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Chromosomal rearrangements of the mixed lineage leukemia
(MLL) gene with numerous partner genes are frequently found in
acute myeloid and acute lymphoblastic leukemia.1,2 Although
the pathomechanism of t(4;11)-mediated leukemia is still
being discussed, expression of the AF4�MLL fusion was found to
enhance the repopulating potential of CD34þ cells and lead
to the development of predominantly proB-acute lymphoblastic
leukemia in a mouse model.1,2 The AF4�MLL protein contains
cleavage sites for threonine aspartase-1 (Taspase1).1–4 Upon
processing by Taspase1, the AF4�MLL cleavage products form a
protein complex resistant to SIAH-mediated degradation and
activate oncogenic programs.3,5 Furthermore, Taspase1 is over-
expressed in liquid and solid human cancers, suggesting that

Taspase1 is co-opted to promote and sustain tumorigenesis.6

As genetic deletion of Taspase1 in the mouse produced no overt
deficiencies,3 inhibition of Taspase1 may offer novel anticancer
strategies, including the treatment of leukemias. Human Taspase1
encodes a protease of 420 amino acids cleaving sub-
strates in trans by recognizing a conserved peptide motif
(Q3[F,I,L,V]2D1kG10x2

0
D30D40).4 Unfortunately, Taspase1’s activity is

not affected by common protease inhibitors, therefore currently
precluding the assessment of its clinical and therapeutic
relevance.3,4,7

Here, we present our endeavors to target Taspase1’s oncogenic
potential by (i) overexpressing inactive Taspase1 variants, and
(ii) testing a putative Taspase1 inhibitor (Figure 1a).
As the Taspase1 proenzyme is autoproteolytically cleaved

and assumed to assemble into an active abba-heterodimer,
we reasoned that overexpressing inactive Taspase1 mutants
would inhibit the formation of active protease dimers. To analyze
Taspase1’s processing of AF4�MLL substrates in living cells,

Figure 1. (a) Strategies targeting Taspase1’s oncogenic activity. Autoproteolysis of the Taspase1 proenzyme triggers formation of the active
abba heterodimer, hydrolyzing the AF4�MLL fusion protein and driving oncogenesis (left). Inhibition by overexpression of trans-dominant
Taspase1 mutants results in the formation of inactive heterodimers, precluding AF4�MLL processing, and the activation of oncogenic
programs (middle). Chemical Taspase1 inhibitors affect its proteolytic activity, preventing AF4�MLL processing and activation of pathological
pathways (right). (b) Catalytically inactive Taspase1 mutants are not inhibitory. K562 cells were transfected with 1mg of red fluorescent
BioTaspR and 0.1 mg of Tasp-BFP, together with the indicated amounts of inactive Taspase1-green fluorescent protein (GFP) mutants or GFP
expression plasmid. Even co-transfection of a ninefold excess of plasmids encoding the inactive Taspase1 variants did not affect BioTaspR
processing. Localization was analyzed 48 h post transfection. GFP/mCherry (mCh) were visualized by fluorescence microscopy. Dashed lines
mark cytoplasmic cell boundaries. (c) The number of cells showing cytoplasmic (C), cytoplasmic and nuclear (C/N), or nuclear (N) fluorescence
was counted in at least 200 BioTaspR-expressing cells. Whereas the number of cells displaying cytoplasmic fluorescence significantly
decreased by co-transfection of 0.1 mg Tasp-BFP expression plasmid, no significant trans-dominant-negative effect was evident for Taspase1
mutants.
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we employed our cell-based biosensor assay4 (Supplementary
Figure S1a). Ectopic expression of Taspase1 promoted cleavage
and complete nuclear accumulation of the autofluorescent
BioTasp protein, containing the AF4�MLL cleavage site.
Co-expression of catalytically inactive Taspase1 mutants, in which
the catalytic nucleophile, Thr234, was changed into Val (TaspT234V)
or Asp233 was mutated into Ala (TaspD233A), resulted in neither
cleavage nor nuclear translocation (Figure 1b). Importantly, our
assay as well as immunoblot analysis demonstrated that even
co-transfecting a ninefold excess of the inactive Taspase1 mutants
over the wild-type Taspase1 expression plasmid did not affect
Taspase1’s processing of the AF4�MLL biosensor (Figures 1b-d;
Supplementary Figure S1b). Similar results were obtained using
HA-tagged or untagged Taspase constructs, and these results
were also confirmed for the Taspase1 targets TFIIA and USF2 (data
not shown). Our results demonstrate that enforced expression of
inactive Taspase1 mutants, aiming to inhibit formation of active
protease dimers, was not inhibitory. One might speculate that
Taspase1 is active already as an ab-monomer, providing a
mechanistic explanation why overexpression of inactive mutants
was not trans-dominant.
Besides genetic approaches, chemical decoys allowing

the targeted inhibition/activation of proteins also allow to
dissect and regulate molecular pathomechanisms. Consequently,
we next tested (4-[(4-arsonophenyl)methyl]phenyl) arsonic acid

(NSC48300), a recently described Taspase1 inhibitor.8 Prior to
experimentation, the identity of the used batch of NSC48300 was
confirmed by mass spectrometry (Supplementary Figure S2).
NSC48300’s potential to inhibit Taspase1’s processing of the
AF4�MLL substrate was examined in adherent and leukemic cell
lines. Surprisingly, NSC48300 did not affect Taspase1’s trans-
cleavage activity, as indicated by the nuclear accumulation of the
AF4�MLL biosensor at concentrations ranging from 10 to 500mM
(Figures 2a and b; Supplementary Figures S2c and d). The
possibility that nuclear accumulation of the biosensor was
indirectly mediated through the inhibition of nuclear export
by NSC48300 was excluded by microinjection experiments
(Supplementary Table S1). Albeit treatment with 500 mM
NSC48300 impaired cell vitality, this effect was independent of
endogenous Taspase1 levels (Supplementary Figures S2e and f).
These results were confirmed by immunoblot analysis,
revealing that NSC48300 did also not prevent Taspase1’s
autoprocessing (Figure 2c), and also further confirmed for the
Taspase1 targets TFIIA, DPOLZ and USF2 (data not shown).
To provide a molecular rationale for the observed lack of
inhibition, we performed molecular docking. Albeit high-affinity
NSC48300 binding sites in both the active and inactive
Taspase1 structure7 were identified, no binding was detectable
at or close to the catalytic nucleophile, Thr234 (Figure 2d, data
not shown).

Figure 2. (a) NSC48300 does not inhibit Taspase1. HeLa transfectants coexpressing green fluorescent BioTaspG and red fluorescent (mCherry,
mCh) wild type or inactive TaspT234V were treated with dimethylsulfoxide (DMSO)/NSC48300 and analyzed 48 h later. Cleavage-induced
nuclear translocation of BioTaspG by Taspase1 was not affected by NSC48300. Inactive TaspT234V-mCh did not result in cleavage and nuclear
accumulation of BioTaspG. Scale bar, 10mm. (b) Quantitation of BioTaspG processing. No significant inhibition of cleavage was observed upon
treatment with NSC48300. Localization was analyzed 48 h post transfection. (c) Immunoblot analysis demonstrates that NSC48300 did not
inhibit Taspase1’s trans-cleavage, nor cis-cleavage. HeLa cells were transfected with 1mg of BioTaspG together with 1mg of untagged Taspase1
and treated for 48 h. Proteins were visualized using a-glutathione S-transferase (GST) and a-Taspase1 Abs. GapDH served as loading control.
(d) Stereo diagram showing the molecular docking of NSC48300 (black) to activated Taspase1. The a subunit is shown in yellow, and the b
subunit in rose. The catalytic Thr234 is marked by a red sphere.
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Collectively, though NSC48300 interfered with cell migration
and invasion,9 was patented as an anti-angiogenic compound,
and inhibited the growth of breast and brain tumors in murine
models,8 our results show that these effects are not primarily
based on the inhibition of Taspase1. The reason why NSC48300
was reported to affect Taspase1 in an in vitro assay8 but not
in vivo (this study) remains to be elucidated.
As it will be unlikely to inhibit Taspase1 by using strategies

attempting to interfere with its heterodimer formation, experi-
mental and in silico strategies should focus on the identification
of specific chemical Taspase1 inhibitors by screening of
compound libraries.
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