0.65812 �1.8475 0.0100 0.1466 0.704 0.258
Cell-cycle process 107 GO:0022402 � 0.57127 �1.7439 0.0301 0.1498 0.598 0.246
Cell-cycle phase 96 GO:0022403 � 0.56841 �1.7673 0.0275 0.1550 0.583 0.246
Mitotic cell cycle 92 GO:0000278 � 0.59663 �1.7838 0.0235 0.1875 0.609 0.246
Mitosis 51 GO:0007067 � 0.66288 �1.865 0.0080 0.2242 0.725 0.258
Condensed chromosome 20 na � 0.61929 �1.7196 0.01536 0.17401 0.6 0.226

Metabolic processes

Negative regulation of cellular protein metabolic process 20 GO:0032269 � 0.60511 �1.7566 0.0037 0.1511 0.5 0.209
Negative regulation of protein metabolic process 21 GO:0051248 � 0.5716 �1.7147 0.0019 0.1646 0.476 0.209
Ribonucleoprotein complex 48 na � 0.53241 �1.7659 0.01416 0.17705 0.583 0.275
Pyrophosphatase activity 99 GO:0016462 � 0.39159 �1.6548 0.0000 0.1865 0.354 0.18
Hydrolase activity acting on acid anhydrides 101 GO:0016817 � 0.38398 �1.6483 0.0000 0.1689 0.347 0.18
Nucleoside triphosphatase activity 93 GO:0017111 � 0.40821 �1.7111 0.0019 0.2021 0.366 0.18
Protein kinase binding 30 GO:0019901 � 0.52176 �1.643 0.0118 0.1559 0.3 0.113
Pyrimidine metabolism 33 na � 0.55439 �1.6614 0.0196 0.1865 0.515 0.248

Cell motility

Leading edge 29 GO:0031252 � 0.54978 �1.5753 0.0301 0.1725 0.483 0.198
Ruffle 20 GO:0001726 � 0.5811 �1.5859 0.0245 0.1805 0.5 0.185
Cell projection 51 GO:0042995 � 0.46711 �1.5155 0.0447 0.2203 0.431 0.213

Miscellaneous

VHL RCC up 66 � 0.51542 �1.8918 0.0000 0.2099 0.5 0.281
Renal cell carcinoma 42 HSA05211 � 0.60243 �1.836 0.0000 0.1507 0.548 0.213
Bladder cancer 30 HSA05219 � 0.53204 �1.7384 0.0018 0.2485 0.333 0.138
Acute myeloid leukaemia 31 HSA05221 � 0.4781 �1.5209 0.0371 0.2498 0.323 0.138

Abbreviations: ES¼enrichment score; FDR¼ false discovery rate; GO¼gene ontology; GSEA¼gene set enrichment analysis; MAPK¼mitogen activated protein kinase; NES¼nominal
enrichment score; VHL RCC¼Von Hippel-Lindau renal cell carcinoma..
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clinical and methodological differences, including small sample sizes,
tissue processing, different baseline comparators (normal skin or
AK) and varied bioinformatic approaches (Van Haren et al, 2009).
Importantly, the findings from our study are consistent with recently
published work that combined laser capture microdissection with
reverse phase protein microarray analysis (Einspahr et al, 2012).
This study also identified activation of the MAPK pathway in cSCC
compared with AK and normal skin, highlighting the power of
stringent laser capture microdissection for improved consistency
across studies. In addition, a further study that focused on a smaller
series of AK and cSCC from OTRs also identified the MAPK
pathway to be activated in cSCC (Hameetman et al, 2013). Although
we cannot be sure the individual AK used across these studies had
the potential to progress, the pattern of differential expression
supports consistent differences in the biology of these tumours with
a shift in invasive properties between AK and cSCC.

MAPK pathway in cSCC. The oncogenes MET, JUN and PAK2
were all overexpressed in cSCC compared with AK. Both MET and
JUN are direct components of the MAPK pathway, which was
identified by GSEA to be a key difference between AK and cSCC.
MAPK signalling has a central role in regulating growth and
survival of cancer cells, and the RAF/MEK/ERK pathway is
dysregulated in approximately one-third of human cancers
(Dhillon et al, 2007). Consequently, a number of small molecule
inhibitors have been designed to target specific steps in MAPK

signalling (including MET) and are now in clinical trials (Tu et al,
2010). The potential importance of this pathway in cSCC has
recently been highlighted by the rapid development of cSCC in a
proportion of patients treated with the multi-kinase inhibitor,
Sorafenib, or the selective BRAF V600E inhibitors, Vemurafenib
and Dabrafenib (Ribas and Flaherty, 2011). There is evidence that
this is caused by paradoxical activation of the MAPK pathway,
which is proposed to cooperate with pre-existing somatic UV-
induced mutations in key oncogenes and tumour suppressors such
as H-RAS and TP53 (Hatzivassiliou et al, 2010; Heidorn et al, 2010;
Poulikakos et al, 2010; Arnault et al, 2012).

We also observed strong upregulation of the collagenase MMP1
and the stromeolysin MMP10 in cSCC, both of which are associated
with invasion and metastasis via degradation of ECM proteins
(Overall and Kleifeld, 2006). MMP1 upregulation is one of the few
consistent findings across multiple cSCC microarray studies and,
similar to targets in the MAPK pathway, has therapeutic potential
for inhibition (Van Haren et al, 2009; Gialeli et al, 2011).
In addition, pro-metastatic molecules such as PTHLH and osteopontin
(SPP1) were upregulated in our data set, whereas putative tumour
suppressors such as RORA, PDZD2 and AZGP1 were found to be
downregulated (Tam et al, 2008; Yip et al, 2011; Wang et al, 2012).

Transcriptome profiles reflect histological subtypes of cutaneous
SCC. Histological subtypes of cSCC are associated with distinct
clinical characteristics and behaviour, with poor differentiation an
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independent prognostic factor for metastatic potential (Mourouzis
et al, 2009; Breuninger et al, 2012; Jambusaria-Pahlajani et al,
2013). We have previously shown that WD cSCC display a
distinct genetic profile to MD and PD tumours, with fewer
genomic aberrations overall (Purdie et al, 2009). In addition, single
gene-specific studies have reported differential expression or
genomic aberration patterns between cSCC of different histological
grades, including higher expression of LRIG-1 in WD cSCC, an
association of PTPRD deletions with PD cSCC and overexpression
of Survivin in PD tumours (Lo Muzio et al, 2001; Tanemura et al,
2005; Lambert et al, 2012). Our transcriptome data support the
genomic profiling by finding that WD tumours display a distinct
expression profile to MD and PD cSCC. While we were unable to
identify specific genes that are differentially expressed between the
subgroups (most likely due to small sample numbers), our data
imply that the histological subtypes of cSCC should be defined
when addressing the molecular pathogenesis, prevention and
treatment of these tumours.

In conclusion, our study is the first to describe widespread
transcriptome changes between precancerous AK and cSCC in
both immunocompetent and immunosuppressed individuals.
These data highlight several known oncogenes, and reveal a broad
spectrum of disrupted cellular processes that are altered in cSCC.
The MAPK pathway shows pivotal changes, and offers a new
approach to targeted preventative and therapeutic strategies.
Finally, our data indicate that histological subtypes of cSCC
represent distinct entities at the transcriptome level, and may in the
future require individually tailored therapeutic approaches.
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