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In the last three decades, the appreciation of the role of infections in cancer aetiology has greatly expanded. Among the 13 million
new cancer cases that occurred worldwide in 2008, around 2 million (16%) were attributable to infections. Concurrently, the
approach to prevention of infection-related cancers is shifting from cancer control to infection control, for example, vaccination
and the detection of infected individuals. In support of this change, the use of infection transmission models has entered the field
of infection-related cancer epidemiology. These models are useful to understand the infection transmission processes, to estimate
the key parameters that govern the spread of infection, and to project the potential impact of different preventive measures.
However, the concepts, terminology, and methods used to study infection transmission are not yet well known in the domain
of cancer epidemiology. This review aims to concisely illustrate the main principles of transmission dynamics, the basic structure
of infection transmission models, and their use in combination with empirical data. We also briefly summarise models of
carcinogenesis and discuss their specificities and possible integration with models of infection natural history.

Infectious disease epidemiology and chronic disease epidemiology
have both contributed enormously to the understanding and
prevention of human disease but have largely developed as separate
disciplines, notably in terms of research methods. In both fields,
statistical modelling has been extensively developed to analyse data
from observational studies and capture associations between
postulated risk factors and disease. In infectious disease epidemio-
logy, mathematical models have also been used for more than a
century to gain insight into the natural history of infection,
transmission dynamics (Anderson and May, 1991) and the design
and evaluation of prevention programmes (Garnett et al, 2011).

In the last three decades, the appreciation of the role of
infections in cancer aetiology has greatly expanded. Among the 13
million new cancer cases that occurred worldwide in 2008, around
2 million (16%) were attributable to infections (De Martel et al,
2012). The use of mathematical models of infection transmission
has, therefore, entered the field of infection-related cancer
epidemiology, notably in the study of hepatitis B virus (HBV),
human papillomavirus (HPV), human immunodeficiency virus
(HIV), and their related cancers. The latent period between
acquisition of carcinogenic infection and cancer incidence can last

decades and requires the transition through intermediate steps,
that is, persistent infection and pre-malignant lesions. This long
latency adds substantial complexity to the evaluation of causality
and assessment of infection control strategies at both a population
and individual level.

Methods relying upon the simulation of transition between
disease states have been used to gain insight into the natural
history of cancer, such as progression of pre-cancerous cervical
lesions (van Oortmarssen and Habbema, 1991; Kim et al, 2007a).
However, infection transmission models, which are dynamic
representations of infection natural history within a hypothetical
population, explicitly account for the ability of transmission
patterns and immune response to shape infection-related cancer
epidemiology. They are useful to understand infection transmis-
sion processes, to estimate the key parameters that govern the
spread of infection, and to project the potential impact of different
preventive and therapeutic measures (Grassly and Fraser, 2008).
Infection transmission and chronic-disease modelling methods are
increasingly combined (Kim et al, 2007b; Garnett et al, 2011).
However, the concepts, terminology, and methods used to study
infection transmission dynamics are not yet well known in the
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domain of cancer epidemiology. This review aims to concisely
illustrate the use of these models. We also briefly summarise
models of carcinogenesis and discuss their specificities and possible
integration with models of the natural history of cancer-associated
infections.

INFECTION TRANSMISSION MODELS

Infection transmission models are mathematical models designed
to capture the circulation of infectious agents at a population level
(Keeling and Rohani, 2008). The population is subdivided into
mutually exclusive ‘compartments’, representing the different
phases of the natural history of the infection of interest. Figure 1
shows several alternative compartmental models, named after the
compartments and the possible transitions between them. The
simplest models have compartments named ‘susceptible’ (S),
‘infected’ (I), and ‘recovered’ (R). In the field of cancer-associated
infections, R corresponds to infection clearance according to the
findings of ad hoc tests rather than clinical recovery from an
infectious disease, such as rubella or measles.

Several variants of these models have been used to represent
HPV infection: in the SIS model, infected individuals return to the
susceptible state after clearing an infection, so that they can be
re-infected (Taira et al, 2004). Conversely, in the SIR model, an
individual moves to the recovered compartment after clearing an
infection and is assumed to be immune to re-infection (Hughes
et al, 2002). In the hybrid SIS/SIR model, susceptibility to
re-infection is decreased, but not totally eliminated (Baussano
et al, 2013). Infections with more complex natural histories require
a correspondingly more complex system of compartments. Models
of HBV infection may add a compartment for latent infections,
in which an individual is infected but not infectious, and another
for chronic HBV carriers, that is, those at increased risk of
hepatocellular carcinoma (Figure 1) (Kretzschmar et al, 2002).
Furthermore, models of carcinogenic infections may also incorpo-
rate key steps of cancer natural history, such as precancerous
lesions and invasive cancers (Figure 1).

The course of the infection in the population is modelled by a
set of equations that describe the rates at which individuals move
from one compartment to another (Box 1). The per-capita rate at
which susceptible individuals acquire infection, known as the force
of the infection, is a product of three factors:

� The contact rates between individuals in the population:
‘Contact’ means an opportunity to transmit the infection.
Its exact definition depends on the route of transmission
(e.g., air-borne, blood-borne, food-borne, or sexually transmitted)
and is affected by population-specific behaviour (e.g., mixing
patterns) and social contacts and conditions (e.g., overcrowding)
(Mossong et al, 2008).

� The probability of infection per contact: not all contacts result in
transmission. The potential for a contact to result in transmission
is an important determinant of the spread of the infection in the
population. For instance, the probability of HPV transmission per
heterosexual contact (Burchell et al, 2006) is estimated to be much
higher than the same probability for HIV (Boily et al, 2009).

� The proportion of infected individuals in the population at
a given time: a product of the entire history of infection in the
population up to this point.

If a new infection is introduced into a closed population, that is,
a population without births and deaths or migrations, the SIR
model generates the epidemic curve shown in Figure 2. This curve
is characterised by an initial exponential increase of infected
individuals followed by gradual saturation, and then a decline. The
number of susceptible individuals declines as they become infected
and reaches a plateau as the epidemic burns out. In open
populations, periodic epidemics can occur among new susceptible
individuals, as seen in many childhood illnesses, or the infection
may progressively reach an endemic steady state with constant
fractions of the population in each compartment.

INFECTION TRANSMISSION DYNAMICS

A key quantity that determines the population-level dynamics of
infections is the effective reproductive number Rt, defined as the
mean number of secondary infections produced by an infected
individual at any time t. Rt is the product of four quantities: the
proportion of susceptible individuals in the population, contact
rates between individuals, the mean duration of infectiousness,
and the probability of transmission per contact (Garnett, 2005).
During the initial, growing phase of an epidemic, Rt is greater
than 1, whereas in the final declining phase, Rt is less than 1.
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Figure 1. Transmission models represented as flow diagrams. Some
examples of alternative compartmental models for modelling infectious
diseases. The total population is distributed into mutually exclusive
epidemiological compartments. The models are defined by these
compartments and the possible transitions between them. In the
simplest models, there are two or three states: susceptible, infectious,
and recovered. More complex models can also account for a latent
infection, and carrier status. Finally, transmission and carcinogenic
phases of the natural history of infection-related cancers can be
combined into a single model.

Box 1. Equations for the SIR model
The SIR model is formalized as a system of differential equations that allow

the infection to be modelled deterministically. The state of the population is

determined by the number of individuals S, I and R in the compartments

susceptible, infected, and recovered, respectively. The total population size

N¼ Sþ IþR is fixed, but the quantities S, I, and R change with time according

to the equations
dS
dt ¼ �lS
dI
dt ¼ lS-sI
dR
dt ¼ sI

The key parameters of these equations are the force of infection (l) which
is the per-capita rate at which individuals acquire infection, and the clearance

rate (s). The force of infection is itself a function of time, as it depends on the

fraction of currently infected individuals in the population (I/N). These

equations generate the curves in Figure 2, and different parameters produce

different outcomes in terms of the extent and duration of the epidemic.
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In an endemic situation, Rt is equal to 1. Changes in Rt can make
an infection shift between epidemic, endemic, or infection-free
phase. Prophylactic vaccination decreases the fraction of suscep-
tible individuals in the population, and thereby decreases Rt.
Sufficiently high vaccine coverage can reduce Rt below 1 and leads
to infection elimination, even without vaccinating 100% of the
population. This represents one of the most important strengths of
mass immunisation programmes, that is the ‘herd immunity’
phenomenon by which vaccination also protects non-vaccinated
individuals in the same population (Garnett, 2005). Conversely, the
advent of HIV and the related immunodeficiency in sub-Saharan
Africa greatly inversed the incidence of Kaposi Sarcoma (KS) by
increasing the infectiousness, and hence Rt, of the herpesvirus
causing KS and the probability of neoplastic transformation (Mesri
et al, 2010).

Although infection transmission is a random process, the
population-level behaviour becomes more regular as the size of
the population increases. In a sufficiently large population, the
dynamics of the infection can be approximated by a deterministic
process (Keeling and Rohani, 2008). Deterministic models avoid the
need to model each individual separately. Instead, the proportion of
individuals in each compartment defines the state of the population
and is sufficient to determine the future course of the infection.
Alternatively, infection transmission can be modelled as a random
or stochastic process. Stochastic models typically model individuals
as they move through the various compartments according to a
random process (Grassly and Fraser, 2008). Unlike deterministic
models, which always produce the same results given the same
parameters and initial conditions, stochastic models can generate a
distribution of possible outcomes from a given set of parameters.
This can be particularly useful when dealing with the earliest and
latest phases of an epidemic in which small numbers of individuals
are typically involved. In such a case, process variability (i.e., the
innate variability in outcomes due to randomness) can determine
the course of an epidemic (i.e., invasion or extinction). By definition,
such variability cannot be captured by deterministic models.

COMBINING MODELS WITH EMPIRICAL DATA

Infection transmission models can be made more complex by
describing more accurately the contacts between individuals and

making the transition rates between compartments dependent on
time, or demographic variables. These modifications can be used to
tailor the model to a specific population, rather than a generic
hypothetical one. The contact network through which an infection
is transmitted can be represented with different levels of
complexity. The most simplistic approach assumes that infectious
and susceptible individuals interact at random, depending on
either the proportion or absolute number of infectious individuals
(Grassly and Fraser, 2008). More realistic approaches explicitly
model the network and duration of contacts (Grassly and Fraser,
2008). Sexual partnership formation in a population, for instance,
takes place according to preferences based on individual
characteristics, such as age, sexual behaviour, and socio-cultural
level. Furthermore, partnership duration and the concurrence of
multiple partnerships are likely to affect the circulation patterns of
sexually transmitted infections (Liljeros et al, 2003). Unfortunately,
the data that are necessary to accurately parameterize the network
and duration of contacts are rarely available. Most available models
have adopted intermediate approaches, in which rates and
probabilities of contacts within a population depend on more or
less easily measurable characteristics, such as age, sexual habits, or
intravenous drug use (Garnett and Anderson, 1994).

Transition rates between compartments govern the average time
an individual spends in each compartment. In the simplest models,
transition rates may be assumed to be constant. Alternatively,
transition rates may be a function of time-dependent variables,
such as age or time already spent in a compartment. For example,
Kim et al (2007a) assumed that the probability of HPV16 clearance
did not change according to a woman’s age and infection duration.
Conversely, Barnabas et al (2006) assumed that the probability of
HPV16 clearance was not constant but decreased as a decreasing
function of age. Baussano et al (2010) modelled clearance rate
as a decreasing function of time elapsed since infection irrespective
of woman’s age as strongly supported by more recent data
(Rodriguez et al, 2010).

The values of demographic, behavioural, and biological para-
meters that govern the behaviour of an infection can either be
plugged into the model, if estimates are available from observa-
tional studies, or inferred by calibrating the model so that its
outputs conform to empirical data. In the last decade, fitting
methods have evolved. Early HPV models mainly aimed at visually
assessing how well model outputs fitted empirical data (Taira et al,
2004), whereas more recent models rely to a greater extent on the
systematic exploration of parameters and formal selection of best
fitting sets of values (Hoare et al, 2008). Markov Chain Monte
Carlo techniques and Bayesian analysis are increasingly used to
infer parameter values (Toni et al, 2009).

MODELLING CANCER NATURAL HISTORY

Many infection-associated cancers are the result of an asympto-
matic persistent infection. Many relevant cancer-associated infec-
tions, for example, HPV, HBV, and Epstein-Barr virus, have a role
both at early and late steps of the carcinogenic process, to initiate,
and sustain malignant genotype and phenotype.

The carcinogenic process can be measured in terms of
subclinical markers: for example, morphologically distinguishable
lesions in cells (cervico-vaginal smears) or tissue (biopsies);
serological markers (HBV antigens and antibodies); or, increasingly
often, imaging techniques (mammography) and molecular markers
(PCR-detected DNA or RNA of the pathogen of interest).
Subclinical disease states may regress or eventually progress to
cancer. The highest-quality epidemiological data comes from
prospective studies, with repeated visits from participants to
determine their current infection or disease status. A key feature of
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Figure 2. Epidemic dynamics of the SIR model in a closed population.
The evolution of a SIR model over time is depicted by the curves
representing the proportion of susceptible, infectious, and recovered
individuals of the population. In this example, the epidemic peaks with
15% of the population in the infectious state at 37 days. By the end of
the epidemic, 80% of the population has recovered and 20% is still
susceptible, never having been infected.
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this type of cohort study, known as the panel study, is that the
disease status is only known at fixed points in time, and must be
inferred at time points in between two visits. In statistical terms,
the transitions between disease states are interval censored. The
analysis of such studies is typically based on multi-state Markov
models (Bureau et al, 2003). Markov models closely resemble
transmission dynamic models, as individuals move through
compartments representing different disease states. However, at
variance with infection transmission models, in which infection
transmission is crucial, there is no interaction between individuals,
so their disease states are independent of each other. Markov
models can be applied to any disease with a multi-state natural
history and are not limited to diseases associated with infections.
The term ‘Markov’ refers to an assumption that the disease
progression depends only on current state, and not on the length of
time spent in that state. This may be unrealistic, but semi-Markov
models that relax this assumption may be difficult to fit to
epidemiological data because the disease process is only partly
observed (Titman and Sharples, 2010).

Prospective studies can provide insights into the natural history
of infection that cannot be obtained from other study designs. For
example, they show that the clearance of incident HPV infection is
independent of age, and that the apparently lower clearance of
infection among older unscreened women is due to a higher
prevalence of long-duration persistent infection (Rodriguez et al,
2010). However, the detection and early treatment of pre-
cancerous lesions interfere with the disease process. Ideally, a
combination of short-term intensive follow-up and long-term
watch-and-wait investigations are required to fully understand the
natural history of cancer-associated infections, but the latter
investigations are seldom possible. In a population-based study of
cervical neoplasias in rural Costa Rica, the frequency of follow-up
visits varied by estimated risk of cervical cancer at enrolment,
from 6-month or 12-month visits for the highest risk women, to
passive follow-up with screening after 5–7 years for the lowest risk
women (Rodriguez et al, 2010). An egregious example of long-
term follow-up without intervention occurred in New Zealand
between 1965 and 1974 when a gynaecologist mistakenly believed
that he could distinguish cervical intraepithelial neoplasia grade 3
(CIN3) lesions that would not progress to cancer, and left some
women with CIN3 untreated. This was the subject in a judicial
enquiry in 1988. Retrospective analysis of cancer incidence among
women whose treatment had been reviewed by judicial enquiry
provided the most valid direct estimates of the progression rate of
CIN3 (McCredie et al, 2008).

Epidemiological designs other than prospective studies have
contributed substantially to the understanding of the association
between chronic infections and cancer. For example, case–series and
case–control studies on cervical cancer and cross-sectional studies
on HPV infection in female populations have been essential to show:
1) the virtually constant presence of HPV DNA in cancerous and
severe pre-cancerous cervical lesions; and 2) the different carcino-
genic potential of different HPV types. Non-prospective studies have
allowed us to establish the so-called ‘enrichment’ phenomenon, that
is, the gradual rise of the relative prevalence of certain HPV types
(high-risk types, notably HPV16 and 18) across precancerous lesions
of increasing severity (Guan et al, 2012), and the remarkably
consistent distribution of HPV types in cervical cancer worldwide
(Li et al, 2011). In fact, cancer-associated pathogens (e.g. HPV,
Helicobacter pylori) often belong to more or less large families of
serotypes and genotypes that differ markedly by carcinogenic
potency. It is, therefore, difficult to pinpoint cancer causality or
design effective screening test and vaccinations without a good
understanding of the heterogeneity of a pathogen family.

Statistical models used in cancer epidemiology are often
descriptive in nature. They summarise the salient features of the
data while discounting patterns that may be due to chance or the

effects of confounding factors that may also act on cancer risk
independently or in synergy with the exposure of interest.
In contrast, dynamic models of a disease process are mainly
designed to show how the data are generated, or at least provide
plausible mechanisms. They can provide a framework in which
epidemiological evidence from diverse sources can be combined
consistently and in which, ideally, counter-factual questions be
addressed, for example, the impact of interventions against infection
or precancerous or cancerous lesions for which no control group is
available (Uhry et al, 2010) or the predicted impact of interventions
that have not yet taken place (e.g., mass immunisation against HPV;
(Baussano et al, 2013). Such models can also tackle fundamental
natural history questions that cannot otherwise (or not yet) be
adequately addressed using empirical data.

CONCLUSIONS

Infection transmission models are increasingly used to study the
natural history of infection-associated cancers and to project the
impact of different control strategies (Garnett et al, 2011). Models
of infection transmission and cancer natural history do not need to
be always integrated in a single model and some authors
concentrated themselves on the natural history of cancer-
associated infections (Baussano et al, 2013). Obviously, integrated
models of infection-related cancers are ultimately necessary to
assess or project the reduction of cancer achievable through the
combination of vaccination and screening (Jit et al, 2011). In fact,
the possibility of combining infection transmission models and
cancer models is an interesting new development of traditional
models of acute infections.

As in any other applications of epidemiology, these models face
a number of challenges and dangers. They are necessarily
simplifications of real-world mechanisms. They often include a
large number of inter-dependent parameters that cannot be
accurately estimated from available data as well as uncertainties
regarding the natural history of the infection and disease of
interest. The need to clearly describe background assumptions,
statistical methods, and computational solutions cannot, therefore,
be overemphasised. Models can make uncertainties and incon-
sistencies explicit and generate hypotheses that can be explored in
silico and tested using empirical data. A range of scenarios can be
investigated using the same model, so that the sensitivity of
conclusions to different assumptions can be explored.

The words of Box and Draper (1987) a quarter of a century ago
still capture very well the need for humility but also courage when
using increasingly complex biological knowledge and computing
tools in the study of infections and cancer: ‘Remember that all
models are wrong; the practical question is how wrong do they
have to be to not be useful.’
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