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miR-203 and miR-221 regulate SOCS1 and SOCS3 in
essential thrombocythemia
A Navarro1, S Pairet2,3, A Álvarez-Larrán3,4, A Pons3, G Ferrer5, R Longarón2,3, C Fernández-Rodríguez3, L Camacho3, M Monzó1,
C Besses3,4 and B Bellosillo2,4

The biological basis of essential thrombocythemia (ET) patients lacking known mutations is still unknown. MicroRNAs (miRNA)
regulate hematopoietic differentiation and are deregulated in several hematopoietic malignancies. However, miRNA expression in
ET patients has been poorly explored. We performed miRNA profiling in platelets from 19 ET patients and 10 healthy controls.
Hierarchical cluster analysis showed two well-separated clusters between patients and controls, indicating that ET platelets had a
characteristic 70-miRNA signature (Po0.0001), 68 of which were downregulated. According to the mutational status, three
differentially expressed miRNAs, miR-15a (P= 0.045), miR-150 (P= 0.001) and miR-519a (P= 0.036), were identified. A 40-miRNA
signature was identified characterizing JAK2V617F-positive ET patients. Eight genes, whose interaction with the miRNAs could
activate the JAK/STAT pathway were identified. An inverse correlation was observed between miRNAs expression and their target
genes for SOCS1 and miR-221, SOCS3 and miR-221, SOCS3 and miR-203, and PTPN11 and miR-23a. All three miRNAs were
upregulated in JAK2V617F-negative ET patients. SOCS1 and SOCS3 were validated as targets of miR-221 and miR-203, respectively.
In summary, our study shows that platelets from JAK2V617F-negative ET patients harbor a specific miRNA signature that can
participate in the modulation of the JAK/STAT pathway through regulation of key genes as SOCS1 and SOCS3.
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INTRODUCTION
Essential thrombocythemia (ET) is a chronic myeloproliferative
neoplasm (MPN) characterized by sustained thrombocytosis,
megakaryocytic proliferation and an increased tendency to
thrombosis and bleeding.1,2 The detection of the JAK2V617F
mutation constitutes a key point in the diagnosis work-up of ET,
being positive in 40–60% of the patients.3 This mutation, that has
also been described in patients with polycythemia vera and
primary myelofibrosis causes the constitutive activation of
the JAK/STAT signaling pathway that is considered central to
the pathogenesis and phenotype of MPN.4 Hyperactivation of the
JAK/STAT pathway is not restricted to patients bearing the
JAK2V617F mutation, and can also be observed in ET patients
with mutations affecting the MPL gene that encodes the
thrombopoietin receptor.5,6 More recently, CALR mutations affect-
ing the CALR gene have also been described in ET patients.7,8 CALR
codifies for the calreticulin protein, a chaperone located in the
endoplasmic reticulum that has an important role in glycoprotein
folding. Although not directly involved in the JAK/STAT pathway,
cell lines transfected with mutant CALR show activated STAT5,
however the mechanisms by which this signaling activation
occurs remain unclear.7,8 Nevertheless, a variable proportion of
ET patients still lack a molecular marker.
MicroRNAs (miRNA) are short (18–24 nucleotides) non-coding

RNAs that function primarily as gene repressors by binding to their
target messenger RNAs (mRNAs).9 miRNAs regulate hematopoiesis
in both hematopoietic stem cells and committed progenitor
cells.10 Deregulated miRNAs have been reported in several

hematological malignancies including MPNs.11 MiRNA studies in
MPNs have been mostly performed in samples from polycythemia
vera and primary myelofibrosis patients, but more limited
information is available regarding ET patients.12 On the basis of
our previous experience and from others, in ET, platelets show
a higher clonal expansion than other cellular populations such as
neutrophils and therefore molecular alterations are more easily
detectable in this cellular population.13,14 In the present work, we
have studied the miRNA profile in platelets from JAK2V617F-
positive and JAK2V617F-negative ET patients with the aim of
characterizing the expression pattern of miRNAs involved in
JAK2V617F-negative ET and identifying potential targets for these
miRNAs that may explain the pathogenesis of the disease and
be considered as potential biomarkers.

MATERIALS AND METHODS
Patients
Nineteen ET patients diagnosed according to World Health Organization
criteria15 at the Hematology Department from Hospital del Mar were
included in the study. Ten patients were JAK2 V617F positive and nine
JAK2 V617F negative. From the nine JAK2 V617F-negative patients,
two harbored CALR mutations, two MPL mutations and five were triple-
negative ET patients.
The samples of ET patients were collected before starting any treatment

or received aspirin. Samples from 10 healthy controls were included as
control group. The study was approved by the Clinical Research Ethics
Committee Parc de Salut Mar and informed consent was obtained
according to the Declaration of Helsinki.
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Molecular characterization
All patient samples were studied for JAK2, MPL and CALR mutations as
previously described.8,16 Briefly, JAK2V617F was assessed by allele-specific
real-time PCR, CALR mutations were determined by amplification of exon
9 with fluorescently labeled primers followed by fragment analysis and
MPL mutations were assessed by Sanger sequencing.

Platelets isolation and RNA isolation
Platelets were isolated from peripheral blood as previously described.13

Briefly, 20 ml of venous blood was collected in ethylenediaminetetraacetic
acid and immediately processed. Platelet-rich plasma was obtained by
centrifugation of anticoagulated whole blood at 194 g for 10 min. Total
RNA was extracted from isolated platelets using TRIzol reagent following
the manufacturer’s instructions (Life Technologies, Carlsbad, CA, USA).

miRNA profiling
The expression of 384 mature miRNAs was quantified using TaqMan
Human MicroRNA Arrays v2.0 (Life Technologies) as previously
described.17,18 Briefly, reverse transcription (RT) reaction was performed
on Veriti 96-well thermal cycler for 2 min at 16 °C, 1 min at 42 °C and 1 s at
50 °C for 40 cycles, and 5 min at 85 ºC, and then held at 4 °C. The RT
reaction contained: 0.80 μl of 10 × RT buffer (Life Technologies), 0.2 μl
dNTPs (100 mM each), 1.5 μl MultiScribe Reverse Transcriptase (50 U/μl),
0.10 μl RNase Inhibitor (20 U/μl), 0.80 μl Megaplex RT primers (10× ),
0.90 μl of MgCl2 (20 U/μl) and 500 ng of total RNA. Real-time PCR reaction
was performed on an ABI 7900 HT Sequence Detection System
(Life Technologies) and contained 450 μl of TaqMan Universal PCR Master
Mix No Amperase (2 × ) (Life Technologies), 6 μl Megaplex RT product and
444 μl nuclease-free water.

Normalization and filtering
The relative miRNA expression was calculated using the 2−ΔΔCt method.
Normalization was performed with RNU48 as after comparing the stability
of RNU44, RNU48 and MammU6; RNU48 had the lowest variability of
expression in the miRNA expression patient data set. All miRNAs expressed
in o10% of samples were excluded from further analysis, leaving
a working set of 273 miRNAs.

miRNA target selection and validation
To identify molecular pathways potentially altered by the expression of
multiple miRNAs we used Diana-mirPath,19 which performs an enrichment
analysis of multiple miRNA target genes, comparing each set of miRNA
targets to all known kyoto encyclopedia of genes and genomes pathways.
After that, mRNA expression of putative selected targets was analyzed
using TaqMan gene expression assays (Life Technologies). The genes,
whose expression was negatively correlated with miRNAs, were selected
for further target validation by Renilla/luciferase assay and western Blot.

Renilla/luciferase assay
Cloning of the target sequence was performed as previously described.17,20

Briefly, two synthetic oligonucleotides containing the 3ʹ untranslated
region (3ʹUTR) target sequence for each studied gene (Supplementary
Table 1) were cloned in the 3ʹUTR region of Renilla luciferase gene in the
psiCHECK-2 vector (Promega, Madison, WI, USA) using NotI and XhoI
restriction sites.
For Renilla luciferase assay 100 nM pre-miRNAs where transfected in

K562 cell line together with 0.2 μg of modified psicheck2 vector and
Renilla luciferase levels were measured at 24 h after transfection using a
Promega Dual luciferase reporter assay system (Promega) in an Orion
II microplate luminometer (Berthold Detection Systems GmbH, Pforzheim,
Germany). The transfection efficiency was normalized with the Firefly
luciferase gene.

Western blot
Transfected cells were lysed in 1% RIPA buffer, 62.5 mM Tris HCl 1 M
pH= 6.8, 5% β-mercaptoethanol, 2% sodium dodecyl sulfate, 40% glycerol,
0.005% bromophenol blue and equal amounts of protein were separated
by electrophoresis on 12% polyacrilamide gel and transferred to
Immobilion-P (Millipore, Bedford, MA, USA) membranes. The membranes
were incubated with polyclonal antibody against SOCS1, SOCS3 (Abcam,

Cambridge, UK) and α-tubulin (Sigma, St Louis, MO, USA). Antibody
binding was detected using a secondary antibody (mouse anti-rabbit and
mouse anti-mouse immunoglobulin (Dako, Glostrup, Denmark) conjugated
to horseradish peroxidase and an enhanced chemiluminiscence detection
kit (Amersham, Buckinghamshire, UK).

Statistical analysis
Data from miRNA expression were analyzed using TIGR Multiexperiment
viewer version 4.0 software (Dana-Farber Cancer Institute, Boston, MA,
USA), BRB Array Tools (Biometric Research Branch, National Cancer
Institute, National Institutes of Health; http://linus.nci.nih.gov/BRB-
ArrayTools.html), GraphPad Prism 5 and SPSS 15 (SPSS Inc., Chicago,
IL, USA). Class comparison and Student’s t-test were used to analyze
differences between groups. Characteristics between groups
were compared using the χ2-test and Fisher’s exact test, when
applicable, for categorical variables, and t-test for continuous variables,
respectively. A two-sided P-valueo0.05 was considered statistically
significant.

RESULTS
Profiling miRNA expression in ET patients
We performed miRNA profiling of platelets from 29 cases included
in the study by real-time PCR using arrays that allow simultaneous
analysis of 384 miRNAs. After filtering and normalization,
273 miRNAs were left for further analysis.
The unsupervised hierarchical cluster analysis of platelet miRNA

profile showed two well-separated clusters between ET patients
and controls, indicating that ET platelets had a characteristic
miRNA signature (Po0.0001; Figure 1a). The supervised analysis
showed that ET patients harbored a distinctive signature of
70 miRNAs, 68 of which were downregulated (Supplementary
Table 2). Only miR-9 (P= 0.005) and miR-431 (P= 0.007) were
significantly upregulated in ET patients.
We then identified miRNAs differentially expressed in ET patients

according to the mutational status. Using one-way analysis of
variance based on multiple permutations, we identified three
miRNAs whose expression was significantly different between
JAK2-mutant, CALR-mutant, MPL-mutant and triple-negative
ET patients: miR-15a (P= 0.045), miR-150 (P= 0.001) and
miR-519a (P= 0.036) (Supplementary Figure 1).
Finally, we analyzed miRNA expression according to clinical

characteristics of the patients (age, leukocyte number,
platelet number and hemoglobin levels) using Quantitative trait
analysis by mean of Spearman correlation (Po0.01). Six miRNAs
showed a negative correlation with hemoglobin levels: miR-874
(r=− 6.62, P= 0.002), miR-500 (r=− 0.646, P= 0.003), miR-196b
(r=− 0.644, P= 0.003), miR-200a (r=− 0.618, P= 0.05), miR-365
(r=− 0.596, P= 0.008) and miR-429 (r= -0.596, P= 0.008). Eighty-
eight miRNAs were correlated with platelet number
(Supplementary Table 3) including miR-499-5p (r= 0.76,
P= 0.0002), miR-424 (r= 0.74, P= 0.0003), miR-509-5p (r= 0.71,
P= 0.00008) and miR-886-5p (r= 0.71, P= 0.0008) as the most
significantly correlated. No correlation with age and leukocyte
number was observed.

Identification of a miRNA signature associated with the JAK/STAT
pathway
To identify a miRNA signature regulating the JAK2 pathway, we
compared the 10 JAK2V617F-mutated vs the nine JAK2 wild-type
patients. Supervised significance analysis of microarrays analysis
identified 40 miRNAs that were differentially expressed between
the two groups (Figures 1b and 2a; Table 1). We then performed
an in silico analysis to test if these 40 miRNAs regulated the JAK/
STAT pathway. Using Diana-mirPath,19 we performed an enrich-
ment analysis (Figure 2a) to identify the set of miRNAs acting
together in the regulation of the JAK2 pathway. Interestingly, we
identified 28 miRNAs (bold highlighted miRNAs in Table 1) with
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putative targets involved in the JAK/STAT signaling pathway.
Figure 2b shows the JAK/STAT-related genes identified and the
number of miRNAs potentially targeting each of these genes.

Validation of the in silico analysis: miR-221 and miR-203 target
SOCS1 and SOCS3
To validate the in silico analysis, we selected eight genes whose
interaction with the predicted miRNAs could activate the JAK/
STAT pathway in the JAK2 wild-type patients: CBL, CCND1, SOCS1,
SOCS2, SOCS3, SOCS4, PTPN11 and BCL2L1. Next, we analyzed the
expression of the selected genes by quantitative real-time PCR
to identify any correlation between gene and miRNA expression.

We found a significant inverse correlation in four miRNA gene
pairs (Figure 2c): SOCS1 and miR-221 (r2 =− 0.719, P= 0.001);
SOCS3 and miR-221 (r2 =− 0.644, P= 0.005); SOCS3 and miR-203
(r2 =− 0.447, P= 0.072) and PTPN11 and miR-23a (r2 =− 0.494,
P= 0.044). All three miRNAs were upregulated in JAK2 wild-type
patients in comparison with JAK2V617F-mutant patients. To
validate these target genes, we cloned them and performed
Renilla luciferase assays. These experiments confirmed SOCS1 as a
target of miR-221 (28.9% Renilla luciferase protein reduction,
P= 0.002) and SOCS3 as a target of miR-203 (19.6% Renilla
luciferase protein reduction, P= 0.04; Figure 3a). No significant
modifications were observed for PTPN11. Further validation of

Figure 1. miRNA expression pattern in platelets from ET patients and healthy controls. (a) Unsupervised hierarchical cluster analysis including
all samples. (b) Hierarchical cluster analysis of the 40 miRNAs identified by significance analysis of microarrays analysis that were differentially
expressed between the JAK2V617F (JAK2-mut) vs JAK2-wild-type ET patients.
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SOCS1 and SOCS3 was performed by western blot that showed a
significant reduction of the protein levels of SOCS1 (16%) and
SOCS3 (19%), after increasing the levels of miR-221 and miR-203,
respectively (Figure 3b).

DISCUSSION
There is growing evidence that miRNAs are involved in the
regulation of hematopoiesis.12 However, our understanding of the
role of miRNAs in MPN pathogenesis is still limited. We have
aimed at analyzing the miRNA expression profiling in platelets
from ET patients. Although platelets are anucleated, they retain
the capacity for protein synthesis, as well as a competent miRNA
pathway capable of converting precursor miRNAs to mature forms
that can modulate, among others, the expression of the
thrombopoietin receptor.21

Our results have shown that platelets from ET patients harbor a
distinctive signature of miRNAs when compared with healthy
controls. This observation is in line with the work reported by
Xu et al.22 that analyzed miRNA expression patterns in cases with
thrombocytosis and compared them with normal controls. In this
line, several miRNAs reported by Xu et al. in ET vs healthy controls
agree with our results, including miR-9, miR-181c, miR-150 and

miR-182. Moreover, in Xu’s work a specific signature was
associated with increased megakariopoiesis (in both reactive
thrombocytosis and ET), and among the differentially expressed
miRNAs an increased expression of miR-490-5p was observed.
In addition, this was also associated with a disregulation of one of
the putative targets of miR-490-5p, the DAAM1 (disheveled
associated activator of morphogenesis 1) gene. Unfortunately,
we cannot corroborate this result as this miRNA was not included
in the array used in our study to profile miRNAs. Although we
could not analyze the expression of miR-490-5p, these authors
also described disregulation of miR-150. miR-150 is expressed
in megakaryocyte–erythoid (MEP) progenitor cells and its over-
expression commits MEPs towards megakaryocyte in normal
hematopoiesis.23 In agreement with Xu, we found this miRNA as
one of the most heavily downregulated in ET patients compared
to normal controls. Interestingly, we have observed that miR-150
expression varies according the mutational status in ET patients,
where MPLmut patients had the higher levels and JAK2mut
patients had the lower levels. Moreover, miR-150 is one of the
miRNAs composing our signature of JAK2mut vs JAK2 non-
mutated patients and have interesting putative targets of the
JAK2 pathway such as CBL, EP300 or PIK3R1 (Table 1) and validated
targets such as STAT1.24

Table 1. List of miRNAs differentially expressed between JAK2V617F-positive and -negative ET patients

microRNA Fold change Predicted targets of JAK/STAT signaling pathway (DIANA LAB)

hsa-miR-576-5p 1.9475387 IL10, LEPR, SOCS2, SOCS4, SPRY4
hsa-miR-885-5p 1.7738975 —

hsa-miR-519a 1.7664691 JAK1, OSM, PIK3R1, SOS1, SPRY4, STAT3
hsa-miR-618 1.7017285 IL13
hsa-miR-518b- 1.6955159 —

hsa-miR-548d-5p 1.6558107 —

hsa-miR-221 1.6522014 CBL, PIK3R1, SOCS1, SOCS3, SPRED2
hsa-let-7c 1.6507319 AKT2, BCL2L1,CBL, CCND1, CCND2, GHR, IL10, IL13, OSMR, SOCS4
hsa-miR-328 1.6371825 —

hsa-miR-629 1.6326199 SPRY3
hsa-miR-211 1.6268274 CCND2, IL12RB2, IL23A, JAK2, PTPN11, SOS1
hsa-miR-196b 1.6259091 OSMR, SOCS4
hsa-miR-671-3p 1.6118121 —

hsa-miR-26a 1.6108524 CCND2, CREBBP, LIF, LIFR, PIK3R3, PIM1
hsa-miR-23a 1.598495 CCND1, CREBBP, IL11, IL12B, IL21R, IL6R, JAK1, PIK3R3, PTPN11, SOS1, SPRY2, STAT5B
hsa-miR-92a 1.5960894 PIK3R3
hsa-miR-548d-3p 1.5926827 CCND1, CCND2, CREBBP, GRB2, IL11, IL6R, LIFR, PIK3R1, PIK3R3, SPRY4
hsa-miR-642 1.5810314 CCND3, PIK3R1,
hsa-miR-296-5p 1.5807419 CNTFR, LEP
hsa-miR-616 1.5796043 PIK3R1
hsa-miR-375 1.579199 —

hsa-miR-500 1.573965 —

hsa-miR-523 1.5546302 —

hsa-miR-107 1.5477945 PIK3R1, SOS1, SPRY3
hsa-let-7b 1.5216084 AKT2, BCL2L1, CBL, CCND1, CCND2, GHR, IL10, IL13, OSMR, SOCS4
hsa-miR-888 1.5203407 —

44hsa-miR-518f 1.5167831 —

hsa-let-7e 1.5159571 AKT2, BCL2L1, CBL, CCND1, CCND2, GHR, IL10, IL13, OSMR, SOCS4
hsa-miR-487a 1.5127604 SPRED2
hsa-miR-183 1.5127604 SPRY3
hsa-miR-367 1.5127604 PIK3R3
hsa-miR-582-3p 1.5057397 CREBBP
hsa-miR-423-5p 1.4989724 —

hsa-miR-199b-5p 1.4976261 CBL, PIK3CD, SOS2
hsa-miR-486-3p 1.45879 CNTFR
hsa-miR-502-5p 1.4474875 —

hsa-miR-548a-5p 1.4405084 IL11, IL7, PIAS3, STAT3
hsa-miR-342-5p 1.4166621 BCL2L1
hsa-miR-203 1.3055979 AKT2, CBL, CNTFR, IL15, IL24, PIK3CA, SOCS3
hsa-miR-150 1.1759403 CBL, EP300, PIK3R1

MiRNAs are ordered by fold change. The miRNAs with putative targets from the JAK/STAT pathway are indicated in bold and the putative target genes from
the JAK/STAT pathway are included.
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The pathogenetic hallmark of MPNs is the hyperactivation
of the JAK/STAT signaling pathway.25,26 This deregulation is
usually associated with the JAK2V617F mutation, but also with
mutations in the CALR and MPL genes that are also involved in the
development of MPNs, and specifically in ET.7,27,28 In the present
work, we focused in the identification of miRNAs of the JAK/STAT
pathway associated with the JAK2V617F mutation. We have

analyzed whether miRNAs differentially expressed between
JAK2V617F-positive and -negative patients, could account for an
activation of the JAK/STAT pathway in patients lacking the V617F
mutation. Among the miRNAs identified with putative targets
involved in the JAK/STAT signaling pathway (n= 28, Table 1),
a significant inverse correlation between miR-203 and miR-221
expression was found with SOCS1 and SOCS3 genes, which are
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negative regulators of the JAK/STAT pathway and we validated
the targeting by Renilla/luciferasa assay and western blot.
Silencing of SOCS1 and SOCS3 have been previously related to
MPN but the mechanism of silencing it is not completely clear.
Hypermethylation of CpG islands in SOCS1 and SOCS3 associated
with a decrease in expression was found in JAK2V617F
polycythemia vera and ET as well as in JAK2V617F and
MPLW515-mutation negative ET.29 However, other authors could
not confirm the hypermethylation of these genes although they
observed differences in the gene expression pattern among MPN
in a significant proportion of patients with idiopathic myelofibrosis
but not in patients with polycythemia vera or ET.30,31 Recently,
Jost et al.32 reported methylation of SOCS1 in 15% of MPD
patients. SOCS1 expression was increased, to varying degrees, in
most types of MPD.29,32,33 In this line, miRNAs alone or
in combination with methylation processes, could be explaining
the downregulation of SOCS1 and SOCS3 in the ET JAK2V617F-
negative patients and participating by this way in the activation of
the JAK2 pathway. In the same line of our results, miR-203 and
miR-221 have been reported regulating SOCS3 and SOCS1 in other
pathologies. In breast cancer miR-203 participates in the
chemoresistance to cisplatin through the direct regulation
of SOCS3.34 The induction of miR-203 expression by Porphyromo-
nas gingivalis in gingival epithelial cells inhibits SOCS3 and
activates STAT3.35 Helicobacter pylori causes hepatic insulin
resistance through regulation of miR-203 levels that modulates
SOCS3 levels.36 Finally, in hepatocelular carcinoma it has been
reported that miR-221 regulates SOCS1 and SOCS3 and this
accentuates IFN’s anti-HCV effect,37 although in our study we only
found association of miR-221 and SOCS1 but not with SOCS3.
Interestingly, miR-203 has also been reported to be silenced by
methylation in BCR-ABL1 positive cells from CML patients.38 The
study of the methylation grade of these miRNAs in MPN warrants
further investigation.
In summary, we have reported in the present work a

40-miRNA signature that characterizes JAK2V617F-negative
platelets from ET patients. The analysis of the putative targets
of the miRNAs of this signature allowed us to identify two
miRNAs, miR-221 and miR-203, targeting SOCS1 and SOCS3 that
are negative regulators of the JAK/STAT pathway. The upregula-
tion of these miRNAs could be one of the factors involved in the
activation of this signaling pathway in JAK2V617F-negative
ET patients. The identification of miRNAs involved in the
regulation of the JAK/STAT pathway in patients harboring other
mutations such as CALR and MPL would be valuable to increase
the actual knowledge of the mechanisms involved in the
pathogenesis of ET, but in the present work the low number of
patients who harbored that mutations prevented the comple-
tion of the analysis. Further investigation is warranted to shed
light on the role of the miRNAs in ET.
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