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BACKGROUND: Pancreatic cancer (PC) harbours an activated point mutation (KrasG12D) in the Kras proto-oncogene that has been
demonstrated to promote the development of PC.
METHODS: This study was designed to investigate the effect of the oncogenic KrasG12D allele on aggressiveness and metastatic potential
of PC cells. We silenced the oncogenic KrasG12D allele expression in CD18/HPAF and ASPC1 cell lines by stable expression of
shRNA specific to the KrasG12Dallele.
RESULTS: The KrasG12D knockdown cells exhibited a significant decrease in motility (Po0.0001), invasion (Po0.0001), anchorage-
dependent (Po0.0001) and anchorage-independent growth (Po0.0001), proliferation (Po0.005) and an increase in cell doubling
time (Po0.005) in vitro and a decrease in the incidence of metastases upon orthotopic implantation into nude mice. The knockdown
of the KrasG12D allele led to a significant increase in the expression of E-cadherin (mRNA and protein) both in vitro and in vivo. This
was associated with a decrease in the expression of phoshpo-ERK-1/2, NF-kB and MMP-9, and transcription factors such as dEF1,
Snail and ETV4. Furthermore, the expression of several proteins involved in cell survival, invasion and metastasis was decreased in the
KrasG12D knockdown cells.
CONCLUSIONS: The results of this study suggest that the KrasG12D allele promotes metastasis in PC cells partly through the
downregulation of E-cadherin.
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Pancreatic cancer (PC) has one of the worst prognoses among all
known cancers, with a mortality to incidence ratio ofB0.83 (Jemal
et al, 2009). In the United States, it remains the fourth leading
cause of cancer-related deaths with an incidence of B12.3 per
100 000 people (Jemal et al, 2009). The median survival of patients
with PC is a mere 4.1 months with the overall 5-year survival rate
beingo5% (Heinemann et al, 2008; Sultana et al, 2008; Jemal et al,
2009). At the time of diagnosis, 485% of patients have metastatic
disease, which makes surgical and medical interventions largely
ineffective (Matsuno et al, 2004). One of the reasons for the poor
outcome of PC is the lack of early detection markers and limited
efficacy of existing treatment regimens. Therefore, there is an
urgent need to understand the pathogenesis of PC in order to
discover early detection marker(s), novel molecular targets and
new therapeutic strategies.
Recent advances in molecular genetics have revealed a

compendium of genetic lesions associated with the progression
and metastasis of PC (Hezel et al, 2006). Of these mutations, Kras
is found to be mutated in almost all cases (75–90%) of PC and
represents an early event in the development and progression of
this malignancy (Almoguera et al, 1988; Shibata et al, 1990; Caldas

and Kern, 1995; Dergham et al, 1997; Moskaluk et al, 1997; Wang
et al, 2002). Kras is a member of the highly homologous Ras family
of proteins and has potent transforming ability (Barbacid, 1987). It
is a 21 kDa size monomeric membrane-localised guanine nucleo-
tide (GTP/GDP)-binding protein. A wide variety of extracellular
stimuli can activate Kras, and the activated form, in turn, activates
a cascade of signals that ultimately regulate cell growth,
differentiation (McCormick, 1989) and apoptosis. Mutations in
Kras occur most frequently at codon 12 (Gonzalez-Cadavid et al,
1989; Grunewald et al, 1989; Mariyama et al, 1989; Nagata et al,
1990; Shibata et al, 1990; Van Laethem et al, 1995), and less
frequently at codons 13 and 61 (Motojima et al, 1991, 1993; Caldas
and Kern, 1995). All of these mutations can abolish the intrinsic
ability of the Kras protein to hydrolyse GTP, resulting in
continuous stimulation of cell proliferation (Barbacid, 1987; Ellis
and Clark, 2000).
Recently, several approaches, including short interfering RNAs,

antibodies, mutant Kras-specific peptide inhibitors, adenoviruses
expressing antisense Kras, dominant-negative Kras, antisense
oligonucleotides and different drugs have been investigated for
their ability to target the mutant form of Kras (Aoki et al, 1995,
1997; Adjei, 2001). The major drawback of dominant-negative Kras
and pharmacological Kras inhibitors is the lack of specificity (Kohl
et al, 1994; Feig, 1999; Bolick et al, 2003; de Bono et al, 2003),
whereas the antisense oligonucleotides downregulate the wild-type
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Kras, which is essential for the normal function of all cells in the
body. RNA interference (RNAi) has become a novel approach to
target the mutant form of this oncogene specifically (Devi, 2006;
Gaither and Iourgenko, 2007). Kras is a potent tumour initiator as
evidenced by observations that activating mutations in Kras
(G12D) are required for the development of pancreatic intrae-
pithelial neoplasms (PanINs), which precede invasive adenocar-
cinoma (Aguirre et al, 2003). There is also evidence to suggest that
several point mutations in codon 12 can result in constitutive
activation of Kras (Karapetis et al, 2008). A point mutation
(GGT-GAT) resulting in a single amino-acid change from glycine
to aspartic acid in codon 12 (KrasG12D) is observed in many cases
of PC as well as in many PC cell lines (Hohne et al, 1992). Various
studies have shown the role of mutant KrasG12D in enhanced cell
proliferation and transformation of normal pancreatic epithelial
cells (Hingorani et al, 2003; Tuveson et al, 2004); however, its
function in the late stage of PC progression remains unknown.
The objective of this study was to investigate the role of mutant

KrasG12D allele in PC by knockdown of this allele in the highly
metastatic PC cell lines CD18/HPAF and ASPC1, followed by
examination of the effects on cellular functions (through in vitro
and in vivo functional studies) and intracellular signalling
cascades. Altogether, our data indicate that silencing of
KrasG12D causes a significant reduction in the motility, invasion
and metastatic potential of PC cells. This is done through an
upregulation of E-cadherin and downregulation of Snail, dEF1 and
ETV4 transcription factors, and signalling pathways such as Akt,
FAK and ERK1/2.

MATERIALS AND METHODS

Cell culture, plasmid construction and transfection

CD18/HPAF, Capan-1, ASPC-1 cells were cultured in DMEM,
whereas BXPC-3 cells were grown in RPMI and HPDE cells in
Keratinocyte media, respectively, supplemented with 10% fetal calf
serum and antibiotics (penicillin and streptomycin 100mgml–1).
The pSUPER.retro.puro vector was digested with BglII and HindIII
restriction enzymes and dephosphorylated with calf intestinal
alkaline phosphatase (CIAP). Two complementary oligonucleo-
tides, 50-GATCCCCGTTGGAGCTGATGGCGTAGTTCAAGAGACT
ACGCCATCAGCTCCAACTTTTTGGAAA-30 and 50-AGCTTTTCC
AAAAAGTTGGAGCTGATGGCGTAGTCTCTTGAACTACGCCATC
AGCTCCAACGGG 30, corresponding to the mutant KrasG12D gene
with BglII and HindIII sites were synthesised, annealed, phos-
phorylated and ligated into the digested pSUPER vector (Restric-
tion sites at 30 and 50 ends are underlined while the sequence of the
hairpin loop sequence is indicated by underline italics). The
presence of the insert was confirmed by sequencing and digestion
with EcoRI and HindIII restriction enzymes. The shRNA construct
(pSUPER-KrasG12D) was transfected in the phoenix cells, a
packaging cell line that produces high-viral titer in culture
using Lipofectamine 2000 transfection reagent (Invitrogen,
Carlsbad, CA, USA). At the same time, the phoenix cells were
also transfected with pSUPER vectors bearing scramble oligonu-
cleotide sequence. After 24 hr, CD18/HPAF PC cells were seeded in
6-well plates at 5� 104 cells per well and grown to 60% confluence
in DMEM without serum medium. The media supernatant was
collected from phoenix cells after 48 and 72 hr post-transfection
and the viral supernatant was used to infect the sub-confluent
cultures of CD18/HPAF PC cells after addition of 4mg mL�1

polybrene. Pooled populations of stable oncogenic Kras knock-
down and control (ShRNA, Scramble) cells were selected by
puromycin (5 mgml–1) containing 10% DMEM medium. The
ASPC1 and BXPC3 cells were transiently knocked down for
oncogenic shKras allele by using the aforementioned vector
constructs (pSUPER-KrasG12D and Scramble vectors). The protein

was isolated from ASPC1-shKras as well as scramble controls after
48 h of transient transfection and it was analysed for downstream
signalling molecules.

Quantitative real-time PCR

Total RNA was isolated and the cDNA was synthesised by reverse
transcription as described previously (Moniaux et al, 2008). The
real-time primers for KrasG12D were designed as described by
Gupta et al (2005) by keeping the mutation at the 30 end of the
forward primer and an additional base mutation was also included
before the Kras mutation in order to amplify the Kras mutant allele
selectively (Gupta et al, 2005). For all other genes, the primers were
designed using Primer 3 software (Supplementary Table 1). Real-
time PCR was performed on Roche 480 Real-Time PCR System
(Indianapolis, IN, USA). Real-time PCR reactions were performed
in triplicate and template controls (NTCs) were run for each assay
under the same conditions. PCR was then performed in 10 ml
reaction containing 5 ml 2� SBYR green Master Mix, 3.2 ml of
autoclaved nuclease free water, 1 ml diluted RT product (1 : 10) and
0.4ml each of forward and reverse primers (5 pmol) for Kras
mutation (F-50-ACTTGTGGTAGTTGGAGCAGA-30 and R-50-TTG
GATCATATTCGTCCACAA-30). The cycling conditions comprised:
95 1C for 10min, followed by 40 cycles of 95 1C for 15 s and by
58 1C for 1min. Gene expression levels were normalised to the level
of b-actin expression, which we have shown to be unresponsive to
Kras mutation, and were reported relative to mutant Kras
expression level in the scramble RNA-transfected cells.

Immunoblot analysis

Immunoblot analysis was done as described previously (Moniaux
et al, 2008). The primary antibodies for the activated form and
total FAK, Kras, cyclins D1, E and A and NF-kB were obtained
from Santa Cruz Biotechnology (Santa Cruz, CA, USA), cMyc and
p27Kip1 from Epitomics (Burlingame, CA, USA), activated and total
Akt and ERK, Caspase-3 and Cleaved-Caspase-9 from Cell
Signaling (Danvers, MA, USA), matrix metalloproteinase-9
(MMP-9) and E-cadherin were gifts from Dr Rakesh Singh and
b-actin was from Sigma Aldrich (St Louis, MO, USA).

Growth kinetics, clonogenicity and apoptosis assays

Cells (1.0� 104 cells per 3ml of medium containing 1.0% FBS)
were seeded in six-well plates and allowed to grow for different
time intervals. The growth of the cells was monitored by counting
the number of viable cells on a Vi-CELL (Boulevard, CA, USA)
counter every day for 8 days. The cell population doubling time
(Td) was calculated during the exponential growth phase
(96–144h) using the following formula: Td ¼ 0:693 t= log ðNt=N0Þ,
where t is the time difference (in h), Nt is the cell number at time t
(144 h) and N0 is the cell number at the initial time (96 h) (Zhang
et al, 2002). To assess clonogenic potential, the cells were
trypsinised and either plated in 0.3% agarose with a 0.5% agarose
underlay (1� 103 cells per well in 24-well plate) for assessment of
anchorage-independent growth or on plastic coated petri dishes
for anchorage-dependent respectively. The number of foci
4100mm was counted after 14 days. Apoptosis was measured by
Annexin V FITC staining as described previously (Chaturvedi et al,
2007). This assay is based on the principle that during the process
of apoptosis, phosphatidyl serine (normally localised on the inner
leaflet of the plasma membrane) is flipped out. Annexin V has a
high affinity for phosphatidyl serine and binds to it. However, at
this stage (called early apoptosis), the cell membrane is still intact
and hence propidium iodide (PI) is excluded from these cells.
Therefore, early apoptotic cells are defined by a positive staining
for Annexin V and a negative staining for PI.
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As apoptosis progresses, the cell membrane permeability
increases, leading to increased entry of PI that binds to the
DNA. Hence, cells during the later stage of apoptosis are positive
for both Annexin V and PI. A similar process also takes place
during necrosis, making it impossible to distinguish late apoptosis
from necrosis with this assay.

Tumourigenicity assay

Subconfluent cultures of CD18/HPAF-derived clones were trypsi-
nised and washed with phosphate-buffered saline. Cell viability
was determined by Trypan blue staining and single-cell suspen-
sions of490% viability was used for the orthotopic injections. The
cells were resuspended in a normal saline (NS) solution at a
concentration of 5� 104 cells per 50 ml. Immunodeficient mice
were purchased from the Animal Production Area of the National
Cancer Institute-Frederick Cancer Research and Development
Center (Frederick, MD, USA). The mice were treated in accordance
with the Institutional Animal Care and Use Committee (IACUC)
guidelines. The orthotopic implantation was performed as
previously described (Choudhury et al, 2004). All mice were killed
after 21 days of implantation. The presence of metastatic lesions in
different organs was determined thorough gross inspection and
histological analysis. Pancreatic tumours were excised, weighed
and measured.

Motility and invasion assay

For motility assays, 1� 106 cells suspended in serum-free medium
were plated in the top chamber of polyethylene teraphthalate
membranes (six-well insert, pore size 8 mm) (Becton Dickinson,
Franklin Lakes, NJ, USA). Then, 2ml of 10% serum-containing
medium was added to the lower chamber of the well and the cells
were allowed to migrate for 22 h under chemotactic drive. After
incubation, the cells that did not migrate through the pores in the
membrane were removed by scraping the membrane with a cotton
swab. The migrated cells on the lower side of the membrane were
stained with Diff-Quick cell stain kit (Dade-Behring Inc., Newark,
DE, USA) and photographed in 10 random fields of viewed at
� 100 magnification. Cell numbers were counted and expressed as
the average number of cells per field of view. For invasion assay,
cells (1� 106) were seeded on Matrigel-coated membrane inserts
(BD Biosciences, Bedford, MA, USA). The bottom chamber
contained 2.0ml of serum-supplemented medium as a chemo-
attractant. After incubation for 22 h at 37 1C, the cells that had
invaded through the Matrigel-coated membrane were fixed and
stained using a Diff-Quick reagent kit. After air drying the
membrane, the cells were counted at a magnification of � 10 in 10
random fields of view under a microscope. Three independent
experiments were done in each case. The data were represented as
the average of the three independent experiments with the
standard error of mean (s.e.m.).

Oligonucleotide array gene expression analysis

Human oligonucleotide array containing probes for 39 200 genes
was constructed at the Microarray Core Facility of University of
Nebraska Medical Center. Total RNA was isolated from shK-ras
and K-ras scramble transfected CD18/HPAF cells by Qiagen
RNEasy kit (Qiagen Sciences, Valencia, CA, USA) according to
the manufacturer’s directions. The procedure for the microarray
hybridisation and the subsequent analysis has been previously
described by us (Chaturvedi et al, 2007).

Statistical analysis

For analysis of microarray data, a gene chip containing 39 200
genes was used. The data were normalised using BRB Array Tools.

Random-variance paired t-tests were used to determine which
genes are differentially expressed between tumour samples and the
normal samples. The random-variance paired t-test allows for
sharing information among genes about variation without assum-
ing that all genes have the same variance, which gives a more
accurate estimate of the variability when sample sizes are small (2).
A significance level of 0.001 was selected to help limit the false
discovery rate (FDR) due to multiple comparisons. The FDR was
limited to o10%. Parametric data were compared using the two-
tailed Student’s t-test, whereas nonparametric data were analysed
using a two-way ANOVA or w2 test. Data were analysed using the
Medcalc for Windows version 9 � 6 � 4 � 0 software (MedCalc Soft-
ware, Broekstraat, Mariakerke, Belgium). A P-value of o0.05 was
considered significant.

RESULTS

Targeting of mutant KrasG12D allele by stable expression of
KrasG12D shRNA leads to decreased oncogenic Kras expression

To target the KrasG12D mutant allele, siRNA oligos were designed
that were 64 nucleotides long and covered with a point mutation in
codon 12 (G-D) of the Kras gene. They were cloned into the
pSUPER RETRO mammalian expression vector. Similarly, a
scramble expression vector construct (pSUPER Kras-Scr) was
made using scramble shRNA oligonucleotides. The resultant
constructs (pSUPER-shKrasG12D and pSUPER Kras-Scr) were
transfected into CD18/HPAF pancreatic adenocarcinoma cells.
Pooled populations of CD18/HPAF-shKrasG12D and CD18/HPAF-
Kras-Scr were selected for puromycin resistance. The effective
inhibition of the mutant KrasG12D allele was determined by real-
time PCR using a primer set that selectively amplifies the mutated
Kras allele but not the wild-type (WT) allele. RNAs isolated from
BXPC3, HPDE and Capan-1 cells were used as a control as it is
known that BXPC3 and HPDE cells express only the WT alleles and
Capan-1 has a G12V mutation instead of the G12D mutation. The
CD18/HPAF-shKras cells had a significantly decreased expression
of KrasG12D mRNA compared with the CD18/HPAF-Kras-Scr cells
(Figure 1A). Furthermore, the expression of total Kras protein was
reduced in the CD18/HPAF-shKrasG12D cells compared with Kras-
Scr-transfected cells (Figure 1B). Similar results were observed
with transient knockdown of the oncogenic Kras allele in ASPC1
cells (Figure 1C).
In order to confirm the specificity of the oligos, we transiently

transfected BXPC3 cells (KrasG12D negative) with pSUPER-
shKrasG12D. The pSUPER-Kras-Scr vectors revealed no significant
decrease in Kras total protein between the BXPC3 Scr and BXPC3
shKras (Figure 1D).

Silencing of mutant KrasG12D allele leads to altered
morphology, decreased growth rate and reduced
clonogenicity of pancreatic cancer cells

The morphology and growth rates of the pooled populations of
CD18/HPAF-shKras and CD18/HPAF-Kras-Scr cells were mon-
itored after inhibiting oncogenic Kras (mutant allele) in tumour
cells. The CD18/HPAF-shKras cells showed a tendency to grow as
clumps when compared with the CD18/HPAF-Kras-Scr cells
(Figure 1E). Similar growth pattern was observed with silencing
of mutant KrasG12D allele in ASPC1 cells (Figure 1F). A growth
curve was plotted to determine the effect of Kras knockdown on
the cell doubling time. Calculation of population doubling time
during the exponential phase (96–144 h) demonstrated a sig-
nificant (Po0.0045) increase in cell doubling time in the CD18/
HPAF-shKras cells (61.0 h) compared with scramble siRNA-
transfected cells (27.0 h; Figure 2A). Furthermore, on the last day
(day 8), there was nearly a 90% reduction in the number of cells in

Oncogenic KrasG12D in the metastasis of pancreatic cancer

S Rachagani et al

1040

British Journal of Cancer (2011) 104(6), 1038 – 1048 & 2011 Cancer Research UK

G
e
n
e
tic

s
a
n
d
G
e
n
o
m
ic
s



the CD18/HPAF-shKras group when compared with the CD18/
HPAF-Kras-Scr group (Figure 2A).
The effect of silencing oncogenic KrasG12D expression on the

clonogenic properties of CD18/HPAF cells was studied in
anchorage-independent and anchorage-dependent conditions.
We observed that the CD18/HPAF-shKrasG12D cells had a
significantly reduced ability to divide as evidenced by the
reduction in the number of colonies formed in both anchorage-
independent (Po0.0001) and anchorage-dependent conditions
(Po0.0001; Figures 2B and C). Analysis of PI- and Annexin V-
positive cells by flow cytometry indicated a significant increase in
the number of apoptotic cells (Po0.05; with Annexin V-positive
but PI-negative staining) and late apoptotic/necrotic cells
(Po0.002; with Annexin V-positive and PI-positive staining) in
CD18/HPAF-shKras cells when compared with CD18/HPAF-Kras-
Scr cells (Figure 2D).

Oncogenic Kras knockdown results in an inhibition of cell
motility and invasion

Several studies have reported that invasive and metastatic
properties of tumour cells are partly influenced by their

phenotypic characteristics such as motility and invasion. Silencing
of oncogenic KrasG12D leads to a significant (Po0.0001) reduction
in cellular motility and invasive ability (B6- and 10-fold,
respectively) in CD18/HPAF cells (Figures 3A and B).

Selective inhibition of oncogenic KrasG12D in pancreatic
cancer cells results in the suppression of tumourigenicity
and metastasis

To examine the effect of oncogenic Kras knockdown in vivo, a
pooled population of CD18/HPAF-shKrasG12D and CD18/HPAF-
Kras-Scr cells was orthotopically implanted into the pancreas of
nude mice. The animals were killed at 21 days post-implantation
and the pancreatic tumours were removed and weighed. We
carried out haematoxylin and eosin staining (Figures 4A and B).
Liver, lung, diaphragm, intestine, kidney and mesenteric lymph
nodes were examined for the presence of metastatic lesions. A
primary pancreatic tumour and metastatic lesions in the spleen
and on the intestinal wall were found in all the mice implanted
with CD18/HPAF-Kras-Scr cells. In this group, some animals also
had metastasis in the liver (n¼ 2) and/or kidney (n¼ 1). In
contrast, animals injected with CD18/HPAF-shKras cells had
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significantly smaller tumours (Po0.001), and had fewer or no
metastatic lesions (Table 1).

Effect of KrasG12D silencing on downstream signalling

Kras mutation has previously been reported to be associated
with the upregulation of cyclins D and E and downregulation of
p27kip1 (Fan and Bertino, 1997). As shown in Figures 5A and B,
the sequence-specific knockdown of the activated Kras allele
led to a decreased expression of cyclins D1 and E in the CD18/
HPAF-shKras and ASPC1-shKras cells in comparison with the
Kras-Scr-transfected cells, whereas no change was observed in
cyclin A levels. Similarly, the expression of p27kip1, caspase-3 and
cleaved caspase-9 was also increased in shKrasG12D transfected
cells compared with the Kras-Scr-transfected CD18/HPAF and
ASPC1 cells. Inhibition of the KrasG12D allele expression resulted in
a significant decrease in the activation of downstream signalling
molecules, including phospho-ERK1/2, phospho-Akt and phos-
pho-FAK, MMP-9, c-Myc, NF-kB in the shKras-transfected cells
compared with Kras-Scr-transfected cells (Figures 5C–F). The
level of total ERK-1/2, Akt and total FAK, however, remained
unchanged. Furthermore, immunoblot analysis also revealed an
increased expression of E-cadherin in the CD18/HPAF-shKras and
ASPC1-shKras cells compared with the scrambled population

(Figures 5C and D). In agreement with these results, immuno-
fluorescence analysis also revealed an increase in E-cadherin
expression and membrane localisation in CD18/HPAF-shKras-
transfected cells when compared with CD18/HPAF-Kras-Scr
knockdown cells (Figure 5G). Furthermore, immunohistochemical
analysis of the primary orthotopic tumour sections (from the
orthotopically implanted mice) revealed an increased E-cadherin
expression in the CD18/HPAF-shKras tumours compared with the
scramble vector-transfected cells (Figure 5H).

Alteration in signalling pathways because of knockdown of
mutant Kras allele in CD18/HPAF cells

In order to identify the pathways dysregulated in PC cells because
of the knockdown of the mutant Kras allele, we compared the gene
expression profiles of CD18/HPAF-shKras and scramble cells by
global microarray analysis. The microarray analysis revealed that
many genes were significantly up- or down-regulated more than
two-fold in CD18/HPAF-shKras cells compared with the scrambled
cells (Supplementary Tables 2 and 3). Notably, the functional
classes of genes affected by Kras silencing included tumour
suppressors (HMMR, CAV1 and BHLHE41), cell adhesion
molecules (CDH1, LGALS4 and PVRL3), genes regulating cellular
motility and invasion (ETV4, NT5E and ALDH1A1), cell growth
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(GCNT3), cell cycle (HPGD, CDKN1A and CAV1), metastasis
(CD82) and signal transduction (TM4SF4 and NR2F1). Out of these
pathways, the pathway modulated by the transcription factor
ETV4, SNAIL and dEF1 appeared to be highly perturbed. Using the
Ingenuity Pathway Analysis (Ingenuity Systems, Mountain View,
CA, USA) software, the differentially expressed genes were

grouped into several gene networks (Supplementary Figure 1).
Some of the differentially expressed genes were validated by real-
time PCR (Figure 6A). The real-time PCR also showed a reduced
expression of SNAIL and dEF1 transcription factors in Kras
knockdown cells compared with control cells (Figure 6B). The gene
ontology-based clustering analysis revealed that many of the genes
differentially regulated upon silencing of Kras were involved in cell
adhesion and metastasis. In summary, the microarray analysis
suggests that Kras signalling is important in the process of PC
metastasis and may crosstalk with other signalling pathways.

DISCUSSION

Cancer development involves a multistep process in which tumour
cells acquire various genetic and epigenetic changes to grow and
metastasise to distant organs. Investigation of the molecular
genetics of pancreatic adenocarcinoma has revealed a specific
pattern of genetic lesions that occur during the initiation and
progression of PC (Aguirre et al, 2003; Hezel et al, 2006). Out of
these, mutations in the Kras gene are reported to be an early event,
being observed in virtually all cases of PC (75–95%; Almoguera
et al, 1988; Wang et al, 2002). These mutations in Kras have an
important role in the initiation and progression of PC. During the
later part of the disease, other genetic and epigenetic alterations
occur in EGFR, HER2, p16Ink4a, p53, Smad/DPC4, and other genes
(Aguirre et al, 2003; Hezel et al, 2006) that facilitate the
development of pancreatic adenocarcinoma and, subsequently,
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(B) assays, respectively, and incubated for 24 h. Medium containing 10%
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its metastasis (Aguirre et al, 2003; Hingorani et al, 2005; Bardeesy
et al, 2006; Hezel et al, 2006). The dominant nature of the mutant
Kras allele results in the cells exhibiting a transformed ability even
when a single allele of mutant Kras is expressed. Consequently,
inhibition of the oncogenic Kras allele expression in human
cancers is a promising approach for tumour-specific gene therapy
(Friday and Adjei, 2005). Previous studies have shown that
KrasG-12D has lower intrinsic GTPase activity than WT Kras.
Furthermore, this mutant is also insensitive to p-120-GAP (Bollag
et al, 1996), leading to constitutive activation of Ras-mediated
downstream signalling pathways in cells expressing the mutant
Kras allele. Therefore, studies on the molecular and cellular
functions associated with this mutant hold paramount importance
for therapeutic purposes.

In this study, the expression of the mutated KrasG12D allele was
selectively inhibited by shRNA, specifically targeting the mutant
allele in CD18/HPAF and ASPC-1 PC cells. Subsequently, we
studied the effect of KrasG12D silencing on the function of PC cells
in vitro (motility, invasion and clonogenicity) and in vivo
(tumourigenesis and metastasis) and its impact on downstream
signalling pathways by using pooled populations. In the case of
CD18/HPAF cells, suppression of the oncogenic KrasG12D allele led
to a significant reduction in their tumourigenic and metastatic
potential in vivo. Microarray analysis identified several genes
associated with cell growth, proliferation and metastasis that were
significantly altered in the CD18/HPAF-KrasG12D knockdown cells.
The stable expression of a shRNA targeting the mutant KrasG12D

allele led to a decreased expression of the mutant allele at the

Table 1 Incidence of metastases developed by orthotopic implantation of pooled populations of CD18/HPAF Scr cells and shKras clones in
immunodeficient mice

Cell type Spleen Liver Peritoneum Mesenteric lymph nodes Kidney Intestinal wall

CD18/HPAF scramble 4/6 (67%) 2/6 (33%) 4/6 (67%) 4/6 (67%) 1/6 (17%) 5/6 (83%)
CD18/HPAF shK-ras 0/6 (0%) 0/6 (0%) 0/6 (0%) 1/6 (17%) 0/6 (0%) 0/6 (0%)
P-value (w2 test) 0.06 0.45 0.06 0.24 1.0 0.01
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Figure 5 Western blot analysis comparing the expression of key molecules involved in cell proliferation (c-myc, cyclins A, D1, E and p27), apoptosis
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mRNA level in CD18/HPAF-shKras cells (Figure 1A). The total Kras
protein expression was also significantly decreased in the CD18/
HPAF-shKras ASPC1-shKras cells (Figures 1B and C). These results
suggest that siRNAs can serve as powerful tools for sequence-specific
inhibition of an oncogenic mutant allele. Our study also corroborates
previous studies in human (Capan-1 KrasG12V) and murine (C26
colorectal cells, KrasG12D) cells, wherein the stable knockdown of
mutant Kras allele resulted in a reduced expression of both the
oncogenic and total Kras protein and mRNA levels (Brummelkamp
et al, 2002; Smakman et al, 2005).
It is now clearly established that activating mutations in Kras are

found in the majority of PCs and that these mutations, along with
other genetic lesions, contribute to the increased aggressiveness of
the tumour (Almoguera et al, 1988; Dergham et al, 1997; Wang
et al, 2002; Aguirre et al, 2003; Hezel et al, 2006). Therefore, the
Kras has emerged as an attractive target for the therapy of PC
(Friday and Adjei, 2005). In this study, the sequence-specific
inhibition of mutant KrasG12D allele resulted in a significant
decrease in tumour cell growth and an altered morphology and
clonogenic ability (Figures 1E and 1F and 2A–C). This was
expected because of the established role of Kras in cell
proliferation and cell survival (Fan and Bertino, 1997; Hingorani
et al, 2003; Tuveson et al, 2004). Activated Kras regulates the cell
cycle through activation of ERK and Akt signalling pathways
(Wang et al, 2009) and induction of cyclin D1, a protein important
for progression from the G1 to the S phase (Stacey, 2003).
Furthermore, it also has an antiapoptotic effect mediated by
activation of the PI3-K/Akt pathway (Downward, 2004). In our
study, inhibition of mutant Kras resulted in suppression of the
ERK and Akt pathways (Figures 5E and F). Similarly, there was a

significant decrease in cellular levels of c-Myc, NF-kB, cyclins D1
and E and an increase in caspase-3, 9 and p27kip1 levels in the
CD18/HPAF-shKras and ASPC1-shKras cells (Figures 5A–D). This
result suggests that the constitutively active Kras allele is
important for survival, proliferative ability, motility and invasive-
ness of PC cells. Thus, the KrasG12D allele appears to have an
important role in regulating key cellular processes in PC cells,
reinforcing its importance as a target for anticancer therapy.
Tumour metastasis comprises a series of distinct and sequential

steps, involving the growth of the tumour locally, invasion by
transmigration through basement membrane and nontumor host
tissue, intravasation into blood vessels, dissemination and survival
in the bloodstream and finally extravasation and re-establishment
at distant sites (Chambers et al, 2002). It requires a series of
cellular processes to occur, including phenotypic changes, loss of
the cell–cell and cell–extracellular matrix (ECM) interactions and
increased cellular motility. In this study, we observed a decrease in
cell motility and invasion in the Kras knockdown cells (pooled
population) associated with decreased activation of the Akt
pathway (Figures 3A, B, 5E, F). Cell motility has a key role in
tumour cell invasion into the surrounding non-tumour tissues and
is a major determinant of the aggressive nature of a tumour cell.
The Ras pathway has also been implicated in cytoskeletal
rearrangements, altering the expression of integrins and cell
migration through activation of the PI3-K/Akt pathway (Potempa
and Ridley, 1998; Okudela et al, 2004; Fleming et al, 2005).
Inhibition of Krasval12 by shRNA has been previously shown to

decrease tumourigenicity in Capan-1 cells upon subcutaneous
implantation (Brummelkamp et al, 2002) and in murine C26
colorectal cancer cells in vitro. The Kras knockdown cells formed
fewer tumours and did not cause morbidity (Smakman et al, 2005).
We also noted that inhibition of KrasG12D resulted in a significant
decrease in the tumourigenic and metastatic potential of CD18/
HPAF (Figure 4A and Table 1). However, there was no decrease in
the incidence of tumours with 100% of the animals injected with
the CD18/HPAF-shKrasG12D cells forming tumours. The possible
explanations for this observation include the presence of hetero-
geneous cells in the pooled clonal population and the partial
compensation of the anti-tumourigenic effect of KrasG12D knock-
down by other unknown signalling pathways. Although these
earlier studies indicated that oncogenic Kras has a key role in the
proliferation of PC cells, its role in regulating metastasis of PC has
remained largely unexplored. In order to determine the role of
activated Kras in metastasis, we utilised an orthotopic model that
revealed a significant inhibition of metastasis upon selective
silencing of KrasG12D (Table 1). Our results suggest that the
constitutively active form of Kras not only regulates tumour cell
growth, but it also has an important role in modulating the
invasive nature of the malignant cells.
Tumour cell invasion through the ECM and tissue barriers

requires the combined effects of increased cell motility and
proteolytic degradation. We observed decreased levels of activated
FAK (pY925) in the CD18/HPAF-shKras and ASPC1-shKras cells
when compared with that in the scramble cells (Figures 5E and F).
The decreased activation of FAK may be responsible for the
reduced motility observed in the CD18/HPAF-shKras cells
compared with scramble cells similar to that reported in an earlier
study (Sieg et al, 2000).
Additionally, the phenotypic changes associated with epithelial

mesenchymal transition (EMT) include both an increased cellular
motility (Thiery, 2002) and an increased production of ECM-
degrading enzymes, accompanied by disruption of E-cadherin-
mediated cell–cell adhesion (Takeichi, 1995; Christofori and Semb,
1999). The function of epithelial E-cadherin is altered in most
epithelial tumours and can be disrupted by various genetic and
epigenetic mechanisms, including modulation by signalling
molecules. Loss of E-cadherin activates signals that promote
tumour cell migration, invasion and dissemination (Thiery, 2002).
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The increased expression of E-cadherin in the Kras knockdown
cells (Figures 5C, D, G, H and 6A, and Supplementary Figure 1)
seems to suggest that oncogenic KrasG12D can inhibit E-cadherin
function partly by suppressing its expression. Furthermore, the
expression of MMP-9, a key mediator of the invasive property of
malignant cells (Fridman et al, 2003), was also decreased upon
silencing of the oncogenic Kras allele. Kras-mediated ERK activation
is known to induce MMP-9 that, in turn, causes cleavage of
E-cadherin leading to the disruption of cell–cell contacts (Wang
et al, 2009). Our results suggest that a MMP-9-mediated decrease in
E-cadherin expression may contribute to the highly metastatic
property of CD18/HPAF cells. This suggests that activated Kras
contributes to the metastatic nature of CD18/HPAF cells.
To elucidate the global cellular pathways that are altered in PC

cells upon downregulation of the mutant Kras allele, we conducted
microarray analysis and observed that most of the genes
differentially expressed in the Kras-Scr compared with the shKras
cells were associated with cell proliferation, motility and metastatic
behaviour of tumour cells (Figure 6A, Supplementary Tables 2
and 3). Of those genes that were altered because of silencing of
oncogenic Kras, alteration in the expression of the transcription
factor Snail supports Kras-mediated E-cadherin regulation. Snail
has been shown to promote tumour cell invasion by either
inducing the transcription of MMP-9 (Jorda et al, 2005) or
suppression of transcription of E-cadherin (Huber et al, 2005).
Recently, a report showed that dEF-1/ZEB1 binds to the promoter of
the E-cadherin and represses its expression (Eger et al, 2005). In the
present study, real-time PCR analysis showed that the expression of
both SNAIL and dEF1/ZEB1 was decreased in the CD18/HPAF-
shKras cells (Figure 6B). Altogether, these results, including the
increase in E-cadherin, point to SNAIL and dEF1/ZEB1-mediated
regulation of E-cadherin as a target of Kras in PC cells. In addition,
the microarray analysis identified several differential genes asso-
ciated with cell proliferation, motility and metastatic behaviour of
tumour cells (Supplementary Tables 2 and 3 and Supplementary
Figure 1). Taken together, the results of our study provide an insight
into the diverse pathways altered in PC cells upon the sequence
specific inhibition of the mutant Kras allele.
This study was aimed at understanding the pathological role of

the highly oncogenic KrasG12D allele in PC. The specific silencing of
the oncogenic Ras allele downregulated multiple signalling path-
ways that are involved in promoting cell proliferation, inhibiting
apoptosis, breaking cell–cell contacts and regulating expression of
protease like MMP-9. The observed inhibition of cell proliferation
in the Kras knockdown cells may be mediated through the
inhibition of the MAPK pathway, whereas the increase in the
metastatic property of KrasG12D expressing cells might be at least
partly because of the activation of FAK and a reduction in the
expression of E-cadherin (Figure 7). Finally, our studies demon-
strated that PC cells harbouring the KrasG12D mutation are
dependent on Ras signalling and suggest that shRNA-mediated
gene silencing could be an effective approach for selective
inhibition of activated Kras. The results of our study could be
useful to target novel proteins downstream of activated Kras in
order to disrupt Ras-mediated oncogenic signalling pathways.
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