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Lung cancer is the leading cause of cancer mortality rate worldwide, mainly because of the presence of metastatic disease at the
time of diagnosis. Early detection of lung cancer improves prognosis, and towards this end, large screening trials in high-risk
individuals have been conducted since the past century. Despite all efforts, the need for novel (complementary) lung cancer
diagnostic and screening methods still exists. In this review, we focus on the assessment of lung cancer-related biomarkers in
sputum in the past decennium. Besides cytology, mutation and microRNA analysis, special attention has been paid to DNA
promoter hypermethylation, of which all available literature is summarised without time restriction. A model is proposed to aid in
the distinction between diagnostic and risk markers. Research on the use of sputum for non-invasive detection of early-stage lung
cancer has brought new insights and advanced molecular techniques. The sputum shows a promising potential for routine
diagnostic and possibly screening purposes.

Lung cancer is the leading cause of cancer mortality worldwide
(Ferlay et al, 2010). Despite large-scale investments in research and
optimisation of treatment strategies, lung cancer is mostly detected
at an advanced stage, resulting in a general 5-year survival of 15%
(Siegel et al, 2012). Prognosis greatly improves if lung cancer is
detected at an early stage (Patz et al, 2000).

Lung cancer development evolves in approximately 10 to
30 years before it becomes clinically manifest (Hirsch et al, 2001).
This latency period offers an opportunity to identify individuals at
risk. In the past century (in the 1970s), thorax X-ray screening
studies have been conducted for the detection of early-stage lung
cancer, in which cytological examination of sputum was part of the
diagnostic procedure (Melamed et al, 1984). Sputum cytology
turned out neither to be of additive value in enhancing lung cancer
detection nor in reducing lung cancer mortality. The average
survival time increased after thorax X-ray screening because of lead
time and sampling bias. The outcome of a recent low-dose spiral
CT (LDCT) screening study seems promising as it reduces lung
cancer mortality (National Lung Screening Trial Research Team
et al, 2011).

In theory, a biomarker sputum test for early detection may be
developed for three possible applications: (i) identification of
at-risk individuals, who may be screened with LDCT after a
positive biomarker test; (ii) after the first LDCT screen shows
a solid lesion, a sputum biomarker may be developed as a
diagnostic test for malignancy; and (iii) after the first LDCT screen
shows a ground glass lesion, we can determine whether the lesion
has a high or low chance of becoming malignant. In the setting of
patients with symptomatic lung cancer, a sputum test may be
useful for diagnostic workup of malignancy and if diagnosed with
lung cancer to perform predictive analysis.

Biomarker screening may be categorised into (i) risk markers,
which identify individuals at high risk of developing lung cancer,
and (ii) diagnostic markers, which uncover invasive lung cancer.
The biomarker must meet several conditions, such as being
superior to conventional detection methods in terms of sensitivity
and specificity, before it is considered suitable for clinical
implementation (Box 1). In this review, diagnostic markers are
defined as markers recognising (the transition to) invasive lung
cancer. At this stage, the disease may be measurable but still
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asymptomatic. A risk marker is able to identify subjects at risk
without measurable disease. In pathobiological terms, this marker
may be associated with several conditions, such as measure
of exposure to carcinogen and development of carcinoma in situ
(Selamat et al, 2011).

In 2003, a review summarised the status of mutation analysis
and initial methylation findings in sputum (Thunnissen, 2003).
This manuscript provides an overview of developments in sputum
analysis for lung cancer diagnosis in the past 10 years. The
PubMed terms ‘lung cancer’ and ‘sputum’ were used. In addition,
special attention is paid to DNA hypermethylation.

SPUTUM CYTOLOGY

By means of cytology, tumour cells can be identified in sputum
through aberrant cell morphology. Status of the diagnostic value of
sputum cytology has not changed in the past decennium. In the
clinical diagnostic setting, the sensitivity of sputum cytology is
B60%, which also depends on the number of sputum samples
examined (Risse et al, 1985). Although in developed countries the
procurement of tumour biopsies/tumour cytology replaced the use
of sputum cytology as standard for lung cancer diagnosis (Rivera
and Mehta, 2007), in lower budget countries sputum cytology is an
affordable diagnostic instrument and still clinically implemented
(Ammanagi et al, 2012).

MOLECULAR ANALYSIS OF SPUTUM

DNA mutation analysis. For DNA mutation analysis, currently
the relevant part of the gene of interest is amplified, usually using
polymerase chain reaction (PCR) technology. This is a very
sensitive, low-cost, rapid and simple method. Disadvantages are
that contamination may be an issue, as well as that the enzyme
DNA polymerase has a small error. In about 0.1% of amplicons, an
incorrect nucleotide may be incorporated (Eckert and Kunkel,
1991). If this error happens early in the PCR procedure, it will
propagate and may lead to a false-positive signal, thus reducing
specificity.

Mutations of tumour-suppressor gene p53 and oncogene KRAS
have been identified to have a role in lung carcinogenesis
(Hanahan and Weinberg, 2011). In 50% of lung cancer cases,
mutations or deletions are present in the p53 gene (Greenblatt et al,
1994). KRASmutations mostly occur in adenocarcinomas (20–30%
in western countries and 10% in eastern countries) (Shigematsu
et al, 2005).

Various KRAS mutation detection techniques have been investi-
gated on sputum specimens (Table 1). Peptic nucleic acid–PCR–
restriction fragment length polymorphism (PNA–PCR–RFLP) and

Point-EXACCT were described as methods of choice (Thunnissen,
2003).

Destro et al (2004) confirmed KRAS mutation in 79% of the
sputum samples from lung cancer patients with a KRAS mutation
in their tumour tissue (n¼ 14). In controls, none tested positive.
Keohavong and co-workers (2004, 2005) conducted studies in
Xuan Wei County (China), where lung cancer rates were fivefold
higher than the Chinese national average. Mutation detection was
optimised by application of cell cytocentrifugation and laser
capture microdissection, enabling detection of low fraction
mutations, even in morphologically benign bronchial epithelial
cells (Keohavong et al, 2004, 2005). With this approach,
examination of cytology is still needed for dissecting abnormal
or benign epithelial cells for enrichment. In a cancer-free
population, mutations in both genes were identified (15 out
of 92) (Keohavong et al, 2005). These mutations occurred in none
of the matched buccal epithelial cells, indicating that the latter cells
are not suitable as a surrogate marker for lung cancer (risk).

Until recently, most sputum studies have been performed on
patients with symptomatic lung cancer. Research conducted before
2003 show that KRAS mutations may be detected in sputum at
least 1 year before clinical diagnosis of lung cancer (Somers et al,
1998). Baryshnikova et al (2008) were the first to investigate
sputum from a large LDCT screening cohort (n¼ 803) consisting
of asymptomatic heavy smokers, assessing frequency of KRAS and
p53 mutations, next to DNA promoter hypermethylation of p16,
NORE1A and RASSF1A (Supplementary Table 1). KRAS mutation
analysis was performed by restriction endonuclease-mediated
selective PCR with a reported sensitivity of one mutant per 1000
wild-type genes. No KRAS mutation was identified, especially in
the 18 subjects who developed lung cancer during the follow-up
period. None of these patients had molecular alterations at
baseline. In 15 out of 803 (2%) participants, a p53 mutation was
found, of whom one patient was diagnosed with early-stage lung
cancer in follow-up without confirmation of the p53 mutation in
the tumour.

These studies suggested that KRAS might be more suitable as a
diagnostic marker than for risk assessment in precancerous stages.
Future studies with further follow-up of participants are needed to
elucidate whether molecular alterations of KRAS and p53 are
indeed suggestive for lung cancer development.

Mutations in the tyrosine kinase domain of the epidermal
growth factor receptor (EGFR) have been identified in parts of lung
adenocarcinomas, and are associated with high response rates to
treatment with EGFR tyrosine kinase inhibitors (Sharma et al,
2007). Epidermal growth factor receptor mutation analysis has been
performed in some sputum samples as part of larger series of other
cytological samples, mostly without detailed information and not
compared with the original tumour (Boldrini et al, 2007; Takano
et al, 2007; Tanaka et al, 2010). In a total of three publications,
3 out of 25 sputum samples were positive in cases with
cytologically proven malignant cells.

EML4-ALK is a lung cancer fusion oncogene that is estimated to
be expressed in 3–6% of lung adenocarcinomas (Takeuchi et al,
2008), showing marked response to treatment with ALK inhibitors
(Kwak et al, 2010). Recently, Soda et al (2012) reported the
development of a multiplex RT–PCR system that was able to detect
EML4-ALK mutations in 4 out of 35 sputum samples, which were
part of a prospective screening cohort of NSCLC patients.

Optimisation of EGFR and EML4-ALK mutation detection in
sputum may, in the future, contribute to minimise the use of
invasive bronchoscopy or transthoracic needle biopsies to secure
tumour biopsies for mutation testing, a clinical need in monitoring
personalised treatment.

DNA hypermethylation. Aberrant DNA promoter methylation is a
cell control mechanism in lung carcinogenesis (Selamat et al, 2011),

Box 1. Diagnostic vs risk marker
In context of evaluating the performance of a certain biomarker, we used the

following approach for distinction between risk and diagnostic markers.

As some asymptomatic lung cancer cases exist in a control population, an

estimate for the expected number of undiagnosed lung cancer cases in the

general/control population was made based on the following assumptions.

A diagnostic biomarker test is able to detect lung cancer (arbitrary) 2 years

before becoming symptomatic. Examining a high-risk population (e.g. heavy

smokers), with a relative risk on lung cancer of approximately 12, 2.4%

of the cases in the control population will be positive (2 (years)�0.1%

(approximate incidence (Siegel et al, 2012))� 12 (relative risk)). To be on

the safe side with this simplified approach, in this review the threshold was

set at 4%. Thus, if 44% of the control patients had a positive test, this

biomarker was regarded as risk marker.
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involving the addition of a methyl group at the carbon 5 position of
cytosines at CpG sites in DNA. A widely used approach to
distinguish methylated DNA from unmethylated DNA is exposing
genomic DNA to bisulphite before PCR. In this process,
unmethylated cytosine is converted into uracil, whereas methylated
cytosine remains unchanged. The templates are next subjected to
methylation-specific PCR (MSP). It has the same (dis)advantages
as PCR in mutation analysis (Shaw et al, 2006), with an additional
disadvantage that bisulphite conversion may be incomplete. In that
case, not all unmethylated cytosines are converted to uracil, leading
to false-positive results, whereas some controls do not correct for
this. In some methods like pyrosequencing (Hwang et al, 2011),
this incomplete conversion may be detected, but this is not the
case with MSP.

To examine the effect of a high number of cycles in MSP, a
small interlaboratory study was performed between The Canisius
Wilhelmina Hospital in Nijmegen, the Netherlands (CP, ET) and
the Fondazione IRCCS Istituto Nazionale Tumouri in Milan, Italy
(GZ) with identical set-up (DNA samples, primers and protocols)
(Field et al, 2009). Promoter DNA hypermethylation of p16 and
b-retinoic acid receptor (RAR-B) (Martinet et al, 2000) was

investigated using nested MSP analysis with a number of different
PCR cycles (50–80 cycles in total). Consistent results between the
laboratories were present up to 55 cycles (in total). In experiments
with 455 PCR cycles, a greater number of samples became
positive with the loss of reproducibility between and within
laboratories. These results point towards false positivity and
indicate that caution must be exercised when interpreting data
derived from studies in which nested MSP with more than 55 PCR
cycles were applied.

Based on this knowledge, we divided literature studies on gene
methylation in sputum published up to now into three categories:
studies in which o55 PCR cycles were applied, 455 PCR cycles or
unknown number of PCR cycles, respectively. The latter category
consisted of those studies of which the publications did not provide
explicitly the number of PCR cycles used.

Hypermethylation frequency in sputum of mostly symptomatic
lung cancer patients and controls was investigated for 54 genes
(Supplementary Table 1). Not for all genes information could be
specified: some genes were described with incomplete data.
Furthermore, inclusion and exclusion criteria for both cases and
controls differed between the studies. Some studies included only

Table 1. Studies on KRAS and p53 mutation analysis in sputum samples

Subjects Molecular alterations

Study Cases Controls Gene Method
PCR
cycles Cases Controls Remarks

Baryshnikova
et al (2008)

Smokers KRAS PCR–RFLP 40 0/506
(0%)

Follow-up 2–6 years; 18 patients developed
lung cancer without molecular alterations at
baseline

p53 PCR and SSCP 40 15/803
(2%)

One patient with p53 mutation at baseline
developed SqCC, but was not confirmed in
resected tumour tissue. Also DNA promoter
hypermethylation tested of p16, NORE1A and
RASSF1A (Supplementary Table 1)

Destro et al
(2004)

NSCLC Smokers KRAS PCR–RFLP 40 11/50 (22%) 0/100
(0%)

Fourteen of 50 tumour tissue samples tested
KRAS mutation positive.
In three cases, concomitant p16
hypermethylation (Supplementary Table 1)

Keohavong
et al (2003)

All KRAS MAE, PCR and DGGE 47 XW: 23/102 (23%)
BH: 7/50 (14%)

Data of both tumour and sputum
were presented together. Two study
populations: Xuan Wei County (XW) and
Beijing and Henan (BH), respectively. XW
subjects were exposed to coal smoke

Keohavong
et al (2004)

Lung
cancer
NS

KRAS Cell centrifugation, laser
capture microdissection,
PCR and DGGE (KRAS)/
SSCP (p53)

47 2/15 (13%) Subjects were exposed to coal smoke. KRAS
mutation status of primary tumour unknown

p53 42 6/15 (40%)

Keohavong
et al (2005)

(Non)
Smokers

KRAS Cell centrifugation, laser
capture microdissection,
PCR and DGGE (KRAS)/
SSCP (p53)

30 2/92
(2%)

Subjects were exposed to coal smoke

p53 42 14/92
(15%)

Zhang et al
(2003)

NSCLC KRAS MAE, PCR and DGGE 55 10/22 (46%) In 12 out of 22 matched tumour–sputum
samples, KRAS mutation was identified using
the same method (k¼ 0.64, 95% confidence
interval: 0.32–0.95, Po0.01). One patient
tested negative in tumour, but positive in
sputum

Abbreviations: All¼ all types of lung cancer included; DGGE¼denaturing gradient gel electrophoresis; MAE¼mutant allele enrichment; NS¼not specified; NSCLC¼ non-small-cell lung
cancer; PCR¼polymerase chain reaction; RFLP¼ restriction fragment length polymorphism; SqCC¼ squamous cell carcinoma; SSCP¼ single-strand conformational polymorphism.
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non-small-cell lung cancer, others also examined small-cell lung
cancer and unspecified lung cancer cases. The examined popula-
tions consisted usually of more male subjects than female subjects
(average 75% in cases, 70% in controls, respectively).

From the summary table, it is apparent that only for a limited
number of genes published data were available for categories 455
or p55 PCR cycles, respectively. Concerning p16 gene, five studies
(Belinsky et al, 1998; Destro et al, 2004; Olaussen et al, 2005;

Cirincione et al, 2006; Shivapurkar et al, 2007) with p55 PCR
cycles and nine studies with 455 PCR cycles (Kersting et al, 2000;
Palmisano et al, 2000; Konno et al, 2004; Belinsky et al, 2006; Hsu
et al, 2007; Liu et al, 2008; Guzmán et al, 2012; Leng et al, 2012;
Shin et al, 2012) with sensitivity and specificity data were available
for bivariate analysis (Reitsma et al, 2005). Interestingly, mean
specificity was shown to be significantly lower in the group of
studies with 455 PCR cycles (74% vs 87%, Po0.001), whereas

Table 2. Studies investigating presence and/or expression of RNA and tumour-related proteins in sputum

Study Cases Controls Method
Protein/
gene

Results
cases

Results
controls

Se
(%)

Sp
(%)

Positive
cytology Remarks

Sun et al
(2009)

All Benign
pulmonary
disease

RTQ–PCR,
immunocyto-
chemistry

APRILa 58/71 (82%) 2/62 (3%) 82 97 Cases 10/71
(14%): all SCC
Immunocytol:
11/71 (16%)

Healthy subjects: 1/65
(2%). Cutoff value:
mean±2 s.d. of mRNA
expression in healthy
subjects

Mecklenburg
et al (2004)b

All Benign
pulmonary
disease

RT–PCR MAGE-1 2/14 (14%) 0/2 (0%) 14 100 cases 1/8 (13%) Positive cytology
sample was not tested
with RT–PCR. Cytology
of remaining samples
not performed

MAGE-2 1/14 (7%) 0/2 (0%) 7 100
MAGE-3/6 0/14 (0%) 0/2 (0%) 0 100
MAGE-4 2/14 (14%) 0/2 (0%) 14 100
MAGE-12 2/14 (14%) 0/2 (0%) 14 100
All combined 5/14 (36%) 0/2 (0%) 36 100

Jheon et al
(2004)b

All Benign
pulmonary
disease

RT–N-PCR MAGE A1–6 72/134 (54%) 3/140 (2%) 54 98 Cases 6/31 (19%) Also spontaneous
sputum collected. Data
of lung cancer patients
from group I (collection
at the day of
thoracotomy) and II
(lung cancer in clinical
workup) combined.
Follow-up (1 year):
no cancer in controls

TRAP method Telomerase 8/27 (30%) 30

Pasrija et al
(2007)b

All Cancer-free
subjects

TRAP method Telomerase 23/34 (68%) 3/30 (10%) 68 90

Pio et al
(2010)b

All Cancer-free
subjects

Anti-factor H
antibodies

Complement
factor Ha

80 88 Also spontaneous
sputum collected.
Se and Sp based on
cutoff ROC curve

Kalomenidis
et al (2004)

All Benign
pulmonary
disease

IRMA CEAa 57 95 Se and Sp based on
cutoff ROC curves

IRMA NSEa 19 95
IRMA CYFRA 21-1a 36 95

Hillas et al
(2008)b

All COPD IRMA CEA NS NS cases 4/50 (8%) CEA median
concentration.
Cases: 713 ngml�1,
controls 518 ngml�1

IRMA NSE NS NS NSE median
concentration.
Cases: 12 ngml�1,
controls 13.7 ngml� 1

RIA CYFRA 21-1a 86 75

Abbreviations: All¼ all types of lung cancer included; CEA¼ carcinoembryonic antigen; COPD¼ chronic obstructive pulmonary disease; IRMA¼ immunoradiometric assay; NSE¼ neuron-
specific enolase; NS¼ not specified; RIA¼ radioimmunoassay; ROC¼ receiver operating characteristic; RT–(Q)(N)–PCR¼ reverse transcriptase (quantitative) (nested)–polymerase chain reaction;
Se¼ sensitivity; Sp¼ specificity; TRAP¼ telomeric repeat amplification protocol.
aPo0.05 significance level between cases and controls.
bInduced sputum.
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sensitivity was higher, but not significantly different (49% vs 33%,
P¼ 0.13). This literature analysis supports the above-mentioned
theoretical notion that a high number of PCR cycles leads to a
higher chance of false-positive results. It is not excluded that a
diagnostic marker may be looked upon as a risk marker
(as defined in Box 1), when 455 PCR cycles are run with possible
induced false positivity. Moreover, when comparing the number of
PCR cycles (455 orp55) with marker classification (diagnostic vs
risk), a biomarker is more likely to be classified as a risk marker if
455 PCR cycles were applied compared with at most 55 PCR
cycles (85% vs 58%, P¼ 0.002).

In 10 studies (Kersting et al, 2000; Palmisano et al, 2000; Chen
et al, 2002; Liu et al, 2003; Wang et al, 2003; Destro et al, 2004;
Olaussen et al, 2005; Cirincione et al, 2006; Belinsky et al, 2007;
Hsu et al, 2007) matched tumour and sputum samples were
examined. The median frequency of gene hypermethylation was
higher in tumour than in sputum samples: 48% (interquartile range
36–64%) vs 38% (interquartile range 31–57%), respectively. A
meta-analysis on exact data (Kersting et al, 2000; Liu et al, 2003;
Wang et al, 2003; Olaussen et al, 2005; Shivapurkar et al, 2007;
Shin et al, 2012) showed that this observed tendency was not
significant (P¼ 0.09; Durkalski et al, 2003). Median concordance
of methylation between tumour and matched sputum, calculated
from the same studies, is 78% (interquartile range 73–91%),
indicating that the use of sputum as non-invasive biological fluid
for detection of aberrant methylation is representative of the
methylation status of primary tumour tissue.

Still, none of the biomarkers yield 100% sensitivity. The
multidimensional character of lung cancer, in which various genes
might be involved (Hansen et al, 2011), requires a panel of markers
that can complement each other in lung cancer detection. Several
studies calculated combined sensitivity and specificity for hyper-
methylated genes (Zöchbauer-Müller et al, 2003; Belinsky et al,
2005, 2006, 2007; Hsu et al, 2007), revealing higher performance
when compared with the markers individually. These algorithms
seem promising, but are scarcely validated in independent study
cohorts. Interestingly, one study (Leng et al, 2012) replicated a
panel of previously published hypermethylation markers (Belinsky
et al, 2007) in two independent slightly different cohorts:
case–control vs asymptomatic stage I lung cancer patients. They
showed a slightly higher sensitivity and specificity in the second
cohort. However, the methylation panels were not exactly similar
between the study cohorts. Also, as sputum samples were stored in
Saccomanno after collection without further treatment, DNA
quality may be reduced, possibly affecting the study data.
Therefore, at this point in time, it is difficult to define an
unambiguous biomarker signature panel for lung cancer risk based
on these results.

Patient selection, sputum collection and procedure methods
might explain the differences in rates of methylation between
studies investigating the same biomarker.

Research into additional novel markers remains necessary.

Loss of heterozygosity. Microsatellite alterations present as loss
of heterozygosity (LOH), or as microsatellite instability (MSI).
Conceptually, LOH is essentially different from previous markers,
because it explores the absence of the allele that is present in the
normal situation, whereas the other above-mentioned biomarkers
look for the presence of a specific abnormality. Because the fraction
of tumour cells in sputum is usually o1%, the majority of the cells
will not have LOH. Therefore, looking for tumour-related LOH has
a disadvantage: requiring a difference that is higher than the
threshold of the test based on signal-to-noise ratio. For example,
when LOH is present in 1% of tumour cells, the proportion of
missing alleles is 0.5%. To demonstrate this, a test is required that
is able to make a distinction between 100% (normal reference
DNA; e.g. lymphocytes) and 99.5% (mixed sample with 99%

normal and 1% heterozygous tumour DNA). It is difficult to
perceive a clinical assay with such a low variation coefficient that
this small difference can be reliably detected in sputum.

Using polymorphic DNA markers in PCR-based assays, LOH
and MSI has been reported in sputum of lung cancer patients.
These polymorphic DNA markers are non-informative in
individuals who are homozygotic for these markers. Therefore,
several markers need to be examined to cover the general
population.

Four studies have been conducted on LOH and lung cancer, of
which the most recent ones were published in 2007 (Arvanitis et al,
2003; Wang et al, 2003; Castagnaro et al, 2007; Hsu et al, 2007).
No studies have followed since. All studies report comparable
results with LOH in 26–55% in cases and 0–11% in cancer-free
controls. Prevalence of MSI was low in all studies, ranging from 4
to 35% in cases and 0 to 5% in controls. Arvanitis et al (2003)
tested 48 markers in sputum and bronchial washings (analysed
together), in which non-cancer-specific markers were also
included. Looking at informative loci, they calculated fractional
allele loss values. Significant variations were observed for the
markers, which may be related to non-neoplastic genetic altera-
tions. This kind of results needs to be confirmed by others. Taking
these data and the technical considerations into account, there is
room for debate whether LOH and MSI by themselves are suitable
as sputum biomarkers for lung cancer.

MicroRNA. MicroRNAs (miRNAs) are a class of small non-
coding RNA molecules, which are associated with a spectrum of
biological and pathological processes.

In a small feasibility study, Xie et al (2010) demonstrated that
endogenous miRNAs are stably present in sputum specimens.
Using real-time RT–PCR, miR-21 and miR-155 were detected, of
which miR-21 was significantly overexpressed in sputum of lung
cancer patients as compared with cancer-free subjects. Further-
more, elevated miR-21 expression was more sensitive (70%) than
conventional sputum cytology (48%) in diagnosing lung cancer.

The same research group defined miRNA signatures for
different histologic types of lung cancer in studies of similar
design (Xing et al, 2010; Yu et al, 2010). Sensitivity increased when
complementary miRNAs were combined in a panel as compared
with single miRNAs. For the diagnosis of squamous cell lung
cancer, the combination of miR-205, miR-210 and miR-708
yielded 73% sensitivity and 96% specificity. A panel consisting of
miR-21, miR-200b, miR-375 and miR-486 produced 81% sensi-
tivity and 92% specificity in discriminating sputum of lung
adenocarcinoma patients from controls. The authors found no
association between miRNA expression and stage of lung cancer,
suggesting that the miRNA signatures can be used as a tool in the
detection of early lung cancer. Overall, miRNA analysis has
recently become available and more studies in sputum seem useful.

Messenger RNA. From practical point of view, there is a
disadvantage using messenger RNA (mRNA). In contrast to
miRNA (see above), mRNA is rapidly degraded in the sputum.
Therefore, it is necessary to process sputum after collection as soon
as possible.

Several studies investigated aberrant mRNA profiles in sputum
(Jheon et al, 2004; Mecklenburg et al, 2004; Sun et al, 2009)
(Table 2). Reverse-transcriptase quantitative PCR (RTQ–PCR) was
more sensitive than sputum cytology (14%) and immunocyto-
chemistry (16%). In short, two studies revealed high specificity
and reasonable sensitivity (Jheon et al, 2004; Sun et al, 2009).
Confirmation of these results is needed.

Protein. Several studies explored the presence and/or expression
of tumour-related proteins in sputum of lung cancer patients and
controls (Table 2). Sun et al (2009) reported significantly elevated
expression of a proliferation-inducing ligand (APRIL) in sputum
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of lung cancer patients compared with controls (82% vs 3%,
respectively).

Pio et al (2010) demonstrated increased levels of complement
factor H in sputum of lung cancer patients, and suggested that
large plasma proteins as factor H reflects hyperpermeability in
tumour circulation. Factor H quantification may aid in improving
sensitivity of sputum cytology for lung cancer diagnosis, but is not
proof of malignancy similar to hemoptysis.

Fluorescence in situ hybridisation. Fluorescence in situ hybridi-
sation (FISH) assay allows detection of chromosomal aneusomy,
rearrangements and copy number changes in interphase cells,
but usually requires the cytological or automated detection of
abnormal cells. Fluorescence in situ hybridisation by itself is not
superior to sputum cytology, but can improve sensitivity of lung
cancer detection when used in conjunction with sputum cytology
or as confirmatory test (Romeo et al, 2003; Katz et al, 2008). Li et al
(2007) showed that FISH analysis of both HYAL2 and FHIT
deletions was more sensitive than cytology alone (sensitivity: 76%;
specificity: 92%). Kettunen et al (2006) did not find significant
differences in copy number gain between high-risk subjects and
healthy never-smokers, indicating that copy number gain is not
useful as a risk marker. Qiu et al (2008) used enrichment
procedure based on anti-CD14 and anti-CD16 antibody beads
before FISH and cytology. However, sensitivity of FISH and
cytology results remained comparable (58% vs 53%). No
internationally standardised method exists for cytometry
(Thunnissen et al, 1996). So far, the data are useful for analysis
on group level, but its relevance is questionable for the individual
patient.

Other markers. Free DNA exists in higher concentration in the
serum of lung cancer patients than in the serum of controls (Sozzi
et al, 2003). Van der Drift et al (2008) found that the amount of
free DNA in sputum was related to severity of inflammation, but
not in the presence of lung cancer.

In a small study, sequence variants in mitochondrial DNA
(mtDNA) were investigated in specimens (no sputum) of lung,
bladder and kidney cancer patients, and sputum from 12 cancer-
free heavy smokers (Jakupciak et al, 2008). Tumours were found to
contain significantly more mtDNA mutations compared with
matched body fluids and blood, and sputum of controls. Biological
relevance of mitochondrial mutations yet needs to be clarified.

Fourier transform infrared (FTIR) spectroscopy is a non-
invasive method that visualises biochemical changes in sputum
by determination of absorbance levels of infrared wavenumbers.
In a small feasibility study, Lewis et al (2010) reported that a panel
of wavenumbers was able to distinguish cancer sputum from
healthy control sputum. Fourier transform infrared might have the
potential as a high-throughput method for screening.

Black matter deposition (anthracosis) was assessed in sputum
by Konno et al (2004), next to DNA hypermethylation
(Supplementary Table 1). Mean anthracotic index of lung cancer
patients was significantly higher than that in controls and might
thus be suitable for identifying a population at risk for lung cancer
development. Remarkably, this index was not correlated with
smoking or with detection of lung cancer cells in the sputum
samples.

CONCLUSION

Ten years of additional research on the use of sputum in risk
assessment or the early detection of lung cancer has brought new
insights and more advanced molecular techniques. Polymerase
chain reaction-based assays made detection of low fraction
mutations feasible in sputum, although one has to be cautious
for false-positivity induced by high number of PCR cycles. More

biomarkers have been identified in sputum, such as DNA
hypermethylation markers, miRNAs and tumour-related proteins,
which show the potential for screening purposes. A rational for the
distinction of a risk from a diagnostic marker was provided.

Although in recent years many markers have been examined in
sputum, they are currently not sufficiently validated for clinical
application. These studies, comparing sensitivity and specificity of
cytology with molecular analysis, respecting technical limitations,
should be reported in future studies.
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