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Background: Processing of microRNAs (miRNAs) is a highly controlled process. Deregulation of miRNA expression was observed
in several types of cancer but changes in the miRNA-processing enzymes have not been analysed until today. In this study, we
analysed Argonaute2 (AGO2, EIF2C2), as one main factor of the miRNA processing ensemble, in the context of cancer
development, especially in melanoma.

Methods: We determined the AGO2 expression level in melanoma, as well as in other cancers, with biochemical approaches
(qRT–PCR, western blot and immunofluorescence studies) and analysed the cell behaviour in migration assays.

Results: Specifically in melanoma, we revealed a strong reduction of AGO2 expression compared with primary melanocytes.
The reduction of AGO2 expression was only found on protein level, whereas the mRNA level stayed unchanged hinting to
post-transcriptional regulation. We could show that re-expression of AGO2 in melanoma leads to a strong improvement of
regulatory effects due to increased functionality of small-interfering RNAs and short hairpin RNAs.

Conclusion: We identified melanoma-specific downregulation of AGO2 and corresponding reduced RNAi efficiency. These
findings will help to understand the molecular basis of malignant melanoma and can potentially lead to an improvement of
therapeutic strategies.

Malignant melanoma is an aggressive tumour derived from
melanocytes. Several details are known about the processes leading
to the development of malignant melanoma, but the detailed
molecular causes of the disease remain largely unknown. One class
of molecules recently being shown to have a role in melanoma
development are microRNAs (miRNAs). MiRNAs are small non-
coding RNA molecules that regulate gene expression on the post-
transcriptional level (Lee et al, 1993; Krol and Loedige, 2010). It is
known that miRNAs are first transcribed as primary transcripts
(pri-miRNAs), which are further processed in the nucleus to reach
the pre-miRNA hairpin intermediate. After the pre-miRNA
transfer to the cytoplasm, mature miRNAs are formed (Lee et al,
2002; Bartel, 2009).

However, many enzymes are involved in the processing cascade
and each of them is a critical factor for miRNA production. The
RNA-binding protein DiGeorge Syndrome Critical Region 8

(DGCR8; also known as Pasha in invertebrates) binds to Drosha,
an RNase III enzyme, to process pri-miRNAs to pre-miRNAs. The
nucleocytoplasmic transporter Exportin-5 transfers the pre-
miRNA into the cytoplasm, where a second RNase III enzyme
Dicer processes the pre-miRNA to a double stranded miRNA:-
miRNA* intermediate. Finally, miRNAs are incorporated into
RISC, where they directly bind to a member of the Argonaute
(AGO) protein family (Peters and Meister, 2007; Hutvagner and
Simard, 2008). This family in humans consists of four Argonauts
(AGO1-4), but only AGO2 exhibits endonuclease activity
(Hauptmann et al, 2013). MiRNAs guide the RISC to comple-
mentary target sites on mRNAs and modulate mRNA stability by
inducing degradation of the mRNA (Huntzinger et al, 2010) or
controlling translation (Meister and Tuschl, 2004; Huntzinger et al,
2010; Janga and Vallabhaneni, 2011; Vasudevan, 2012). Recent
research has not only revealed the strong impact of miRNAs on
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almost every regulatory pathway in eukaryotic cells but has also
clearly demonstrated their involvement in the tumorigenesis of a
variety of human cancers (Calin and Croce, 2006).

Studies from our own group as well as from several other groups
revealed that the expression of many miRNAs is deregulated in
malignant melanoma cells, which is undoubtedly linked to
important processes affecting melanoma formation and progres-
sion (reviewed by (Mueller and Bosserhoff, 2009; Voller et al, 2013;
Kunz, 2013)). However, the deregulation of miRNAs in cancer
development based on deregulated miRNA-processing proteins is
not well understood and in the spotlight of current research.
For example, upregulation of Dicer in cutaneous melanoma is
associated with tumorigenesis (Ma et al, 2011; Pellegrino et al,
2013). In contrast to Dicer, the role of AGO2 as the key RISC
protein in melanoma is still unknown. In this study, we first
analysed the expression status and localisation of AGO2 in
malignant melanoma and second in comparison with other ‘non-
melanoma’ tumours. In addition, we investigate whether AGO2
modulation is responsible for small-interfering RNA (siRNA) and
miRNA functionality because of the fact that most miRNAs are
upregulated in melanoma (Mueller et al, 2009) compared with the
rather downregulated miRNA expression pattern in other tumours
(Wang et al, 2012; Zhao et al, 2012). Some miRNAs are already
known to have an important role by targeting specific genes in
malignant melanoma (Chen et al, 2010; Deng et al, 2011; Xu et al,
2012), so we were interested in determining whether AGO2 is the
responsible key factor in modulation of the miRNA pattern in
melanoma. This finding could lead to new insights into miRNA
processing and could also result in consequences for miRNA-based
therapies in melanoma.

MATERIALS AND METHODS

Cell culture and tissue samples. Melanoma cell lines Mel Ei, Mel
Wei, Mel Ho, Mel Juso, Mel Im, Mel Ju, A375, HMB2, HTZ19d,
SkMel3, SkMel28 and NHEMs were described previously (Jacob
et al, 1998; Braig and Bosserhoff, 2013). The cell lines Mel Juso and
A375 were derived from primary cutaneous melanomas; Mel Im,
Mel Ju, HTZ19d, SkMel3, SkMel28 and HMB2 were derived from
metastases of malignant melanomas. Cells were maintained in
DMEM supplemented with penicillin (400 units per ml), strepto-
mycine (50 mgml� 1), L-glutamine (300 mgml� 1), 10% FCS
(Sigma-Aldrich, Steinheim, Germany) and split at a 1 : 5 ratio
every 3 days. Normal human epidermal melanocytes (NHEMs;
PromoCell, Heidelberg, Germany) were derived from neonatal
skin. Isolation and cultivation of NHEMs were described
previously (Muller and Bosserhoff, 2008). Cells were used between
passages 2–6 and not later than 2 days after trypsinisation. Tissue
samples of snap-frozen melanoma primary tumours (tumour bank:
TB62, TB69, TB71, TB93, TB97, TB104 and TB126) and
melanoma metastases (tumour bank: TB21, TB31, TB35, TB43,
TB90, TB95 and TB331) with clear-cut pathological classification
were obtained from the institute’s tissue collection (Institute of
Pathology, University of Regensburg, Germany). Sampling and
handling of patient material was carried out in accordance with the
ethical principles of the Declaration of Helsinki.

RNA isolation and reverse transcription. Total cellular RNA was
isolated from cultured cells and tissues using the E.Z.N.A. Total
RNA Kit I (Omega Bio-Tek, VWR, Darmstadt, Germany)
according to the manufacturer’s instructions. Complementary
DNAs were generated by a reverse transcriptase reaction (500 ng
of total RNA) using the Super Script II Reverse Transcriptase Kit
(Invitrogen, Groningen, The Netherlands).

Analysis of gene expression by quantitative PCR. Quantitative
real time-PCR (qRT–PCR) was performed on a Lightcycler (Roche,

Mannheim, Germany). cDNA template (500 ng), 0.5 ml (20 mM) of
forward and reverse primers and 10 ml of Sybr Premix Ex Taq
(TaKaRa, Shiga, Japan) in a total volume of 20 ml were applied to
the following PCR program: 30 s 95 1C (initial denaturation);
20 1C s� 1 temperature transition rate up to 95 1C for 15 s, 10 s
annealing, 20 s 72 1C, 10 s acquisition mode single, repeated for 45
times (amplification). Annealing and melting temperatures were
optimised for each primer set (Table 1). b-Actin was used for
normalisation.

Transfecting cells with pAGO2 or siRNA. In all, 2� 104 cells
were seeded each well in six-well plates and transfected with 0.5–
2 mg of plasmids pAGO2 or pIRES by using Lipofectamine LTX
(Invitrogen) or with 2–30 pmol siRNA by using Lipofectamine
RNAiMAX reagent (Invitrogen).

Protein analysis in vitro (western blotting). In all, 3� 106 cells
were resuspended in 200 ml radio-immune precipitation assay
(RIPA) buffer (Roche) and lysed for 15min at 4 1C. Insoluble
fragments were removed by centrifugation at 13 000 r.p.m. for
10min and the supernatant was stored at � 20 1C. In total, 40 mg
of RIPA complete cell lysates were loaded per lane and separated
on SDS–PAGE gels (Invitrogen) and subsequently blotted onto a
PVDF membrane. After blocking for 1 h with 3% BSA/PBS in case
of anti-c-Jun and 5% non-fat dry milk/TBS-T in case of anti-
AGO2, the membrane was incubated for 16 h with one of the
following antibodies: anti-AGO2 (11A9) (1 in 50 dilution, (Rudel
et al, 2008), anti-c-Jun (1 in 1000 dilution; Upstate, Merck,
Darmstadt, Germany), anti-b-actin (1 in 5000 dilution; Sigma-
Aldrich) and anti-tubulin (YL1/2) (1 in 500 dilution; Merck
Millipore, Darmstadt, Germany). After three washing steps with
TBS-T, the membrane was incubated for 1 h with an alkaline
phosphate-coupled secondary anti-mouse (1 in 3000 dilution in
TBS-T (Chemicon, Hofheim, Germany)), anti-rabbit (1 in 3000
dilution in TBS-T(Chemicon)) or anti-rat (1 in 5000 dilution in
TBS-T (Sigma-Aldrich, St Louis, MO, USA) IgG antibody and then
washed again for three times in TBS-T. Finally, immunoreactions
were visualised by NBT/BCIP (Sigma-Aldrich) staining.

AGO2 co-immunoprecipitation. Protein-G-sepharose beads (GE
Healthcare, Munich, Germany) were rinsed four times with ice
cold PBS (used in all subsequent washing steps), and incubated
with monoclonal anti-AGO2 over night at 4 1C. Beads were then
washed four times with PBS. Mel Ju cells (3� 106) were lysed in
100 ml RIPA buffer (Roche) and incubated for 15min at 4 1C.
Insoluble fragments were removed by centrifugation at
13 000 r.p.m. for 15min and the supernatant was stored at –
20 1C. One hundred microgram protein lysate were diluted in PBS
to a total volume of 300 ml. The lysate was incubated with Protein-
G-sepharose beads at 4 1C for 3 h. After co-IP, the beads were
washed four times with ice cold PBS and finally loaded with 4�
loading dye on SDS–PAGE gels (Invitrogen).

Mass spectrometry of AGO2. Samples were separated by SDS–
PAGE on NuPAGE Novex 4–12% Bis-Tris gels using the MOPS-
buffer system. After silver staining (Blum et al, 1987) bands of
interest were excised and washed according to Shevchenko et al

Table 1. Oligonucleotide sequences and qRT–PCR conditions

Gene Primer sequences (fwd/rev) Ta (1C) Tm (1C)
b-Actin 50-CTA CGT CGC CCT GGA CTT CGA GC-30

50-GAT GGA GCC GCC GAT CCA CAC GG-30
60–68 80

AGO2 50-GTC TCT GAA GGC CAG TTC CA-30

50-ATA GAG GCC TCA CGG ATG G-30
60 78

cJun 50-TTC CTC CCG TCC GAG AGC GG-30

50-TCG GCG TGG TGG TGA TGT GC-30
60 74

NRAS 50-ATG AGG ACA GGC GAA GGC T-30

50-TGA GTC CCA TCA TCA CTG CTG-30
60 66
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(Shevchenko et al, 1996) ith slight modifications. In brief, gel slizes
were washed twice alternately with 50 ml 50mM NH4HCO3

(washing buffer A) and 25mM NH4HCO3 in 50% acetonitrile
(washing buffer B). For reduction of disulphide bridges, the
samples were incubated for 30min in 10mM DTT in washing
buffer A at 56 1C. Carbamidomethylation of cysteines was
performed by incubation with 5mM iodoacetamide in washing
buffer A for 30min. Subsequently, the gel slizes were washed twice
alternately with washing buffer A and B again and dried in a
vacuum centrifuge. The gel pieces were rehydrated using 6ml of
trypsin solution (10 ngml� 1 in 50mM ammoniumbicarbonate) and
incubated at 37 1C overnight for in-gel-digestion. Resulting
peptides were eluted with 20 ml of 5% formic acid and subjected
to nano-LC-MS/MS-analysis on an Ultimate 3000 nano-HPLC-
system (Dionex GmbH, Idstein, Germany) using a 1-h binary
gradient directly coupled to a QTOF mass spectrometer (QStar XL,
Applied Biosystems, Darmstadt, Germany) as described previously
(Thomas et al, 2013). The tandem-MS-spectra were searched
against the Uniprot-database using the Mascot Distiller (version
2.4.2.0) and the Mascot algorithm (version 2.2; Matrix Science Ltd,
London, UK) using the following adjustments:

- trypsin as protease
- max. one missed cleavage site
- carbamidomethylation of cysteines as fixed modification
- oxidation of methionine, pGlu for N-terminal Gln as variable
modifications

- 100 p.p.m. tolerance for MS- and 0.2Da-tolerance for MS/
MS-signals

- only doubly and triply charged ions.

Only proteins with at least two different identified peptides with
significantly scored spectra, which passed manual verification were
considered.

Immunofluorescence for AGO2. Immunofluorescence assays
were performed as described previously. Briefly, cells were seeded
in chamber slides, washed with PBS, fixed with ice cold acetone for
10min at � 20 1C, permeabilised using 0.1% TritonX-100 for
5min, washed again and blocked for 1 h with 1% bovine
serumalbumin/PBS. Subsequently, cells were incubated with anti-
AGO2 antibody (200 ml Hybridoma) overnight at 4 1C. After
washing, cells were incubated with the secondary antibody (1 : 50,
fluoresceinisothiocyanate-conjugated anti-rat immunoglobulin) for
2 h, followed by rinsing with PBS and mounting with Vectashield
Hard SetMounting Medium with DAPI H-1500 (Vector Labora-
tories, Burlingame, CA, USA). Images were collected by immuno-
fluorescence microscopy using an Axio Imager Zeiss Z1

fluorescence microscope (Axiovision Rel. 4.6.3, Carl Zeiss AG,
Oberkochen, Germany).

Migration assay. Assays were performed using Boyden Chambers
containing polycarbonate filters with 8-mm pore size (Costar,
Bodenheim, Germany), essentially as described previously
(Rothhammer et al, 2005). Filters were coated with gelatin
(5mg l� 1). The lower compartment was filled with fibroblast-
conditioned medium, used as a chemo-attractant. Melanoma cells
were harvested by trypsinisation for 2min, resuspended in DMEM
without FCS at a density of 3� 104 cells per ml and placed in the
upper compartment of the chamber. After incubation at 37 1C for
4 h, the filters were collected and the cells adhering to the lower
surface were fixed, stained and counted. Experiments were carried
out in triplicates and were repeated three times.

Software. For image analysis the freeware ImageJ v1.33 down-
loaded from the NIH website (http://rsb.info.nih.gov/ij) and for
statistical analysis the GraphPad Prism were used.

Statistical analysis. In the bar graphs, results are expressed as
mean±s.d. (range) or per cent. Comparison between groups was
made using the Student’s unpaired t-test. The one-way or two-way
analyses of variance were used for comparisons of more than two
groups. A P-value o0.05 was considered as statistically significant
(NS, not significant, *Po0.05, **Po0.01, ***Po0.001). All
calculations were performed using the GraphPad Prism Software
(GraphPad Software, Inc., San Diego, USA).

RESULTS

siRNA effectivity in malignant melanoma. Recent data suggested
that gene-targeting by siRNAs lead to minor effects in melanoma
compared with effects in cell lines of other kinds of cancer. Further,
higher amounts of siRNA were needed to achieve comparable
effects. We, therefore, first aimed to quantitatively compare the
capability of siRNAs for the gene knockdown in different cell lines.
We analysed two siRNAs against cJun (Figure 1A) and NRAS
(Figure 1B) in the melanoma cell lines Mel Ju and Mel Im and two
‘non-melanoma’ cell lines CaCo2 (epithelial colorectal adenocarci-
noma) and HeLa (cervical cancer). Figure 1 displays the reduction
of gene expression per pmol transfected siRNA. In melanoma cells,
both siRNAs achieved a significantly lower reduction of gene
expression compared with ‘non-melanoma’ cells.

AGO2 reduction in melanoma. Little is known about alterations
in the miRNA-processing machinery in melanoma. Some mela-
noma array studies determined that AGO2 stays unchanged
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compared with melanocytes but using cDNA arrays, post-
transcriptional modifications are not detectable. Thus, we wanted
to take a closer look into the expression of AGO2 as the main factor
in miRNA function. We determined the AGO2 protein expression

in melanoma cell lines derived from both primary tumours
and metastases in comparison with normal human epidermal
melanocytes (NHEM). The western blot analyses demonstrated a
strong reduction of AGO2 in melanoma (Figure 2A). The AGO2
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western blot displays two AGO2 bands, a lower band, which
corresponds to the predicted AGO2 size of 99 kDa (Rudel et al,
2008) and an upper band that probably owns a post-translational
modification. In Figure 2B, the quantification of AGO2 protein
levels by analysing three different and independent analyses is
presented, confirming the significant reduction of AGO2 in all
melanoma cell lines. The reduction is stronger in both metastatic
cell lines (Mel Ju, Mel Im) compared with primary tumour cell lines
(Mel Ei, Mel Juso).

We further characterised the AGO2 protein level in melanoma
cell lines by AGO2 immunfluorescence staining. The AGO2
expression is strongly reduced in all analysed melanoma cell lines
compared with NHEMs (Figure 2C). To quantify these results, we
measured the immunfluorescence intensity of 10 single cells of
each cell line. The collected data are summarised in Figure 2D and
display the strong and significant reduction of AGO2 in
melanoma.

To characterise the AGO2 expression in tissue samples, we
analysed tissue extract (RIPA) samples of primary tumours and
metastases of melanoma and determined the AGO2 level by
western blot (Figure 2E). The data as well as the corresponding
western blot quantification (Figure 2F) revealed significantly
reduced AGO2 expression in all tissue samples from both primary
tumours and metastases in comparison with NHEMs and CaCo2.

Finally, we measured the AGO2 mRNA expression in NHEMs,
cell lines and primary tumour samples of melanoma (Figure 2G).
The melanoma cell lines compared with NHEMs displays equal
AGO2 levels, only A375 showed a slightly higher expression rate.

Also all tumour tissue samples (TB) indicated an AGO2 mRNA
expression rate, which is close to the expression level of NHEMs.
Significant differences between primary tumour tissues and
metastases samples could not be observed.

AGO2 expression in melanoma and other ‘non-melanoma’
tumours. To determine whether loss of AGO2 is melanoma-
specific or a general regulation in cancer cells, we analysed the
AGO2 protein expression in six different tumours in comparison
with NHEMs. The AGO2 expression in ‘non-melanoma’ tumours
(PLC (human hepatocellular carcinoma cell line), Hep3b (hepato-
cellular carcinoma cell line), MCF7 (Michigan Cancer
Foundation—7, breast cancer cell line), CaCo2 (epithelial color-
ectal adenocarcinoma cell line), SW1353 (human bone chondro-
sarcoma, fibroblast-like cell line) and HeLa (human epithelial
carcinoma cell line)) was higher than in NHEMs (Figure 3A). The
AGO2 western blot quantification displayed that the AGO2
protein expression in all tumours was higher than in NHEMs
and therefore also higher as in melanoma primary tumours or
metastasis cell lines (Figure 3B).

To confirm the western blot results, we performed AGO2
immunofluorescence analyses (Figure 3C) and observed an equal
and strong staining of NHEMs and all ‘non-melanoma’ tumour
cell lines (PLC, HeLa, SW1353 and HepG2). In contrast to that the
Mel Ju and Mel Im AGO2 staining intensity is strongly reduced.

Analysis of the AGO2 protein. The performed western blot
analyses of AGO2 display a specific and conserved band pattern
consisting of two bands. To ensure that both bands are AGO2 and
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not a second target protein of the AGO2 antibody, we
immunoprecipitated AGO2 from Mel Ju RIPA and analysed the
double band by mass spectrometry. Figure 4A shows the AGO2
western blot of the AGO2 immunoprecipitation sample. Both
AGO2 bands, which were further analysed, are highlighted in red
and blue boxes. We identified the AGO2 bands likewise after silver
staining of SDS gel analyses (red and blue boxes in Figure 4B) and
characterised the containing proteins of both bands after excision
in mass spectrometry. The result of the mass spectrometry analyses
is present in Figure 4C and both bands contained AGO2.

To analyse the cellular consequences of AGO2 reduction in
melanoma, we re-expressed AGO2 in the metastases cell line Mel
Ju by using the plasmid pIRES-AGO2 (pAGO2), leading to
expression of AGO2 protein with additional N-terminal HA- and
Flag-tags (Meister et al, 2004). As can be seen in Figure 4D, AGO2
expression increased depending on the amount of transfected
pAGO2 expression plasmid. The re-expressed AGO2 differed in
size (plus 5.1 kDa) to the lower AGO2 band, based on the HA and
Flag-tag modifications. The empty expression plasmid pIRES was
used as a control and showed no modulation of AGO2 expression.
We quantified the AGO2 western blot results to determine the
amount of required pAGO2 plasmid concentrations to achieve the
AGO2 expression level of NHEMs in Mel Ju cells. Figure 2B
illustrates that the AGO2 level of Mel Ju cells is B25% compared
with NHEMs. We obtained the AGO2 level of NHEMs in Mel Ju
cells by transfection 2 mg pAGO2 expression plasmid.

Modulation of siRNA activity by AGO2 re-expression in
melanoma. To analyse whether there is an influence of miRNA
effectivity based on the melanoma-specific AGO2 reduction, we
determined the efficiency of miRNA processing in the context of
AGO2 modulation. We, therefore, used the transcription factor
cJun as a model protein to analyse consequences of AGO2
reduction in melanoma cells for miRNA-regulated genes. cJun is
strongly overexpressed in melanoma, which is a consequence of the
reduced expression rate of miR-125b. The miR-125b targets cJun
directly in its coding sequence (Kappelmann et al, 2013). Both are

perfect attributes for the usage of cJun as a target protein to analyse
the relevance of AGO2 in the miRNA pathway.

We treated Mel Ju cells with siRNA against cJun (si-cJun) or
with a random siRNA (si-ctrl.) as negative control and determined
the siRNA effectivity by analysing the cJun inhibition per pmol si-
cJun (Figure 5A). We observed an increase in siRNA activity of
70% after AGO2 re-expression compared with mock-treated Mel
Ju cells.

Figure 5B illustrates the inhibition of cJun in cells treated with
various si-cJun concentrations after pAGO2 and pIRES (mock)
transfection (2 mg plasmid). The graphs display a strong increase of
si-cJun effectivity after AGO2 re-expression. This effect can be
found for all si-cJun concentrations (2 pmol, 4 pmol, 7.5 pmol,
15 pmol and 30 pmol) and is significant, with the exception of
4 pmol si-cJun. The low but reproducible differences of AGO2
re-expression for the cJun expression in si-ctrl. treated Mel Ju cells
is, in our opinion, based on the AGO2 modulation of endogenous
siRNA, including miR-125b.

To ensure that the AGO2 re-expression did not affect the siRNA
transfection efficiency, we determined the amount of transfected
fluorescence labelled siRNA (si-Glo) after AGO2 transfection in
Mel Ju cells. Supplementary Figure 1S illustrates that AGO2 did
not modulate the siRNA transfection efficiency.

Further, we wanted to confirm the increase in siRNA effectivity
for the protein expression of the siRNA target proteins by re-
expression of AGO2. Therefore, we determined and quantified the
amount of cJun in western blot analyses after AGO2 re-expression
and si-cJun treatment (Figure 5C). We observed a decrease of cJun
corresponding to the increasing amount of si-cJun treatment in
pAGO2 and pIRES (mock) transfected Mel Ju cells and also strong
differences of AGO2 re-expressing cells compared with mock.

Next, we were interested to determine whether AGO2 reduction
in melanoma affects only mature siRNAs or also miRNAs during
their processing. Diederichs and Haber (2007) were able to show
that AGO2 is also a miRNA-processing enzyme, which processes
the pre-miRNA to an additional processing intermediate. This
intermediate miRNA is termed ‘AGO2-cleaved precursor miRNA’
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or ‘ac-pre-miRNA’. Therefore, we used short hairpin (sh) RNA
against cJun, which is processed by AGO2 and analysed the cJun
inhibition in Mel Ju cells in relation to the amount of AGO2.
Figure 5D demonstrates the significant effect of AGO2
re-expression in melanoma for the processing of miRNAs. The
cJun mRNA degradation by sh-cJun is more than fourfold higher
after AGO2 re-expression compared with mock (pIRES) transfec-
tion. This strong effect is also visible in the cJun western blot
(Figure 5E). The sh-cJun is not strongly efficient in melanoma
cells, only one-third reduction was observed compared with the
control (sh-ctrl) in mock transfected cells. However, after
re-expression of AGO2 the cJun inhibition doubles from 30 per
cent inhibition to 60 per cent after short hairpin RNA (shRNA)
treatment (Figure 5F).

Modulation of specific siRNA or miRNA concentrations can
lead to phenotypically variation of melanoma cells, for example
changes in invasion (Luo et al, 2013), migration (Dynoodt et al,
2013) or proliferation (Nemlich et al, 2013). To analyse if the
re-expression of AGO2 results in altered cell behaviour, we

compared the migration potential of Mel Ju cells transfected with
2 mg pAGO2 with mock (2 mg pIRES) transfected cells. Figure 6
demonstrates that the migration potential of Mel Ju cells decrease
about 20% after AGO2 re-expression.

DISCUSSION

Malignant melanoma is an aggressive tumour with a tendency to
early metastasis and strong resistance to current therapeutic
approaches (Russo et al, 2009; Shoo and Kashani-Sabet, 2009;
Jemal et al, 2011). Aberrant expression patterns of certain miRNAs
were shown to contribute to the initiation and progression of
melanoma acting as so called oncomirs (Esquela-Kerscher and
Slack, 2006; Mueller and Bosserhoff, 2009).

MiRNAs are known to control cell proliferation, differentiation
and metabolism through their specific gene regulatory network
with estimations that at least one-third of human protein-coding
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genes are targets of miRNAs. Further, it is known that one single
miRNA can target and regulate a multitude of genes (Philippidou
et al, 2010; Xu et al, 2012).

Several array studies analysed the miRNA expression pattern in
melanoma in comparison with melanocytes (Mueller et al, 2009;
Caramuta et al, 2010; Philippidou et al, 2010; Nazarov et al, 2013)
and identified a general induction of miRNA expression with more
miRNAs up- than downregulated in melanoma. Interestingly, this
was not observed in other types of cancer hinting to melanoma
specificity. It was speculated that regulation of genes by miRNAs
could be in part differently regulated compared with other
tumours. Our finding that AGO2 is strongly downregulated in
melanoma suggests the RISC complex as a regulatory unit.
Reduction in AGO2 would lead to preferential regulation by the
miRNAs with strongest expression resulting from the competition
for AGO2. Therefore, miRNAs, which are not upregulated, reduce
their efficient probability to regulate their corresponding targets.
This effect of shifted miRNA effectiveness is directly corresponding
to the amount of miRNA and intensified the shortage of
downregulated miRNAs. For example, Integrin b3 is part of the
receptor for fibronectin, vitronectin and other matrix proteins and
is strongly upregulated in melanoma. Overexpression of this
Integrin b3 is a direct consequence of downregulated mir-let-7a
and is associated with aggressive tumour growth, invasion and
metastasis (Albelda et al, 1990; Muller and Bosserhoff, 2008). We
speculate that the reduced amount of AGO2 is not able to load the
remaining miR-let-7a efficiently and therefore extent the mela-
noma progression.

The competence of miRNAs to regulate multiple pathways at
various checkpoints makes them in theory useful as therapeutics.
Two possible strategies are practical to modulate the level of a
specific miRNA (reviewed by Garzon et al (2010)). The first one is,
in the case of downregulated miRNAs, to re-express the miRNA as
so called pre-miRs. Second, which is more attractive in melanoma
because of rather upregulated miRNAs, to express antagomiRs
(miRNA-inhibitors) for inhibition of unwanted miRNAs.
However, the functionality of all miRNAs depends on their
availability to get processed or loaded by AGO2. We could show
that AGO2 modulation directly results in altered phenotypically
behaviour of melanoma. Therefore, it is necessary for the progress
of therapeutically miRNA treatment in melanoma patients to
understand the importance of the AGO2 reduction.

The Ago subfamily of human AGO proteins consists of four
members (AGO1, AGO2, AGO3 and AGO4) and all are able to
form miRNPs but they differ in their mechanism of action. Only
the AGO2 and AGO3 enzyme own the ribonuclease active site in
the AGO PIWI domain catalyses the cleavage of target mRNA.

But in contrast to AGO2, AGO3-associated cleavage activity could
not be observed (Meister et al, 2004). The specialised functions of
AGO1, AGO3 and AGO4 remain unclear so far (Modzelewski
et al, 2012). Therefore, ongoing analysis of the cause of reduced
AGO2 expression in melanoma cells could lead to insights into
fundamental process of RNase III free processing of miRNAs.

Possible explanation for the reduced amounts of AGO2 in
melanoma could be the recent finding that the miRNA-processing
enzymes DICER and AGO2 are targets for degradation by selective
autophagy (Gibbings et al, 2012) or a fast degradation by the
ubiquitin degradation pathway (Rybak et al, 2009).

Taken together, the results in this work demonstrate that the
siRNA, shRNA and miRNA activity depends on the amount of
AGO2. After AGO2 re-expression in melanoma cells, the
functionality of siRNA and miRNA increases dramatically. This
finding adds new information on the role of deregulated miRNAs
in malignant melanoma. Furthermore, this study is important for a
possible therapeutical potential of miRNAs for melanoma patients
or general clinical research.
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