
p53-Based cyclotherapy: exploiting the
‘guardian of the genome’ to protect normal
cells from cytotoxic therapy
B Rao1, S Lain2 and A M Thompson*,1

1Dundee Cancer Centre, University of Dundee; Ninewells Hospital and Medical School, Dundee, UK and 2Microbiology,
Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden

Side effects of chemotherapy are a major impediment in the treatment of cancer. Cyclotherapy is an emerging therapeutic
strategy for protecting normal cells from the side effects of chemotherapy. Low, non-genotoxic doses of known p53 activators can
be used to induce p53-dependent cell cycle arrest in normal cells bearing wild-type p53. This cytostatic effect of p53 can protect
normal cells from the toxicity of S- or M-phase poisons. Here, we have reviewed existing cyclotherapy regimens using two
well-known p53 activators, nutlin-3 and actinomycin D. We have highlighted an exemplar clinical perspective for cyclotherapy in
breast cancer. The recent development of novel stapled peptides as activators of p53 without the corresponding cytotoxicity
holds great promise for cyclotherapy to enhance the therapeutic window of existing chemotherapy drugs.

Current treatments for cancer comprise surgery, radiotherapy,
chemotherapy, endocrine therapy and targeted therapies. Modern
chemotherapy is a systemic approach to treat cancer compared
with the locoregional approaches of surgery and radiation therapy,
and uses chemical agents (anticancer or cytotoxic drugs) to interact
with cancer cells and eradicate or control the growth of cancer.

The purpose of the chemotherapy is to selectively kill tumour
cells. Approximately 50 different anticancer drugs are available
for clinical practice and an equal number are currently being
tested in clinical trials. The most desirable drug will be one that
destroys the cancer cells, leaves normal cells unharmed, and
causes the fewest unpleasant and undesirable side effects.
The therapeutic goal is to favourably balance the risk–benefit
ratio, in which the morbidity and toxicity of chemotherapeutic
agents are weighed against the potential benefits. Classic
chemotherapeutic agents preferentially target rapidly dividing
cells, whether cancer cells or normal cells. Therefore, selectivity
towards cancer cells by standard chemotherapeutic drugs is
limited and toxicity to normal tissues remains a therapeutically
limiting problem in the clinic.

Suppression of bone marrow activity, which results in a decrease in
white cell, platelet and red blood cell production, is a key limiting
factor in standard chemotherapy. Because chemotherapy is most
effective when used at the highest tolerated dose, the interval between

treatments may need to be prolonged to prevent life-threatening bone
marrow suppression. Supportive measures such as prophylaxis for or
treatment of bone marrow suppression include granulocycte-
stimulating factors and blood product transfusion. Other undesired
consequences of standard chemotherapy include hair loss, mucositis,
gastrointestinal tract toxicity, dermatological toxicity, cardiotoxicity
and asthenia. In addition, most classic chemotherapeutics are highly
mutagenic either by causing damage to DNA (directly or indirectly)
or, as in the case of mitotic poisons, by disrupting chromosome
distribution. This can lead to an increased risk of second tumours
later in life for those who survive the cancer.

P53-BASED CYCLOTHERAPY

Given the clinical problem of differential chemotherapeutic effects
on tumour vs normal cells, cyclotherapy is a promising strategy to
protect normal tissues from the side effects of chemotherapy
(Blagosklonny and Pardee, 2001). Here, we briefly review key
facets of the p53 gene and focus on p53-based cyclotherapy.
This approach exploits the key genetic difference of the p53 status
between a normal cell and a p53 mutant bearing cancer cell and
therefore is relevant to patients suffering from cancers carrying
inactivating mutations in the p53 gene.
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As shown in Figure 1, p53 activation by low doses of p53 small-
molecule activators can be used to selectively guard normal cells
from the killing effects and genomic instability induced by two
specific types of standard chemotherapeutics (S-phase and mitotic
poisons). Small-molecule p53 activators have no effect on p53
mutant bearing cancer cells, so these cells remain susceptible to the
S phase or M phase targeting chemotherapeutic drug.

Activation of wild-type p53 in normal tissues may cause
p53-related toxicities. For p53-based cyclotherapy, only low doses
of p53 activators are used to specifically achieve the ‘cytostatic’ rather
than the ‘cytotoxic’ effects of p53 activation in normal tissues.

THE REVERSIBLE CYTOSTATIC EFFECTS OF P53

The p53 gene, also known as ‘The Guardian of the Genome’ (Lane,
1992), is located on the short arm of chromosome 17 (17p13.1)
(Isobe et al, 1986). The inheritance of only one functional copy of
the p53 gene causes a familial syndrome called Li-Fraumeni
syndrome and these patients are predisposed to cancer (Malkin
et al, 1990). Studies on p53-null mice show that although viable
(and seemingly normal), they are prone to early tumour
development (Donehower et al, 1996). A major biological function
of p53 is to respond to stress signals and activate the transcription
of downstream target genes involved in important cellular
mechanisms like cell cycle control, DNA repair and apoptosis.
For the cell cycle control mechanisms, p53 has two very distinct
roles. The first is a protective (cytostatic) one in which p53 arrests
cells in the G1 phase of the cell cycle upon sensing DNA damage.
p53 thereby prevents cells from multiplying damaged DNA via the
production of p21, which interacts with a cell division-stimulating
protein (cdk2). With p21 bound to cdk2, a cell cannot pass through
to the next phase of the cell cycle (Figure 2). In the absence of
functional p53, p21 protein is not increased and cannot act as the
‘stop signal’ for cell division. In a second role, p53 initiates
apoptosis upon irreparable damage to the cell.

Various different cellular signals like stress due to DNA damage,
activation of oncogenes, hypoxia and nutrient deprivation can

induce p53 transcriptional activity. The specific response of p53 to
these different cellular stresses depends on post translational
modifications like phosphorylation and acetylation. In addition, it
also depends on p53 interaction with its partners such as Mdm2.
p53 levels are tightly regulated by Mdm2, an E3 ubiquitin ligase
that causes proteasomal degradation of p53 (Toledo and Wahl,
2006). Interestingly, p53 protein transcriptionally activates Mdm2
to form a negative feedback mechanism, which maintains low
p53 levels under normal, unstressed conditions. During stress
activation, for example DNA damage, ATM/ATR kinases phos-
phorylate both p53 and Mdm2 proteins causing disruption in the
interaction between the two. This phosphorylation facilitates
p53 protein stabilisation leading to the transactivation of p53
target genes (reviewed in Toledo and Wahl, 2006). During
oncogene activation, induction of another tumour suppressor
protein p14ARF (known as p19ARF in mice) can also cause p53
protein stabilisation as p14ARF has been directly shown to bind
Mdm2 and prevent the p53 degradation (Weber et al, 1999).

DNA damage has been shown to cause p53 transcriptional
activity resulting in p21 induction that can result in both G1 and
G2 arrest (Vogelstein et al, 2000). Even low levels of DNA damage
can cause G2 arrest and non-entry into M phase in p53 wild-type
HCT116 cells (Bunz et al, 1998). Inducible systems have
demonstrated that p53 overexpression can result in both G1 and
G2 arrest, and that prolonged overexpression of p53 could
downregulate Cyclin B1 (Agarwal et al, 1995). As the Cyclin
B1/Cdc2 complex is probably the major regulatory factor required
for entry into mitosis, decreased expression of Cyclin B1 and
inhibitory phosphorylation of Cdc2 are thought to be the major
mediators of G2 arrest. Overexpression of p21 also causes cells
to accumulate in G2 and is associated with a reduction of Cyclin
B1-associated kinase activity (Niculescu et al, 1998). Expression of
p21 may also be associated with a brief delay in G2, probably
causing late cell cycle checkpoints in normal cycling cells
(Dulic et al, 1998).

P53-BASED CYCLOTHERAPY USING NUTLIN-3

p53-deficient or p21-deficient HCT116 colon cancer cells enter
mitosis despite pretreatment with doxorubicin, a DNA-damaging
drug. This pretreatment allowed for the protection of only the
wild-type p53 HCT116 cells from the cell death induced by taxol
(paclitaxel) and not the p53- or p21-deficient HCT116 cells
(Blagosklonny et al, 2000). However, studies have also shown that
pretreating with doxorubicin can also induce growth arrest in some
p53-deficient tumours, hence protecting them from taxol
(Blagosklonny, 2002). This undesired effect of doxorubicin
suggested that, more p53-selective compounds are required for
cyclotherapy to be a successful approach.

Nutlin-3 has been the forefront candidate for p53-based
cyclotherapy. Nutlins are a group of cis-imidazoline analogues,
first identified by Vassilev et al (2004). These compounds have a
high binding potency and selectivity for one of the p53 binding
sites on Mdm2. Crystallisation data have shown that nutlin-3
mimics the three residues of the helical region of the transactiva-
tion domain of p53 (Phe19, Trp23 and Leu26) that are conserved
across species and critical for binding to Mdm2. In this way,
nutlin-3 prevents effective binding of p53 to Mdm2.

Two different groups demonstrated the protective role of nutlin-
3 via the p53/Mdm2 mechanisms using the isogenic colon cancer
cell lines HCT116 and HCT116p53� /� (Carvajal et al, 2005;
Kranz and Dobbelstein, 2006). The first was a sequential
combination of nutlin-3 and taxol, a well-known and widely used
mitotic inhibitor. Pretreating wild-type p53 cells with nutlin-3
before adding taxol caused these cells to arrest in G1 or G2 of the
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Figure 1. Principle of p53-based cyclotherapy: cyclotherapy, unlike
conventional chemotherapy, distinguishes cancer cells from normal
cells. Pretreatment with a p53 activating drug halts the cell cycle in
G1/G2 only in normal cells carrying wild-type p53, whereas p53-mutant
cancer cells continue cycling into S and M phase. Adding an S-phase or
M-phase poison should then specifically target p53-mutant cancer cells
to bring about apoptosis, while having no effect on cell cycle-arrested
normal cells.
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cell cycle, hence protecting them from taxol-induced apoptosis.
This arrest was due to p53-dependent activation of p21 only upon
pretreatment with nutlin-3 or its active enantiomer nutlin-3a and
only when cells encoded wild-type p53. In addition, sequential
combination also protected proliferating skin fibroblasts from taxol
with this arrest reversible upon drug removal (Carvajal et al, 2005).

Subsequently, a similar sequential combination was carried out
and cells carrying functional p53 were shown to be protected by
nutlin-3 pretreatment from the cytotoxicity of the S-phase
inhibitor gemcitabine. In contrast, isogenic cells lacking functional
p53 continued to enter S-phase regardless of nutlin-3 pretreatment
and remained highly susceptible to gemcitabine-mediated cyto-
toxicity. The sequential treatment with nutlin-3 alone, followed
by transient exposure to nutlin-3 plus gemcitabine, efficiently
killed tumour cells with deletions or mutations of p53 but largely
spared the non-transformed human keratinocytes (Kranz and
Dobbelstein, 2006). The positive results described in these two
cell culture studies (Carvajal et al, 2005; Kranz and Dobbelstein,
2006) have been confirmed and extended by experiments using
two breast cancer cell lines expressing mutant p53 (van Leeuwen
et al, 2012).

To date, there is only one report of a p53-based cyclotherapy
study in vivo. In this study, nutlin-3 pretreatment was shown to
protect mice from neutropaenia induced by the Polo-Like-Kinase-1
(PLK-1) inhibitor BI2536 (Sur et al, 2009). In addition, xenograft
studies showed that pretreatment with nutlin-3 did not interfere
with the anti-tumour effect of BI2536. This is a remarkable result
and moves the potential use of nutlin-3 for the application of
cyclotherapy closer to the clinic.

ACTINOMYCIN D, AN OLD CHEMOTHERAPY DRUG, FOR
P53-BASED CYCLOTHERAPY

Actinomycin D (ActD), like nutlin-3, is a potent activator of
p53. ActD was the first antibiotic shown to have anti-tumour
activity. This old chemotherapy agent had been used in the clinic
for the treatment of children with rhabdomyosarcoma, Wilms’
tumour and Hodgkin’s disease (Farber et al, 1960). Low,
nanomolar, doses of ActD are not highly genotoxic (Foster et al,
1994), effectively increase p53 levels and transcription function and
induce the expression of a panel of genes that overlaps with nutlin-
3-induced genes (Choong et al, 2009). In addition, this highly

potent compound can cause p53-dependent reversible cell cycle
arrest in normal keratinocytes (Choong et al, 2009).

Despite the apparent similarities between the effects of ActD
and nutlin-3 in cells, the mechanisms of action are very different.
Whereas nutlin-3 directly binds to Mdm2, ActD inhibits RNA
synthesis by binding to GC-rich regions in DNA and is especially
effective at disrupting ribosomal RNA biosynthesis (Goldberg,
1971). This causes a nucleolar stress that is sensed by p53 (Rubbi
and Milner, 2003). According to the current model, nucleolar stress
caused by ActD is able to enhance the interaction between Mdm2
and ribosomal proteins, such as L11, resulting in the impairment of
Mdm2-dependent degradation of p53 (Sundqvist et al, 2009).

Encouraged by the remarkable results obtained by combining
nutlin-3 with S- and M-phase poisons and the similar
p53-dependent effects of low-dose ActD and nutlin-3, we have
investigated ActD for application as cyclotherapy. We found that
low, non-genotoxic, doses of ActD can induce a reversible
cytostatic effect in normal proliferating fibroblasts and protect
them from the aneuploidy induced by VX-680 (Rao et al, 2010).
However, pretreating cells bearing mutant p53 or lacking p53 with
this low dose of ActD also prevented the appearance of polyploidy
in these cells. Even so, this pretreatment did not weaken the effects
of VX-680 in clonogenic assays (Rao et al, 2010).

Subsequently, we investigated ActD in combination with the
nucleoside inhibitor gemcitabine. Here, we found that pretreating
with low, non-genotoxic doses of ActD, prior to adding
gemcitabine, does not protect tumour cells bearing mutant p53
or lacking p53. Pretreating normal proliferating fibroblasts, or
wild-type p53 tumour cells with low doses of ActD, indeed
protected these from the toxic effects of gemcitabine (van Leeuwen
et al, 2012).

Thus, ActD as a clinically approved drug is an exciting
candidate for cyclotherapy. However, further studies using
in vivo models need to be developed before this approach can
reach clinical practice.

P53-BASED CYCLOTHERAPY FOR BREAST CANCER: A
CLINICAL PERSPECTIVE

Breast cancer survival is increasing due to early detection and
advances in treatment. However, there remains a need for more
effective and better tolerated treatments. Chemotherapy is used as
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adjuvant treatment for early-stage invasive breast cancer to prevent
recurrence and is also used to treat advanced breast cancer.

Triple negative breast cancers (TNBCs) are defined as tumours
that lack expression of oestrogen receptor (ER), progesterone
receptor (PR) and HER2 receptor. Triple negative breast cancers
are aggressive and therapeutically challenging breast cancers
currently treated with a combination therapy involving surgery,
radiotherapy and chemotherapy. Triple negative breast cancer
account for 17% of all breast cancers. Prominent features of TNBC
include overexpression of epidermal growth factor receptor
(EGFR), a high proliferative rate, frequent genomic alterations,
phenotypic similarity to BRCA1-associated cancers and frequent
mutations of the p53 gene with the corresponding protein
heterogeneously expressed. The established chemotherapy for
triple negative breast cancer includes combination chemotherapy
including anthracyclines such as doxorubicin or epirubicin, taxanes
such as paclitaxel or docetaxel and platinum drugs such as
carboplatin and cisplatin (Torrisi et al, 2008).

Studies have suggested that patients with TNBC may benefit
from high-dose or intensified chemotherapy (weekly or bi-weekly)
regimens (Gluz et al, 2008). Dose-intensive chemotherapy may
result in higher side effects compared to the less-intensive
regimens. Side effects generally include alopaecia, neutropaenia
and diarrhoea. A p53-based cyclotherapy approach could be
applied in this setting to continue intensified treatments to tackle
aggressive p53-mutant TNBC. While using p53 activators for
the purposes of cyclotherapy, a major consideration has to be
p53-related toxicities to normal tissues. Past studies using preclinical
models have indicated specific toxicity only in tissues harbouring
wild-type p53 during cytotoxic therapy (Komarov et al, 1999). In
order to enhance the therapeutic window using cyclotherapy,
specific and highly selective p53 activators that can induce a mild
‘cytostatic’ effect will need to be carefully selected.

FUTURE DIRECTIONS

A remarkable in vivo study showing a reduction in neutropaenia in
mice after pretreatment with nutlin-3 provides great optimism for
p53-based cyclotherapy (Sur et al, 2009). However, Nutlin-3 has
yet to be clinically approved. A nutlin-like compound, RG7112, has
been tested in patients with mdm2-amplified liposarcomas (Ray-
Coquard et al, 2012). While one patient achieved partial remission
and 14 stable disease among the 20 treated, this study also
highlighted that all of the patients who received neoadjuvant
therapy with RG7112 experienced severe side effects including
neutropaenia. These side effects may have been observed perhaps
due to the high doses (1440mgm� 2 day� 1) used. Based on these
observations, it cannot be ruled out that there may be many
limitations for nutlin use in the clinic for the purposes of
cyclotherapy.

Recently, Brown et al (2013) have developed stapled peptides
that are highly specific inhibitors of Mdm2/MdmX. These
compounds are more potent in activating p53 than peptides
derived from a wild-type p53 sequence. Unlike nultin-3, these
peptides can sustain p53 activity over a wider range of
concentrations without much toxicity to the cells. This suggests
that these peptides could be ideal candidates for future
cyclotherapy.

ActD, unlike nutlin-3, is a clinically approved drug with promise
for cyclotherapy along-side S-phase but not mitotic poisons (Rao
et al, 2010; van Leeuwen et al, 2012). A recent investigation of
16 different cyclotherapy regimes using nutlin-3, ActD, leptomycin
B and tenovin 6 as cyclotherapeutic drugs in combination with the
S-phase poisons, gemcitabine and cytosine arabinoside and the
M-phase poisons, vinorelbine and vinblastine, highlights the need

to assess both short-term and long-term effects of these
combinations (van Leeuwen et al, 2012).

Approval of cyclotherapy in the clinic requires the development
of in vivo models. We are investigating the effects of ActD in vivo
to deduce the interval of time during which growth arrest can be
established in mice gut crypt cells. This interval may include a
window of opportunity to add an S-phase-specific drug that can
then specifically target only tumour cells sparing the cells of gut
crypts, one target of conventional chemotherapy approaches. It is
critical to test the cyclotherapy combinations on different normal
tissues to understand tissue-specific pathological effects. The p53
activators currently being tested for cyclotherapy all have distinct
mechanisms to activate p53 and need to be tested in different
combinations in vivo. The future of cyclotherapy holds exciting
promise for targeting cancer cells while sparing normal tissues in a
way currently not achieved with conventional chemotherapy.
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