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Rationally engineered nanoparticles target multiple myeloma
cells, overcome cell-adhesion-mediated drug resistance,
and show enhanced efficacy in vivo
T Kiziltepe1,2,6, JD Ashley1,6, JF Stefanick1, YM Qi1, NJ Alves1, MW Handlogten1, MA Suckow3, RM Navari4 and B Bilgicer1,2,5

In the continuing search for effective cancer treatments, we report the rational engineering of a multifunctional nanoparticle
that combines traditional chemotherapy with cell targeting and anti-adhesion functionalities. Very late antigen-4 (VLA-4)
mediated adhesion of multiple myeloma (MM) cells to bone marrow stroma confers MM cells with cell-adhesion-mediated
drug resistance (CAM-DR). In our design, we used micellar nanoparticles as dynamic self-assembling scaffolds to present
VLA-4-antagonist peptides and doxorubicin (Dox) conjugates, simultaneously, to selectively target MM cells and to overcome
CAM-DR. Dox was conjugated to the nanoparticles through an acid-sensitive hydrazone bond. VLA-4-antagonist peptides were
conjugated via a multifaceted synthetic procedure for generating precisely controlled number of targeting functionalities.
The nanoparticles were efficiently internalized by MM cells and induced cytotoxicity. Mechanistic studies revealed that
nanoparticles induced DNA double-strand breaks and apoptosis in MM cells. Importantly, multifunctional nanoparticles
overcame CAM-DR, and were more efficacious than Dox when MM cells were cultured on fibronectin-coated plates. Finally,
in a MM xenograft model, nanoparticles preferentially homed to MM tumors with B10 fold more drug accumulation and
demonstrated dramatic tumor growth inhibition with a reduced overall systemic toxicity. Altogether, we demonstrate the
disease driven engineering of a nanoparticle-based drug delivery system, enabling the model of an integrative approach
in the treatment of MM.
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INTRODUCTION
Multiple myeloma (MM) is a B-cell malignancy characterized by
proliferation of monoclonal plasma cells in the bone marrow (BM).
Despite the recent advances in treatment strategies and the
emergence of novel therapies, it still remains incurable with a
median survival of 3 --5 years owing to development of drug
resistance.1,2 A major factor that leads to drug resistance in MM
patients is the survival advantages provided by the BM micro-
environment. It is well demonstrated that adhesion of MM cells to
the BM stroma results in cell-adhesion-mediated drug resistance
(CAM-DR), and that the MM cells in the BM microenvironment are
much less sensitive to chemotherapeutic agents.3,4 Anti-adhesion
therapy is evolving as a promising approach in oncology,
particularly in MM.5 Therefore, therapeutic agents that have
the combined effect of targeting MM cells and inhibiting
their adhesion to BM milieu would provide an advantage by
overcoming CAM-DR for improved patient outcome.
Very late antigen-4 (VLA-4; also known as a4b1 integrin) is a cell

surface heterodimer expressed on cancers of hematopoietic
origin, such as lymphomas, leukemias and MM.4,6 -- 8 In MM,
VLA-4 is a key adhesion molecule that acts as a receptor for the
extracellular matrix protein fibronectin, and the cellular counter-
receptor VCAM-1.2 Studies demonstrated that VLA-4 has a critical
role in CAM-DR of MM cells and provides resistance to first line

chemotherapeutics such as doxorubicin (Dox).4,9 Importantly,
inhibition of MM cell adhesion to the BM microenvironment
via a4-integrin blocking antibodies or a4-siRNA overcomes drug
resistance in MM cells.9 -- 11 Combined, these results suggest VLA-4
as an attractive therapeutic target, both for selective targeting of
MM cells, as well as for inhibition of CAM-DR.
Nanotechnology has been recognized by the National Cancer

Institute as a paradigm changing opportunity with the potential to
make significant breakthroughs in cancer diagnosis and therapy.12

One of the most important premises of nanotechnology-based
drug delivery systems is the enhanced accumulation in tumor
tissue due to the leaky vasculature found in the angiogenic vessels
seen predominantly in solid tumors.13,14 Recent evidence in
research has established that angiogenesis also has a major role in
some hematological malignancies including MM.15 -- 17 In line
with these findings, liposomal Dox has shown beneficial clinical
outcome in MM patients in various settings, and has recently been
FDA approved in combination with bortezomib in the treatment
of relapsed or refractory MM.18 -- 20 Despite the recent advances in
nanoparticle-based therapeutics in MM, the advantages nanome-
dicine can provide have yet to be harnessed to their full potential
in treating MM.
PEGylated micellar nanoparticles have recently gained

increased popularity as efficient drug delivery systems as they
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combine increased stability, high circulation times and a defined
size range of 10--100 nm for increased tumor accumulation and
decreased systemic toxicity.21 An important feature of micellar
nanoparticles is that they present particularly attractive scaffolds
for the multivalent display of multiple functional groups on their
surfaces.22

Here, we report the rational engineering of a multifunctional
nanoparticle that combines traditional chemotherapy with cell
targeting and anti-adhesion functionalities for targeted delivery of
Dox to MM cells while overcoming CAM-DR. This is accomplished
by designing particles that are simultaneously functionalized
with controlled numbers of a VLA-4-antagonist peptide and
pH-sensitive Dox conjugates. When the nanoparticles are
delivered, they target VLA-4 expressing MM cells, inhibit cellular
adhesion via VLA-4, and overcome CAM-DR. At the same time,
nanoparticle binding to VLA-4 triggers receptor-mediated uptake,
which results in active Dox release due to pH-sensitive bond
hydrolysis in the acidic endocytic vesicles. Taken together, we
demonstrate the disease-driven engineering of a nanoparticle-
based drug delivery system, enabling the model of an integrative
approach in the treatment of MM.

MATERIALS AND METHODS
Synthesis of peptide- and Dox-conjugated lipids and nanoparticles
Peptides, and peptide/DSPE-PEG2000 lipid conjugates, were synthesized
on Wang resin using Fmoc chemistry (peptide synthesis chemicals/
reagents from NovaBiochem, Philadelphia, PA, USA; DSPE-PEG2000 from
Avanti Lipids, Alabastar, AL, USA). Resin cleavage of all peptide products
was done with TFA, purification via RP-HPLC and characterization by
MALDI-TOF-MS. Peptide cyclization through disulfide bond formation was
performed in 3ml DMF with 20 ml DIEA by stirring for 8 h at room
temperature. For Dox conjugation, DPPE-GA, hydrazine and diisopropyl-
carbodiimide were mixed in a vial and allowed to react for 4 h at room
temperature. Solvent and excess reactants were removed via evaporation
under vacuum. Product was re-dissolved in chloroform, mixed with Dox in
methanol and coupled over 3 days. Final product was isolated via
extraction, and characterized with MALDI-TOF-MS. For nanoparticle
formation, nonfunctionalized and functionalized lipids were mixed at
desired molar ratios in DCM, followed by solvent removal via evaporation.
The mixture was then re-suspended in PBS, and stirred until clear.

Particle size characterization
Dynamic light-scattering analysis was performed via the 90Plus Nanopar-
ticle Analyzer (Brookhaven Instruments, Holtsville, NY, USA) using 658 nm
light, at a fixed angle of 901 at 20 1C. Samples were centrifuged for 30min
before analysis to eliminate dust and larger aggregates.

Dox release kinetics
Dox-conjugated nanoparticles ([Dox]¼ 34.5mM) were prepared and release
rates were analyzed at pH¼ 7.4, pH¼ 5.5 and 0.24 N HCl. Amount of free
Dox at different time points were quantified using a Toyopearl AF-Amino-
650M resin (Tosoh, Tokyo, Japan) packed column on Agilent series 1200
HPLC (Agilent, Santa Clara, CA, USA) at 477 nm. All data were normalized to
total Dox released in HCl solution where hydrolysis was 100% within
B5min.

Cell culture
All cell lines were obtained from ATCC (Manassas, VA, USA), and were
cultured as previously described.23

Flow cytometry
a4- and b1-integrin subunits were detected using anti-CD49d (PE) or anti-
CD29 (FITC) antibodies (BD Biosciences, San Jose, CA, USA). Isotype
matched antibodies were used as negative controls. Apoptotic cells were
detected with Annexin-V (FITC) antibody (BD Pharmingen, San Diego,

CA, USA). Cells were analyzed with Guava EasyCyte flow cytometer
(Millipore, Billerica, MA, USA).

Cell-binding assay
MM cells were incubated on ice, for 1 h, with FITC-labeled peptides in
binding buffer (25mM Tris, 150mM NaCl, 1.5mM MgCl2, 1.5mM MnCl2, 5mM

glucose, 1.5mM BSA). Cells were washed twice and analyzed with Guava
EasyCyte flow cytometer. FITC-labeled scrambled peptide was used as
nonspecific control, and was subtracted from each data point.

Adhesion assay
The Vybrant Cell Adhesion Assay Kit (Molecular Probes, Grand Island, NY,
USA) was used according to the manufacter’s instructions. Briefly, calcein-
labeled MM cells were added to fibronectin-coated 96-well plates
(40mg/ml) in adhesion buffer (RPMI-1640/ 2% FBS) for 2 h. To evaluate
the adhesion inhibitory effects of the VLA-4 antagonist peptides, or
peptide functionalized nanoparticles, calcein-labeled cells were added to
fibronectin-coated plates and immediately treated with the inhibitory
agents. Nonadherent cells were removed by washing with PBS. Adherent
cells were quantitated in a fluorescence multi-well plate reader.

Cellular uptake studies
Cells were incubated at 37 1C with rhodamine-labeled nanoparticles in
complete media for the indicated time points, and were analyzed with flow
cytometer. For confocal microscopy experiments, cytospinned cells were
fixed with 4% paraformaldehyde and mounted with VectaShield antifade/
DAPI (Vector Labs, Burlingame, CA, USA). Cells were visualized by Nikon
A1R confocal microscope with a � 40 oil lens (Nikon Instruments, Melville,
NY, USA). Image acquisition was performed by Nikon Elements Ar software
(Nikon).

Cytotoxicity assays
CCK-8 (Dojindo, Rockville, MD, USA) was used as previously described.9 To
determine cytotoxicity in the presence of fibronectin, MM cells were plated
on fibronectin coated plates (40mg/ml), in adhesion buffer, for 1 h. Cells
were then treated with nanoparticles or free Dox in complete media with
10% FBS, for 72 h. BSA coated plates were used as controls.

Western blotting
Western blotting of MM cells was performed as described before.23

Immunocytochemistry
Cytospin of drug-- treated cells were prepared on slides, and fixed with
4% paraformaldehyde. Slides were stained with g-H2AX antibody
(Cell Signaling, Danvers, MA, USA) and with Alexa Fluor-488-labeled Fab2
(Molecular Probes) as per manufacturer’s instructions. Mounted slides
(VectaShield antifade/DAPI) were analyzed by Nikon Eclipse TS100
fluorescence microscope at � 60/0.5 --1.25 oil, with a Nikon Infinity
camera (Nikon).

MM xenograft mouse model
CB.17 SCID mice (Harlan Laboratories, Indianapolis, IN, USA) were irradiated
with 150 rad, and inoculated subcutaneously with 5� 106 NCI-H929 cells.
When tumors were palpable, mice were distributed into four groups of
6 --8 mice, and were treated intravenously with NPDox/VLA4�pep, NPDox, free
Dox, or vehicle (PBS), on days 1, 3 and 5. Animals were monitored for body
weight and tumor volume. In a separate experiment, three tumor
challenged mice from each group were killed on day 5 to determine
systemic toxicity. Organ weights were measured. For complete blood
count analysis, 200ml of blood was drawn from each mouse via cardiac
puncture, immediately mixed with 50 ml of Sequester Solution (Cambridge
Diagnostic Products, Fort Lauderdale, FL, USA), and was analyzed with the
HemaVet 950 (Drew Scientific, Dallas, TX, USA). Immunohistochemical
staining of excised tumors for caspase-3 was performed as formerly
described.24
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Biodistribution studies
Mice were dissected 24 h after injection with 10mg/kg free Dox or
Dox equivalent nanoparticles. Tissues were processed as previously
described,25 and were analyzed for Dox fluorescence (ex. 490 nm/em.
550 nm).

Statistical analysis
Statistical comparisons of continuous variables were carried out by
Student’s two-tailed t-test.

RESULTS
Identification of a VLA-4 antagonist peptide that selectively binds
to MM cells and inhibits MM cell adhesion to fibronectin
It is well established that MM cells express VLA-4 receptor, and
that VLA-4 facilitates CAM-DR in MM cells.4,9 We, therefore,
validated VLA-4 expression in several MM cell lines, by detecting
a4- and b1-integrin subunits expression, using flow cytometry
(Figure 1a). Several VLA-4-targeting peptides were identified
because of the critical role VLA-4 has in cancers.26 -- 28 None of
these peptides, however, have been tested for their specific
binding to MM cells, or their adhesion inhibitory effects. Both of
these criteria are crucial in our targeting strategy; we therefore
generated and screened a small library of peptides from literature.
For cellular binding assays, we synthesized FITC-labeled version of
the peptides and compared their affinity to MM cells by flow
cytometry. We established that the cyclic peptide Tyr-Cys-Asp-Pro-
Cys (VLA4-pep; Figure 1b) binds to MM cells with specificity
(Figure 1c). Control experiments performed with FITC-labeled
nonspecific peptide showed only minimal background binding
and was subtracted from each data point. Competitive-binding
experiment performed with excess unlabeled VLA4-pep showed
inhibition of fluorescence signal indicating that VLA4-pep
specifically binds to VLA-4 receptor on MM cells (results not
shown). VLA4-pep also proved to be a potent inhibitor of MM cell
adhesion to fibronectin in a typical calcein-based cell adhesion
assay (Figure 1d). Control experiments done with nonspecific
peptide did not show any adhesion inhibitory effects (results
not shown). Taken together, VLA4-pep prevailed as the leading
VLA-4 antagonist peptide and was incorporated as the targeting
and anti-adhesion moiety in the nanoparticles.

Synthesis of VLA-4 targeting, Dox-conjugated multifunctional
micellar nanoparticles
The nanoparticles were synthesized from the lipid-PEG block
co-polymer, DSPE-PEG2000. This PEG-lipid, when placed in water,
is reported to self-assemble and form micelles.29 -- 31 Their size
exploits the enhanced permeation and retention (EPR) effect and
prevents their entry through healthy endothelium pores.32,33

Meanwhile, PEG conjugation increases the micelle’s solubility,
biocompatibility, provides stealth against the reticuloendothelial
system (RES) and improves circulation time.29 DSPE-PEG2000
lipid has a low critical micellar concentration (CMC) of 5--10mM,
allowing for experimentation at therapeutically relevant
concentrations without lipid dissociation.29,31 DSPE-PEG2000 lipid
also has a terminal primary amine version allowing for facile
conjugation of various molecular moieties.
For incorporation of VLA4-pep into the nanoparticles, VLA4-

pep/DSPE-PEG2000 conjugates were synthesized using a synthetic
strategy that was developed in our group using solid support
methodology as outlined in Figure 2a. VLA4-pep was first
synthesized on a Wang resin using Fmoc protocols, followed by
the reaction of succinic anhydride at the N-terminal amine to
generate a carboxylic acid group at the terminus. This
newly generated carboxylic acid group on the resin bound
peptide was activated, and DSPE-PEG2000-NH2 lipid was
introduced in anhydrous DMF to promote amide coupling.

The peptide-PEG-lipid conjugate was cleaved from the resin using
a TFA cocktail, purified via HPLC and characterized by MALDI-TOF-
MS. Dox/DPPE-GA lipid conjugation was accomplished using a pH-
sensitive hydrazone chemistry to provide controlled drug release
(Figure 2b).34 Hydrazine was first coupled to the carboxylic head
group of the lipid, followed by the conjugation of Dox. The
conjugate was purified via extraction into chloroform.
Multifunctional micelles were prepared by mixing

DSPE-PEG2000, VLA4-pep/DSPE-PEG2000 conjugate and Dox/
DPPE-GA conjugate at desired molar ratios (Figure 2c). Each
micelle comprises B90 lipid molecules,29,35 and their relative
monodispersity allows for incorporation of precise numbers of
functionalized lipids per particle to provide control over the
valency of the targeting peptide and drug loading. Dynamic light-
scattering analysis established that regardless of the number and
type of functional moieties included, the particles maintained their
original size of B20 nm (Figure 2d).
Dox was conjugated to the lipids via an acid labile bond to

prevent the premature release of the chemotherapeutic and thus

Figure 1. VLA-4 antagonist peptide binds to MM cells, and inhibits
their adhesion to fibronectin. (a) MM.1S, NCI-H929, U266 and IM9
cell lines all express VLA-4 subunits a4- and b1-integrins as de-
termined by flow cytometry. Black columns are primary antibodies
and gray columns are isotype controls. (b) Structure of VLA-4
antagonist peptide (VLA4-pep). (c) Cellular-binding assays were
performed using FITC-labeled VLA4-pep and was detected by
flow cytometry. Control experiments were done with FITC-labeled
nonspecific peptide and the background binding was subtracted for
each data point. VLA4-pep binds to U266, NCI-H929 and IM9 cell
lines with apparent Kd of B250 nM. (d) VLA4-pep inhibits adhesion
of MM cell lines to fibronectin-coated plates. BSA-coated plates were
used as controls, and no adhesion of MM cells was observed.
No inhibition of adhesion was observed in the control experiments
done with nonspecific peptide (results not shown). All experiments
were done in triplicates and data represents means (±s.d.).
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nonspecific toxicity. Upon endocytosis of nanoparticles, the acidic
environment of endosomes catalyzes the release of active Dox,
providing localized delivery inside the tumor cells. The drug
release profiles we observed in pH 7.4 and pH 5.5 established that
Dox is released from the nanoparticles preferentially under acidic
conditions (Figure 2e).
Besides multifunctional nanoparticles with Dox and VLA4-pep

conjugates (NPDox/VLA4�pep), other nanoparticles synthesized
for control experiments include only Dox conjugated (NPDox),
only VLA4-pep conjugated (NPVLA4�pep), Dox and nonspecific
peptide conjugated (NPDox/ns), nonspecific-peptide conjugated
(NPns) and bare nanoparticles (NPbare). For imaging and cellular
uptake experiments, lissamine rhodamine PE was incorporated in
the micelles during formation. In all experiments, the total lipid
concentration was above the CMC.

Cellular uptake studies of VLA-4-targeting nanoparticles
Next, we evaluated if VLA4-pep functionalized nanoparticles
were taken up by MM cells and determined the optimal peptide
valency per micelle for most efficient uptake. Cellular uptake
of rhodamine-labeled nanoparticles with varying number of
VLA4-pep conjugates (n¼ 0--40/nanoparticle) was studied via

flow cytometry. Nanoparticle uptake by NCI-H929 cells increased
with increasing VLA4-pep valency up to n¼ 20, then dropped
dramatically at n¼ 40 (Figure 3a). Specifically, we observed that
20 peptides per particle yielded the maximum uptake, with up to
10-fold enhancement over that of nontargeted micelles (n¼ 0)
after 24 h. We also used NPns (n¼ 20) as a control, and have
observed similar results to that of NPbare (Figure 3b). To establish
that uptake of VLA4-pep-conjugated particles were receptor
mediated, we performed competition experiments, where MM
cells were co-incubated with NPVLA4�pep (n¼ 20) and excess free
VLA4-pep. The results showed a dramatic reduction in cellular
uptake back to the levels of NPbare, proving receptor involvement
in uptake (Figure 3b). It is noteworthy that we observed some
nanoparticle uptake even with non-targeted micelles indicating
low levels of nonreceptor-mediated uptake (Figures 3a and b).
The studies described above were performed using flow

cytometric analysis, as it is a highly accurate quantitative method
for studying the effect of peptide valency on uptake. One
shortcoming of this method, however, is that it does not
discriminate surface bound nanoparticles from internalized ones.
Therefore, to show that the nanoparticles are indeed internalized
by MM cells, we performed confocal microscopy experiments.
These experiments revealed clear uptake of VLA4-pep-conjugated

Figure 2. Synthesis and characterization of VLA-4 targeting, Dox-conjugated multifunctional nanoparticles (NPDox/VLA4�pep). (a) Schematic
illustration of the multifaceted synthetic steps for peptide conjugation to DSPE-PEG2000-NH2 using solid support. (b) Schematic illustration of
Dox conjugation to DPPE-GA. (c) Illustration of multifunctional micellar nanoparticles that incorporate VLA4-pep and Dox. (d) Dynamic light-
scattering analysis of nanoparticles. VLA-4 targeting, Dox conjugated (NPDox/VLA4�pep), only Dox conjugated (NPDox), only VLA4-pep con-
jugated (NPVLA4�pep), Dox and nonspecific peptide conjugated (NPDox/ns), nonspecific-peptide conjugated (NPns) and bare nanoparticles
(NPbare) all gave an average size distribution of B20 nm. (e) Drug release profile of Dox from the nanoparticles in pH¼ 5.5 and pH¼ 7.4. Rate
of hydrolysis was quantified via HPLC, taking measurements at pre-determined time intervals and observing the absorbance at wavelength of
477 nm. Data shown are from a representative experiment.
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nanoparticles starting around 4 h and peaking at 24 h (Figure 3c).
Altogether, these studies showed efficient receptor-mediated
uptake of nanoparticles with optimal uptake properties of n¼ 20
VLA4-pep per micelle. Therefore a valency of 20 peptides per
particle was used for rest of our studies.

Multifunctional nanoparticles are cytotoxic against MM cells
We evaluated the cytotoxicity of NPDox/VLA4�pep against
NCI-H929 MM cells using a colorimetric assay. NPDox/VLA4�pep was
significantly cytotoxic to MM cells with IC50 values of 0.39±0.06
and 0.13±0.02mM, at 48 and 72 h, respectively (Figure 4). Control
experiments performed with equivalent doses of free Dox
showed a moderate advantage over NPDox/VLA4�pep at 48 h
(IC50¼ 0.19±0.04mM). This difference was diminished at 72 h,
and both free Dox and NPDox/VLA4�pep showed similar cytotoxic
effects (IC50B0.13mM). The difference in cytotoxicity at 48 h is
expected given the differences in the cellular uptake mechanisms
of free Dox and NPDox/VLA4�pep. While free Dox is taken up via
passive diffusion and is active immediately, we designed our
nanoparticles to release active Dox only after they are internalized
and are exposed to the acidic environment of the endocytic
vesicles. Control experiments done with NPDox showed much
reduced cytotoxic effects at 48 and 72h, further confirming
VLA-4’s role in nanoparticle uptake (Figure 4). Control experiments
performed with NPDox/ns yielded very similar results to those
obtained with non-targeted NPDox (results not shown). No
cytotoxic effects were observed in additional control experiments
performed with nanoparticles lacking Dox conjugates, such
as NPbare or NPVLA4�pep at equimolar particle concentrations
(results not shown).

Multifunctional nanoparticles induce DNA double-strand
breaks (DSB) and apoptosis in MM cells
It is well established that Dox induces DNA DSB and apoptosis of
cancer cells.36 An early specific cellular response to DSBs in
mammalian cells is the phosphorylation of the histone protein
H2AX (g-H2AX), with respective foci formation.37 Western blot and

immunocytochemical analysis showed that both free Dox and
NPDox/VLA4�pep induced H2AX phosphorylation and foci formation
in NCI-H929 cells (Figures 5a and b). Furthermore, both agents
induced apoptosis as was detected by flow cytometric analysis of
the early apoptotic marker Annexin V (Figure 5c), and western
blot analysis of PARP and caspase-8 activation (Figure 5d). No
significant caspase-9 activation was detected by either agent.
Altogether, these results suggest that free Dox and NPDox/VLA4�pep

exert their cytotoxic effects through similar cytotoxic mechanisms.
It is noteworthy that no cell death or caspase activation was
detected before 36 h at these doses; therefore, DSB formation was
not a secondary event of apoptosis.

Multifunctional nanoparticles inhibit adhesion of MM cells to
fibronectin and overcome CAM-DR
VLA4-pep serves two major purposes in our nanoparticle design:
(i) selective targeting of VLA-4-expressing MM cells and (ii)
inhibition of MM cell adhesion to the stroma to overcome

Figure 3. Cellular uptake studies. (a) Rhodamine-labeled nanoparticles with varying valency of VLA4-pep conjugates (n¼ 0--40/nanoparticle)
were prepared and incubated with NCI-H929 cells at 37 1C for the indicated time points. N¼ 20 peptide conjugates per nanoparticle triggered
the most efficient uptake as determined by flow cytometry. (b) In a separate experiment, control experiments with NPns, and competition
experiment with excess free VLA4-pep (2mM) was performed to determine receptor-mediated specificity of nanoparticle uptake.
Data represent means (±s.d.) of triplicate experiments. (c) Internalization of VLA-4-targeting nanoparticles was confirmed with a Nikon A1R
confocal microscope using a � 40 oil lens. Image acquisition was performed by Nikon Elements Ar software.

Figure 4. NPDox/VLA4�pep induces cytotoxicity against MM cells.
NCI-H929 MM cells were cultured in the presence of equivalent Dox
concentrations of NPDox/VLA4�pep(’), NPDox (m), or free Dox (K) for
48 and 72 h. In all cases, cell viability was assessed by cell counting
kit-8 (CCK-8), and data represent means (±s.d.) of triplicate cultures.
Control experiments performed with NPDox/ns showed similar results
to NPDox. NPbare and NPVLA4�pep did not show any cytotoxic effects
at the concentrations tested (results not shown).
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CAM-DR. To test if NPDox/VLA4�pep overcame CAM-DR, first
we evaluated its efficiency in inhibiting MM cells adhesion
to fibronectin. NPVLA4�pep inhibited adhesion of NCI-H929 cells
to fibronectin in a dose-dependent manner (Figure 6a). Dox was
not incorporated into the nanoparticles for this assay to eliminate
compounding effects that would result from cell death. No
inhibition of adhesion was observed with NPbare or NPns (results
not shown). Next, we compared the cytotoxic effects of free Dox
or NPDox/VLA4�pep against MM cells in the presence or absence of
fibronectin. Fibronectin-coated plates were used to allow for
adhesion of NCI-H929 cells, and BSA-coated plates were used
for culturing cells in suspension (MM cells do not adhere to
BSA-coated plates). Cells were then incubated with increasing
concentrations of NPDox/VLA4�pep or equivalent concentrations of
free Dox. Adhesion of NCI-H929 cells to fibronectin caused CAM-
DR in the free Dox treatment group with a three fold IC50 shift
from 0.13±0.04 to 0.42±0.09mM (Figure 6b, left). In the NPDox/
VLA4�pep treatment group, however, the IC50 values merged
towards B0.2 mM both for the adherent and suspension MM cells,
indicating that NPDox/VLA4�pep overcame CAM-DR (Figure 6b,
right). The significance of these findings is best illustrated in
Figure 6c. When MM cells were cultured in suspension, the efficacy
of free Dox in cell killing was similar to that of NPDox/VLA4�pep with
an IC50B0.13 mM (Figure 6c, left). On the other hand, when
the cells were cultured in the presence of fibronectin,
NPDox/VLA4�pep (IC50¼ 0.15±0.04 mM) was more efficacious
than free Dox (IC50¼ 0.42±0.09mM). These results suggest that
NPDox/VLA4�pep overcame CAM-DR in MM cells.

Multifunctional nanoparticles preferentially home to MM tumors
and inhibit tumor growth in vivo
To validate the therapeutic efficacy of multifunctional nanoparti-
cles, SCID mice were injected with NCI-H929 tumors, and were
sorted into four treatment groups: (i) free Dox, (ii) NPDox/VLA4�pep,
(iii) NPDox and (iv) PBS (control). A pilot study performed to
determine the maximum tolerated dose of nanoparticles revealed

that 6mg/kg Dox equivalent NPDox/VLA4�pep, injected intrave-
nously on days 1, 3 and 5, resulted in p15% weight loss during a
2-week period (results not shown). This dose was therefore taken
as the maximum tolerated dose for nanoparticles and was used in
the in vivo study. When the tumors were palpable, each mouse
was injected with 6mg/kg Dox equivalent nanoparticles, or free
Dox on days 1, 3 and 5. Both free Dox and NPDox/VLA4�pep resulted
in dramatic tumor growth inhibition (Figure 7a). However, at the
dose used, mice in the free Dox group lost a significant amount of
body weight by day 7 (415%), and demonstrated moribundity.
Therefore, all animals in the free Dox group were killed on day 7 as
a result of significant systemic toxicity (Figure 7b). On the other
hand, the NPDox/VLA4�pep group only lost B10% body weight
during the 2-week study period (Figure 7b). These results indicate
that NPDox/VLA4�pep has a much-improved therapeutic index
when compared with free Dox. NPDox also showed tumor growth
inhibition, however, it was significantly less efficacious than
NPDox/VLA4�pep (Figure 7a, right). Ex-vivo mechanistic studies
performed on tumors dissected on day 5 showed that all drug
treatment groups induced apoptosis associated with caspase-3
activation (Figure 7c).
NPDox/VLA4�pep can expectedly accumulate in the tumor

through the VLA-4 targeting functionality as well as the enhanced
permeation and retention effect, resulting in reduced systemic
toxicity. To evaluate enhanced tumor accumulation, we studied
the tissue biodistribution of Dox for all treatment groups. Mice
were injected with 10mg/kg Dox, and tissues were dissected 24 h
after drug administration for analysis by fluorescence spectro-
scopy. No significant difference was detected in the distribution of
Dox in lung, kidney, heart, or spleen at 24 h, however, significantly
more Dox accumulated in the tumor for the NPDox/VLA4�pep group
when compared with free Dox and NPDox, reaching to B10 and
B5 fold higher levels, respectively (Figure 7d). These results
are consistent with the enhanced inhibition of tumor growth we
observed with NPDox/VLA4�pep and demonstrate that incorporating
VLA4-pep to the nanoparticles enabled enhanced targeting of
VLA-4 expressing MM tumors.

Figure 5. NPDox/VLA4�pep induces DNA DSBs and apoptosis in MM cells. NCI-H929 cells were treated with 250 nM Dox equivalents of NPDox/
VLA4�pep or free Dox for 0 --48 h. (a) Phosphorylation of DNA damage response protein H2AX at Ser139 was assayed by western blotting.
(b) Respective H2AX foci formation was assayed by immunocytochemistry (right). Representative images are shown. Apoptosis was
assessed by flow cytometry following Annexin V-FITC staining (c), and by western blotting for PARP cleavage, and caspase-8 and caspase-9
activation (d). For flow cytometric analysis, data represent means (±s.d.) of triplicate experiments. For western blotting, representative images
are shown.
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To evaluate systemic toxicity, complete blood cell count was
performed on three additional mice from each group on day 5.
Systemic toxicity was detectable in all treatment groups as evident
from white blood cell, red blood cell and thrombocyte
counts (Figure 7e). The NPDox/VLA4�pep group, however, showed
significantly less toxicity on white blood cell and thrombocytes
when compared with free Dox (Figure 7e).
Dox has been associated with clinically significant cardiac and

renal toxicity.38 -- 40 We, therefore, evaluated the effect of the
nanoparticles on cardiac and renal weight loss. All drug treatment
groups showed only a mild reduction in cardiac mass. There
were no detectable difference between NPDox/VLA4�pep and free
Dox (Figure 7f), presumably because of the early time point (day 5)
the analysis was performed. On the other hand, we detected a
significant difference in kidney weights as NPDox/VLA4�pep was
significantly less toxic than free Dox, and did not cause any
significant renal mass loss (Figure 7f). It is noteworthy that,
based on biodistribution studies, significant Dox accumulation
was evident in kidneys in all treatment groups (Figure 7d). It is
possible that the reduced toxicity of the nanoparticles on kidneys
is because of the acid-sensitive hydrazone bond, which releases
active Dox only after receptor-mediated uptake, or in the acidic
microenvironment of the tumor tissue.
Nanoparticles are known to accumulate in and be cleared

by the reticuloendothelial system organs (spleen/liver).14,41 We,
therefore, analyzed the effect of nanoparticles on the spleen and

liver. All drug treatment groups showed significant accumulation
and severe mass loss in spleen, with no detectable difference
between nanoparticles and free Dox (Figure 7f). Histopathological
examination revealed severe hypoplasia of both erthroid and
myeloid elements in all drug treatment groups. Nanoparticles,
however, showed only moderate fibrosis, whereas severe fibrosis
was evident in the free Dox group (Supplementary Figure 1A).
An increased accumulation of nanoparticles in the liver was
observed (Figure 7d), however, this was not associated with
increased mass loss. To the contrary, NPDox/VLA4�pep resulted in
significantly less weight loss in liver when compared with free Dox
(Figure 7f). Increased accumulation in liver without increased
toxicity was also shown in previous studies42,43 and could be due
to the acid-sensitive hydrazone bond, which requires an acidic
environment to release active Dox. Histopathological analysis
revealed moderate hepatocellular hypertrophy and degeneration
in free Dox group, whereas only mild effects were observed in
the nanoparticle treatment groups (Supplementary Figure 1B).
Altogether, these results indicate that NPDox/VLA4�pep showed
decreased overall systemic toxicity than free Dox.
Combined, our results suggest improved therapeutic index

for NPDox/VLA4�pep with dramatic tumor growth inhibition,
significantly increased accumulation in tumor, and overall
decreased systemic toxicity when compared with free Dox.

DISCUSSION
In this study, we engineered multifunctional micellar nanoparticles
that target VLA-4 expressing MM cells selectively, while combining
adhesion-inhibitory and cytotoxic effects in a temporal fashion to
overcome CAM-DR. In our design, we used peptides as targeting
agents, which have several advantages over antibodies such as
favorable pharmacokinetics, facile derivatizing and manufacturing,
and lower cost.44 In physiological systems, multiple low-affinity
interactions are used to distinguish one cell type from another
and to provide selectivity.45,46 We, therefore, selected a low-
affinity VLA-4 antagonistic peptide (KdB0.25 mM; Figure 1c), and
used micellar nanoparticles as dynamic self-assembling scaffolds
to multivalently present this peptide to target VLA-4 over-
expressing MM cells. Receptor-mediated endocytosis is a particu-
larly important aspect in our nanoparticle design, as the acidic
environment of the endocytic vesicles is required for active Dox
release (Figure 2e). Our results demonstrated that binding of
the nanoparticles to VLA-4 triggered receptor-mediated uptake
with an optimal valency of 20 peptides per micelle. Although the
optimal peptide valency may vary based on the peptide’s
monovalent affinity, as well as its kon and koff rate constants,
these studies validated VLA-4 as a suitable target for targeted
drug delivery in MM.
One of the key findings of our study was that when MM cells

were allowed to adhere to the extracellular matrix protein
fibronectin, NPDox/VLA4�pep proved to be more efficacious than
free Dox, and significantly overcame CAM-DR (Figure 6). These
results establish the significance of targeting MM cells as well as
their interactions with the microenvironment in the design of
more effective novel therapeutics.
Several different mouse models of MM are described.47 Here,

we used a subcutaneous xenograft model of MM for various
advantages this model provides, such as the formation of palpable
tumors, which makes tumor growth inhibition and biodistribution
studies feasible. Our results demonstrated that NPDox/VLA4�pep

preferentially accumulated in the tumor when compared with
free Dox and NPDox. Most importantly, NPDox/VLA4�pep showed
dramatic tumor growth inhibition with decreased overall
systemic toxicity, demonstrating improved therapeutic index.
It is noteworthy that VLA4-pep targets human VLA-4, and that
NPDox/VLA4�pep may have a different toxicity profile in humans.

Figure 6. NPDox/VLA4�pep inhibits adhesion of MM cells to fibronectin
and overcomes CAM-DR. (a) Calcein-labeled NCI-H929 MM cells
were allowed to adhere to fibronectin-coated plates alone, or with
increasing concentrations of NPVLA4�pep. Nonadherent cells were
removed by washing with PBS, and adherent cells were quantitated
in a fluorescence multi-well plate reader. Data represents means
(±s.d.) of triplicate experiments. *Po0.05, **Po0.01 when com-
pared with control. (b) NCI-H929 cells were allowed to adhere to
fibronectin- or BSA-coated plates for 1 h, and then treated with
equivalent Dox concentrations of NPDox/VLA4�pep, or free Dox for
72 h. Cell viability was assessed by cell counting kit-8 (CCK-8), and
data represent means (± s.d.) of triplicate cultures. (c) An alternate
illustration of data presented in (b).
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One shortcoming of the subcutaneous xenograft model is the
growth of tumors in the absence of the BM microenvironment.
Therefore, the growth and survival advantages provided by the

microenvironment, and CAM-DR are not well recapitulated in
this model. As a result, the improvement of efficacy observed with
NPDox/VLA4�pep using this model is at best an underestimate.

Figure 7. In vivo characterization of NPDox/VLA4�pep in a xenograft model of MM. Tumor bearing SCID mice were injected, intravenously, with
free Dox, NPDox/VLA4�pep, or NPDox at a dose of 6mg/kg Dox equivalents on days 1, 3 and 5. (a) Tumor growth inhibition was detected by
caliper measurements. All mice in free Dox group were killed on day 7 because of high systemic toxicity (weight loss 415%). NPDox/VLA4�pep,
was significantly more efficacious than NPDox with *Po0.05. Data shown are means (±s.e.) of n¼ 6--8 per treatment group. (b) Percentage of
body weight of the animals as a measure of systemic toxicity. Free Dox group dramatically lost weight (415%) and demonstrated
moribundity by day 7. Therefore, mice in this group were killed on day 7. Only B10% weight loss was observed with NPDox/VLA4�pep or NPDox
during the 2-week study period. (c) Ex-vivo mechanistic analysis of tumors for apoptosis. Three additional mice from each group were
dissected on day 5 and tumors were stained for activated caspase-3. Representative images of tumor cross-sections that were captured using
a Nikon Eclipse TS100 microscope at � 20 magnification are shown. (d) Tissue biodistribution of Dox following treatment. Three mice from
each group were treated, intravenously, with 10mg/kg of Dox equivalent drugs. Mice were killed 24 h after treatment and tissues were
analyzed for Dox accumulation. Data shown are means (±s.e.). *Po0.05, **Po0.01 when compared with free Dox group. (e, f ) Complete
blood count and organ weights as a measure of systemic toxicity. Three additional mice from each group were dissected on day 5, and
complete blood count (white blood cell, red blood cell and thrombocyte) was performed. (e) Weights of excised heart, kidney, spleen and liver
are shown. (f ) Data represent means (±s.e.). *Po0.05, when compared with free Dox group.
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Studies in our laboratories are underway to evaluate
NPDox/VLA4�pep in a BM model of MM such as the diffuse MM
model.47

In summary, we have harnessed nanotechnology to develop a
combinational therapy approach for MM, where Dox-conjugated
nanoparticles selectively targeted VLA-4 expressing MM
cells, prevented development of CAM-DR, and dramatically
inhibited tumor growth with overall reduced systemic toxicity.
Taken together, this study provides the preclinical rationale for
the clinical evaluation of VLA-4 targeting, Dox-conjugated
multifunctional nanoparticles to improve patient outcome.
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