Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Experimental Oncology
  • Published:

The mechanisms by which hyperbaric oxygen and carbogen improve tumour oxygenation

Abstract

Hyperbaric oxygen (HBO) has been proposed to reduce tumour hypoxia by increasing the amount of dissolved oxygen in the plasma. That this actually occurs has not been verified experimentally. This study was performed to explore changes in tumour oxygenation induced by treatment with normobaric and hyperbaric oxygen and carbogen. R3230Ac mammary adenocarcinomas were implanted into Fisher 344 rats. Arterial blood gases, blood pressure and heart rate were monitored. Tumour oxygenation was measured polarographically in five sets of animals. They received either normobaric 100% oxygen, hyperbaric (3 atmospheres; atm) 100% oxygen, normobaric carbogen or hyperbaric (3 atm) carbogen (HBC) +/- bretylium. HBO reduced the mean level of low pO2 values (< 5 mmHg) from 0.49 to 0.07 (P = 0.0003) and increased the average median pO2 from 8 mmHg to 55 mmHg (P = 0.001). HBC reduced the level of low pO2 values from 0.82 to 0.51 (P = 0.002) an increased median pO2 from 2 mmHg to 6 mmHg (P = 0.05). Normobaric oxygen and carbogen did not change tumour oxygenation significantly. Sympathetic blockade with bretylium before HBC exposure improved oxygenation significantly more than HBC alone (low pO2 0.55-0.17, median pO2 4-17 mmHg). HBO and hyperbaric carbogen improved tumour oxygenation in this model, while normobaric oxygen or carbogen had no effect. Sympathetic-mediated vasoconstriction during hyperbaric carbogen caused it to be less effective than HBO. This mechanism also appeared to operate during normobaric carbogen breathing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brizel, D., Lin, S., Johnson, J. et al. The mechanisms by which hyperbaric oxygen and carbogen improve tumour oxygenation. Br J Cancer 72, 1120–1124 (1995). https://doi.org/10.1038/bjc.1995.474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/bjc.1995.474

This article is cited by

Search

Quick links