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Aim: Biomarkers and image markers of Alzheimer’s disease (AD), such as cerebrospinal fluid Aβ42 and p-tau, are effective predictors of 
cognitive decline or dementia.  The aim of this study was to integrate these markers with a disease progression model and to identify 
their abnormal ranges.
Methods: The data of 395 participants, including 86 normal subjects, 108 early mild cognitive impairment (EMCI) subjects, 120 late 
mild cognitive impairment (LMCI) subjects, and 81 AD subjects were obtained from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database.  For the participants, baseline and long-term data on cerebrospinal fluid Aβ42 and p-tau, hippocampal volume, and 
ADAS-cog were available.  Various linear and nonlinear models were tested to determine the associations among the ratio of Aβ42 to 
p-tau (the Ratio), hippocampal volume and ADAS-cog.
Results: The most likely models for the Ratio, hippocampal volume, and ADAS-cog (logistic, Emax, and linear models, respectively) were 
used to construct the final model.  Baseline disease state had an impact on all the 3 endpoints (the Ratio, hippocampal volume, and 
ADAS-cog), while APOEε4 genotype and age only influence the Ratio and hippocampal volume.
Conclusion: The Ratio can be used to identify the disease stage for an individual, and clinical measures integrated with the Ratio 
improve the accuracy of mild cognitive impairment (MCI) to AD conversion forecasting.
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Introduction
Recent neuropathology and biomarker studies have found 
that the pathological changes in Alzheimer’s disease (AD), 
particularly beta-amyloid plaques and neurofibrillary tangles 
(NFT), may precede the onset of clinical disease by as long as 
20-30 years[1–3].  A logical next step for further investigation of 
these changes is to express the disease process in terms of a 
series of measurable biological indicators.  A disease progres-
sion model is a good choice because it can provide a basis 
for learning from prior clinical experience and summarize 
knowledge in a quantitative fashion.  Almost all of the cur-
rent models describe disease progression by only using the 
longitudinal AD Assessment Scale-cognitive subscale (ADAS-
cog) scores.  Holford and Peace first developed a linear disease 
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progression model to describe longitudinal changes in ADAS-
cog data over time in mild-to-moderate AD patients[4].  Several 
nonlinear models were subsequently developed because the 
linear model was considered insufficient to portray cogni-
tive decline in disease progression.  Samtani et al developed a 
logistic model to describe the longitudinal change of ADAS-
cog scores for mild cognitive impairment (MCI) patients[5].  
Gomeni et al reported an indirect physiological response 
model for mild-to-moderate AD patients, assuming constant 
kin and kout to be time-variant[6].  These models do not capture 
subtle biochemical or physiologic changes and may have a 
large variation, resulting in poor prediction.  The progression 
of the disease is usually very slow and requires long-term 
data collection for an accurate analysis.  Disease progression 
models with more physiologic inputs may be more appropri-
ate for chronic degenerative diseases[7].  The current challenge 
is finding a way to integrate the biomarkers to a disease pro-
gression model.  Jack et al suggested a well-accepted model 
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to describe the temporal evolution of AD biomarkers versus 
time[8].  The original hypothesis was that the curves followed a 
Sigmoid function.  Several other biomarkers’ dynamic models 
have been developed since then, such as linear and exponen-
tial models[9].  These models lacked mathematical proof and 
description, and as such, they were only conceptual descrip-
tion models.

The most widely studied cerebrospinal fluid (CSF) biomark-
ers include the CSF 42 amino acid form of Aβ (Aβ42) and phos-
phorylated tau protein (p-tau), which have been shown to 
serve as in vivo proxy measures of amyloid plaques and NFT, 
respectively[10–13].  The consensus of scientists worldwide is 
that in the disease’s evolution process, AD biomarkers do not 
develop in an identical manner.  These biomarkers develop 
in a sequential yet partially overlapped manner.  Discussion 
regarding the initiating event in the biological cascade that 
eventually leads to AD has been controversial.  The amyloid 
cascade hypothesis assumes that a series of causal events 
are initiated by abnormal Aβ production/aggregation[14–16].  
An alternative hypothesis is that p-tau develops first, but is 
confined to subcortical and medial temporal limbic areas.  
Neocortical Aβ deposits develop thereafter, aiding the ante-
cedent tau-related neurodegeneration widely spreading by 
unknown mechanisms[17–20].  The sequence of this biological 
cascade is not consistent between individuals, so neither Aβ42 
nor p-tau alone is sufficient to accurately diagnose the onset 
of AD.  The changes in CSF Aβ42 and p-tau are very slow, and 
they approach plateaus at different times, limiting their utility 
for longitudinal measurement.  The ratio of CSF Aβ42 to p-tau 
(the Ratio) may provide a promising strategy for monitor-
ing the onset of AD.  Because the level of CSF Aβ42 demon-
strates a decrease over time, while that of p-tau demonstrates 
an increase over time, the Ratio always decreases in a more 
apparent manner.

Anomalies of the Ratio lead to neurodegeneration, possi-
bly due to the direct neurotoxicity of aggregated Aβ and the 
collapse of the neuronal transport system that is caused by 
p-tau[21].  The first region in the brain showing significant atro-
phy during AD progression is the hippocampus, which plays 
an important role in the formation of new memories.  The 
hippocampus can also provide measures of cerebral atrophy, 
due to the loss of synapses and neurons[22–24].  In addition, a 
prospective longitudinal cohort study found that greater atro-
phy in the hippocampal subfields predicted MCI conversion, 
whereas larger hippocampal volumes predicted cognitive 
stability and/or improvement[25].  Therefore, hippocampal vol-
ume is an essential indicator of disease progression in AD.

All of these pathological changes eventually lead to a loss of 
memory and functional ability, which are reflected by ADAS-
cog.  The disease progression model and biomarkers’ models 
are discrete entities at present, but they are in fact connected.  
Because of the current lack of mathematical models, the abnor-
mal range for many markers is not yet known.  The objective 
of this study is to integrate these into disease progression 
models and to find out their abnormal ranges.  We put for-
ward an empirical model where clinical continuum of AD is 

initiated by an abnormality of the Ratio, followed by hippo-
campal atrophy and cognitive impairment.  A detailed disease 
progression model can be established by finding associations 
between the Ratio, hippocampal volume, and ADAS-cog.

Materials and methods
Study details
Data were provided by the ADNI database (http://adni.loni.
usc.edu/).  This database is open to the public and allows 
authorized scientists to access imaging, clinical, genomic, and 
biomarker data for the purpose of scientific investigation, 
teaching, or planning clinical research studies.  The primary 
goal of ADNI is to investigate whether serial MRI, PET, other 
biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progression of 
MCI and early AD.  Determining sensitive, specific markers of 
very early AD progression can aid researchers and clinicians 
in developing new treatments and monitoring their effective-
ness.  This can also reduce the time and cost of clinical trials.

The ADNI study began in 2004 and included 400 subjects 
diagnosed with MCI, 200 subjects with early AD, and 200 nor-
mal elderly (NL) subjects.  The initial phase of the study was 
known as ADNI1.  In 2009, ADNI1 was extended with ADNI 
GO, which assessed the existing ADNI1 cohort and added 200 
participants identified as early MCI (EMCI).  The objective of 
this phase was to examine biomarkers in an earlier stage of 
the disease.  In 2011, as ADNI GO was ending, ADNI2 began.  
ADNI2 assessed participants from the ADNI1/ADNI GO 
cohort and added the following new participants: 150 NL, 100 
EMCI, 150 late MCI (LMCI) and 150 mild AD patients.

We included 395 subjects from the ADNI study (Table 1), for 
whom baseline data on Aβ42, p-tau, hippocampal volume and 
ADAS-cog were available.  Statistical analysis was conducted 
to determine whether we should consider the variation among 
phases of the study.  A one-way ANOVA did not identify a 
significant difference between phases when the significance 
threshold was set at 0.01.  Therefore, we treated all data as het-
erogeneous in subsequent data processing.

Model software
Dataset preparation, exploration and visualization were per-
formed using R (version 2.15.0).  Disease progression models 
were established using extended least squares regression by 
NONMEM (version 7.2, Icon Development Solutions, Ellicott 
City, MD, USA).  The model building strategy that we used 
was based on an approach that is widely accepted in the phar-
macometrics community.  Various models were tested, and 
model selection was based on mechanistic plausibility, param-
eter estimate precision, and the objective function value (OFV).  
The disease progression model we used was established by 
subroutine ADVAN6 with TOL equal to 5 in NONMEM, using 
the first-order conditional estimation (FOCE) method without 
η-ε interaction.  Relevant covariates were screened by visual 
inspection, using Xpose Version 4.0 (Uppsala University, 
Uppsala, Sweden) via multiple forward selection and back-
ward elimination steps.  The difference in OFVs between hier-
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archical models was assumed to have an approximate χ2 prob-
ability distribution, with the number of degrees of freedom 
equal to the difference in the number of parameters between 
the models.  Covariates were considered significant when the 
difference between OFVs, with and without the covariate, was 
greater than 7.88 (P<0.005).  

Model performance evaluation
Bootstrap analysis
A total of 1000 bootstrap replicates were randomly gener-
ated from the original data, then refitted to the final model.  
Median parameter estimates and 95% confidence intervals (CI) 
obtained from these bootstrap replications were compared 
with those obtained from the original dataset.

The visual predictive check (VPC)
VPC was constructed based on 1000 stochastic simulations 
from the final model.  The median of the dependent variable 
(DV) and nonparametric 95% CI were then calculated (at the 
2.5th and 97.5th percentiles) for the observed and all of the 
simulated datasets to graphically assess whether simulations 
were able to reproduce both the central trend and variability 
in the observed data.

Model progression
Base model
Various linear and nonlinear models were tested to determine 
the associations among time, the Ratio, hippocampal volume, 
and ADAS-cog.  Brief descriptions and mathematical expres-
sions are listed in Table 2.  The changes of the Ratio over time, 
hippocampal volume with the Ratio, and ADAS-cog with 
hippocampal volume are all depicted in Figure 1, where we 
tested linear, Emax and Sigmoid models.  In addition, because 
biological systems were self-limited, we also tested a logistic 
model with homeostatic control systems for the Ratio.  The 
rate of change of the Ratio was governed by a constant K and 

itself, describing the phenomenon where the rate of change 
first increased and then decreased with increase of the Ratio.  
The Akaike Information Criterion (AIC) was used to compare 
these non-nested models, which mainly focused on gauging 
how well the models conformed to the data.

Covariate model
According to the results of previous studies, covariates of 
interest in AD include disease state (DS), age, APOEε4 geno-
type and sex.  We confirmed that there was no obvious cor-
relation among these covariates.  The ethnicity of the patients 
and their levels of education were reported to influence the 
disease progression, but we did not analyze these factors 
because of data bias.  The effects of covariates were modeled 
using a linear equation (Eq 1).

PTVi=PTV+θ *covi                                 Eq 1
where PTVi is the value of model parameter for individual i, θ 
is a correlation coefficient estimated for covariate, covi is indi-
vidual’s covariate value.

Categorical covariates were mapped to values of 0, 1, 2, 
and so on.  APOEε4 is the best-established genetic risk factor 
for AD, predicting an earlier onset of AD and faster cogni-
tive decline.  The APOEε4 genotype was categorized into 0 
APOEε4 allele (APOEε4=0), 1 APOEε4 allele (APOEε4=1) and 
2 APOEε4 alleles (APOEε4=2).  Gender was categorized to 
0 for male (SEX=0) or 1 for female (SEX=1).  DS was catego-
rized to normal (DS=0), EMCI (DS=1), LMCI (DS=2), and AD 
(DS=3).

Results
The parameters of final model
Given the criteria we used to select the model, the most likely 
models (Table 2) for the Ratio over time, hippocampal volume 
with the Ratio and ADAS-cog with hippocampal volume were 
logistic, Emax and linear models, respectively, with the formu-
las in Model 8 used as the integrated base model.  Because the 

Table 1.  Demographic characteristics of participants. 

   Parameter                           Normal                             EMCI                             LMCI                                  AD 
  
Number 86                                                   108 120 81
Age (year) 72.7 (56.2–89.6)                  70.4 (55–88.3) 71.9 (48.1–85.9) 75.1 (58.2–89.6)
Female (%) 48 (55.8) 45 (41.7) 48 (40.0) 33 (40.7)
Education (year) 16 (6–20)                          16 (11–20) 16 (4–20) 16 (9–20)
White (%) 69 (80.2) 104 (96.3) 116 (96.7) 74 (91.4)
Married (%) 58 (67.4) 85 (78.7) 97 (80.8) 71 (87.7)
APOEε4=0 (%) 56 (65.1) 52 (48.2) 50 (41.7) 19 (23.5)
APOEε4=1 (%) 28 (32.6) 47 (43.5) 47 (39.2) 44 (54.3)
APOEε4=2 (%) 2 (2.3) 9 (8.3) 23 (19.1) 18 (22.2)
Aβ42 (µg/mL) 209.2 (99.2–311.4) 180.3 (86.1–327.3) 149.1 (40.5–04.3) 131.8 (81.8–280.1)
p-tau (µg/mL) 27.8 (6.9–95) 32.9 (9.9–89.1) 37.2 (10.8–136.0) 49.8 (22.3–145.5)
The Ratio 7.7 (1.6–30.3) 5.2 (1.3–21.3) 3.8 (1.0–23.6) 2.4 (0.6–7.7)
ADAS-cog 7.67 (0–17) 8 (1–16) 10.83 (1–27) 21 (9–38)
Hippocampus (mL) 7.609 (5.172–9.543) 7.197 (4.554–9.993) 6.678 (3.514–9.902) 5.856 (4.065–7.804)

The table was summarised as mean (range) for continuous data and count (percentage) for categorical data.
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trends between ADAS-cog and hippocampal volume were 
inconsistent for different disease states (Figure 1C), a uniform 
model covering all disease states was unavailable.  We divided 
the four disease states into two subgroups (NL and EMCI, 
LMCI and AD) according to different rates of cognitive decline 
and further modified Model 8 in Table 2 (Eq 7–8).

The mathematical formulas of the final model were as fol-
lows (Eq 2–9):

 R_bl=R0–θ1*DS–θ2*APOEε4                                   Eq 3
 V_bl=V0–θ3*Age                                                      Eq 5
 EC50=EC50–θ4*DS                                                     Eq 6

 S=Sbl–K1*V (for NL and EMCI subject)               Eq 7
 S=Sbl–K2*V (for NL and AD subject)                   Eq 8
 S_bl=S0–θ5*DS                                                          Eq 9
where R is the value of the Ratio.  V is the value of hippo-
campal volume.  S is the value of ADAS-cog.  K is a constant 
controlling the change rate of the Ratio.  Rmax equals to 30, the 
largest observed value of the Ratio.  R0 is the base value of 
the Ratio when both DS and APOEε4 are equal to 0.  θ1 is the 
correlation coefficient of DS on the Ratio.  θ2 is the correlation 
coefficient of APOEε4 on the Ratio.  V0 is the base value of hip-
pocampal volume when age equals to 0.  θ3 is the correlation 
coefficient of age on hippocampal volume.  θ4 is the correlation 
coefficient of DS on EC50.  S0 is the base value of ADAS-cog 
when DS equals to 0.  K1 is the slope of ADAS-cog changed 
with hippocampal volume for NL and EMCI subject.  K2 is 

dR = K*R*(1–   R    )                                                Eq 2 dt                    Rmax

V=V_bl+Emax *
     R                                                  Eq 4                           R+EC50

Figure 1.  (A) The Ratio change over time; (B) hippocampal volume change with the Ratio; (C) ADAS-cog change with hippocampal volume.  The solid line 
represents the loss regression line.  The observed data are represented by circles.
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the slope of ADAS-cog changed with hippocampal volume for 
LMCI and AD subject, and θ5 is the correlation coefficient of 
DS on ADAS-cog.

The results of the estimates in the final model are summa-
rized in Table 3.  The baseline of the Ratio decreased with the 
aggravation of disease and the increased number of APOEε4 
alleles: NL with 0 APOEε4 allele showed the maximum value 
of 8.09, while AD with 2 APOEε4 alleles showed the minimum 
value of 1.55.  As time progressed, the Ratio decreased.  Using 
the final model, we could see that the Ratio for different sub-
groups showed the same declining trend, but with different 
baseline values.

The baseline of hippocampal volume showed a downward 
trend with increase in age: every year the hippocampal vol-
ume reduced by 0.048 mL.  EC50 showed an increased trend 
with aggravation of disease: 0.707 mL for NL and 1.997 mL for 
AD.  The results suggest that hippocampal volumes decrease 
faster for individuals in a more serious disease state because of 
the higher EC50.

The baseline of ADAS-cog increased with the aggravation of 
disease: 13.7 for NL and 27.35 for AD.  The four groups were 
divided into two subgroups, using different slopes of linear 
models.  The results show that the subgroups in different dis-
ease states demonstrated different increasing trends: ADAS-
cog increased more rapidly if the subjects were in AD or LMCI 
stages.

These results were all consistent with our hypothesis that a 
lower Ratio indicates a more severe disease state.

Overall, the final model parameters were well estimated, 
with reasonable confidence intervals and in good agreement 
with results calculated by the bootstrap (Table 3).  The correla-
tions of population predictions versus observations and indi-
vidual predictions versus observations were in good agree-
ment.  The weighted residuals were, in general, randomly 
scattered around the zero line.  Upon inclusion of the covari-
ates into the model, we confirmed visually that there was no 
trend in the distribution of random effects in the final model 
(Figure 2).

Table 2.  Model comparison.

       No                     Model description                                                  Mathematical expression                AIC                  ∆AIC 
  

R0 baseline of the ratio; V0 baseline of hippocampal volume; S0 baseline of ADAS-cog; R0=Aβ0/p-tau0

Rmax was fixed at 30, the largest value observed for the Ratio.
a The AICs of model 2–4 were compared with that of model 1; b the AICs of model 6–7 were compared with that of model 5; c the AIC of model 9 was 
compared with that of model 8; –, not included in the OFV comparison.

The Ratio (R): linear model
The Ratio (R): Emax model

The Ratio (R): sigmoid model

The Ratio (R): logistic model

The Ratio (R): logistic model
Hippocampal volume (V): linear model

The Ratio (R): logistic model
Hippocampal volume (V): Emax model

The Ratio (R): logistic model
Hippocampal volume (V): Sigmoid model

The Ratio (R): logistic model
Hippocampal volume (V): Emax model
ADAS-cog (S): linear model

The Ratio (R): logistic model
Hippocampal volume (V): Emax model 
ADAS-cog (S): Emax model

1
2

3

4

5

6

7

8

9

1527.26a

1528.69

1503.43

1493.96

1799.68b

1703.77

1707.04

3650.75c

3652.75

   –
   1.43

-23.83

-33.3

   –

-95.91

-92.64

   –

   2

R=R0*K*time

R=R0+
 Rmax*time

            EC50+time

R=R0+
  Rmax*timeγ

            EC50
γ+timeγ

dR
=K*R*(1–

   R   
)

 dt                   Rmax

dR
=K*R*(1–

   R   
)

 dt                   Rmax

V=V0+K1*R
dR

=K*R*(1–
   R   

)
 dt                   Rmax

V=V0+Emax*
      R 

                     R+EC50

dR
=K*R*(1–

   R   
)

 dt                   Rmax

V=V0+
    Rmax*Rγ 

            EC50
γ+timeγ

dR
=K*R*(1–

   R   
)

 dt                   Rmax

V=V0+Emax*
     R 

                    R+EC50

S=S0–K1*V
dR

=K*R*(1–
   R   

)
 dt                   Rmax

V=V0+Emax*
     R 

                    R+EC50

S=S0–Emax1*
     V 

                       V+EC50
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The results of VPC, show that the distribution of the 
observed data was contained within the empirical distribu-
tion of the estimates predicted by the final model over 1000 

simulations.  This indicates that the final model prediction was 
reasonable for both the point estimates as well as the distribu-
tions (Figure 3).  

Table 3.  Results of the final integrated model.

    
Parameter

                                           Original dataset                                                                                 Bootstrap replicatesa

                          Estimate (%RSE )  95% Confidence interval                   Median                       95% Confidence interval
 
 K       -0.0134 (12) -0.0166  -0.0102       -0.0133       -0.0167       -0.00982
 R0        8.09 (5)  7.34    8.84        8.07        5.77             10.13
 θ1        1.08 (17)  0.72   1.44        1.08        0.55               1.59 
 θ2        1.65 (15)  1.18    2.12        1.66        0.890              2.42
 V0 (mL)        6.97 (12)  5.38   8.56        7.01        4.02               9.91
 θ3  (mL·year-1)        0.0484  (15)  0.0339   0.0629        0.0488        0.0252             0.0727
 Emax (mL)        4.42 (12)  3.39  10.80        4.41        2.17               6.62
 EC50        0.707 (26)  0.340    1.070        0.690        0.266              1.140
 θ4        0.432 (31)  0.167    0.693        0.433        0.0395             0.904 
 S0      11.6 (14)  8.44 14.8      11.6        6.2              17.0
 θ5        4.56 (8.0)  3.38    5.46        4.53        2.87               6.15
 K1 (mL-1)        0.96 (23)  0.53   1.39        0.96        0.47               1.45
 K2 (mL-1)        1.36 (19)  0.85   1.88        1.35        0.722              2.003
 BSV for K         0.345 (21)  0.0569    0.633        0.335        0.0358             0.680
 BSV for R0        0.341 (4)  0.287    0.395        0.339        0.283              0.395
 BSV for V0        0.0347 (15)  0.0149   0.0545        0.0348        0.0119             0.0615
 BSV for EC50        0.931 (10)  0.561    1.300        0.934        0.512              1.394
 BSV for S0        0.0408 (12)  0.0121   0.0541        0.0404        0.0211             0.0622
 AE for the R        1.11 (13)  0.557    1.660        1.09        0.570              1.613
 AE for V        0.0391 (13)  0.0196    0.0586        0.0388        0.0183             0.0633
 AE for S        6.75 (9)  4.36    9.14        6.67        4.28               9.10
 OFV 3259.22  –   – 3232.00 3032.63       3428.23

BSV, between subject variability; AE, additional error; –, not included in the base model.
a Nonparametric bootstrap stratified by patient population (n=1000).

Figure 2.  Basic goodness-of-fit plots for the final model.
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Using the mean and 95% confidence interval, we were able 
to determine the corresponding scope of the Ratio to each 
disease state (Table 4).  The mathematical expression for the 
Ratios’ baseline was as Eq 2.

Comparison of LMCI-converters and LMCI non-converters 
Two important goals in AD research are predicting the con-
version of MCI to AD and identifying fast and slow disease 
progression in individual patients.  In our established disease 
progression model, a lower Ratio was related to faster cogni-
tive decline.  The next question we examined was whether 
the model could predict MCI conversion.  In the dataset, MCI 
was subdivided into EMCI and LMCI, and only some LMCI 
patients converted to AD (LMCI-converters).  The comparison 
between LMCI-converters and LMCI non-converters (Table 5) 
was performed to see whether the Ratio was a good predictor.  
The results showed that the mean Ratio of LMCI-converters 
was always lower than that of LMCI non-converters, regard-
less of which APOEε4 group they belonged to.

Discussion
Some improvements have been made in our study, compared 
with previous models.  It is assumed that an AD patient will 
transition from normal to EMCI, then to LMCI, and finally to 
AD if the observation period is long enough.  Due to the non-
linearity of disease progression, the model for one specific dis-

ease stage cannot describe the disease progression of another 
stage.  All stages of the disease were considered in our study, 
including NL, EMCI, LMCI, and AD.  Other studies only con-
sidered one disease stage, such as MCI or AD.  Therefore, our 
model can be applied to the whole spectrum of AD progres-
sion even when disease stage changes.  In addition, 7 years of 
data is available for some individuals, which is beneficial in 
examining the long-term changes of AD progression.  More 
importantly, we have introduced a novel disease progression 
model which integrates three endpoints.  This model is differ-
ent from previous ones which empirically model the disease 
progress with clinical scores only.  Instead of treating Aβ42, 
p-tau and hippocampal volume as covariates, our model uti-
lizes them to develop a timeline disease progression model 
which can be applied to the entire AD spectrum from normal 
to dementia.  In conventional longitudinal analyses, as treated 
as covariates, the values of Aβ42, p-tau and hippocampal 
volume are generally assumed to be time-invariant.  In pro-
gressive chronic diseases, these assumptions are not realistic 
because the biological functions may deteriorate over time.  
Thus, a disease progression model that characterizes the time-
varying disease status is desired, which not only describes the 
change of the score but also the changes of biomarkers and 
imaging markers.  Through our model, people can obtain not 
only a model of ADAS-cog but also a model of biomarkers, 
imaging markers and their abnormal ranges.  Finally, we have 

Table 4.  Corresponding scope of the Ratio to each disease state.

      Genotype                               NL                                                   EMCI                                 LMCI                                AD
 
 APOEε4=0 8.09 (7.34–8.34) 7.01d (5.91–8.11) 5.93 (4.48–7.38) 4.85 (3.05–6.65)
 APOEε4=1 6.44a (5.22b–7.16c) 5.36 (3.79–6.93) 4.28 (2.36–6.20) 3.20 (0.93–5.47)
 APOEε4=2 4.79 (3.10–5.98) 3.71 (1.67–5.75) 2.63 (0.24–5.02) 1.55 (0–4.29)

The table was summarised as mean (95% confidence interval).
R0=8.09 (7.34, 8.84); θ1=1.08 (0.73, 1.43); θ2=1.65 (1.18, 2.12). Values are expressed as typical value (range).
a 6.44=8.09–.65; b 5.22=7.34–2.12; c 7.16=8.34–1.18; d 7.01=8.09–1.08; the rests followed the same rules.

Figure 3.  Visual predictive check from 1000 simulations. The solid line represents the median observed data, and the gray field around it represents a 
simulation-based 95% confidence interval for the median. The observed 5% and 95% percentiles are presented with dashed lines, and the gray fields 
around them are their 95% confidence intervals. The observed data are represented by circles.
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partially achieved the two most important goals in AD study: 
predicting conversion of MCI to AD and identifying fast and 
slow disease progression in individuals.  As demonstrated by 
the results, individuals with a lower ratio deteriorate faster 
and convert from MCI to AD more easily.

The APOE gene encodes a protein called apolipoprotein E, 
which is a major component of a specific type of lipoprotein 
called very low-density lipoproteins (VLDLs).  The ε4 version 
of the APOE gene may increase the risk for an individual to 
develop AD by an unknown mechanism.  Some researchers 
have found that this allele is associated with an increased 
number of amyloid plaques, while others have found that it 
is associated with elevated p-tau[26].  In either case, APOEε4 is 
related to a decreased Ratio, which is consistent with our find-
ings.  The results of this study indicate that each additional 
copy of the APOEε4 allele may decrease the Ratio by 1.65.

Disease state (DS) is an important factor that influences 
numerous important progression parameters.  From NL to 
AD, the Ratio will decrease by 1.08 as DS increases by one 
level.  Higher DS level is also related to smaller hippocampal 
volume, through its influence on EC50.  In all disease states, 
hippocampal volume will decrease with an increase in age.  
LMCI and AD groups show faster cognitive decline than NL 
and EMCI groups.

Clinical criteria, which are often subjective and dependent 
on clinical judgment, are insufficient to identify early stages of 
AD when considered alone.  In recent decades, the use of more 
objective biochemical and imaging markers, either replacing 
or complementing these clinical approaches, to facilitate an 
early and accurate diagnosis of the illness, has been investi-
gated extensively.  Studies have shown that individuals with 
lower levels of CSF Aβ42 and higher levels of p-tau develop 
AD more frequently.  Hence, the Ratio can be used to identify 
the early stages of AD and explore the subsequent events dur-
ing AD progression.  The combination of these two biomark-
ers appears to be superior to a single biomarker because only a 

slight change in either Aβ42 or p-tau is detected over relatively 
short intervals.  Caroli and Frisoni even proposed that the CSF 
load was nearly disconnected from the disease stage, as they 
found changes in CSF biomarkers alone were not significantly 
associated with the annual decline in cognitive and functional 
scores in MCI and AD groups[27].  However, the change in 
the Ratio is more apparent over time because of the oppo-
site tendency shown by the two biomarkers.  Furthermore, 
although there is no doubt that Aβ42 and p-tau are involved in 
the pathogenesis of AD, the clarified sequence is still unclear.  
However, the Ratio decreases regardless of which biomarker 
changes first.  

Predicting MCI-convertors is an important goal in AD 
research.  MCI, the most widely used indicator, poorly predicts 
whether an individual will deteriorate to AD because some 
patients convert while others remain relatively stable.  Vari-
ous studies of the identification of MCI-converters have been 
published, which suggests that clinical measures, in combina-
tion with CSF biomarkers or imaging markers, may improve 
the accuracy of conversion forecasting[28–30].  The results of 
our study suggest that a combination of Ratio and LMCI can 
improve the predictive accuracy of LMCI-converters.  Patients 
in the LMCI state with a lower Ratio are more likely to convert 
to AD.

There are some limitations of the present study.  To date, 
CSF biomarkers have only been collected for a limited num-
ber of ADNI participants.  Due to the relatively small sample 
size and short follow-up time, especially for AD, we could 
not make full use of the non-linear mixed effect model, which 
might be more appropriate for large samples and long periods.  

Despite these limitations, this study makes unique contribu-
tions.  To the best of our knowledge, this is the first study to 
introduce a model that explicitly describes the entire course 
of AD by identifying the mathematical relations between the 
Ratio over time, hippocampal volume with the Ratio, and 
ADAS-cog with hippocampal volume.  Moreover, the same 

Table 5.  Comparison of LMCI-converters and LMCI non-converters.  The table was summarised as mean (range).

Parameter                                                  LMCI non-convertor                                                                                      LMCI-convertor
 
Total                                                           100                                                                                                  13
APOEε4   0   1   2 0 1 2
Number 40 40 20 3 7 3
Age (year) 72.1 71.7  66.5 70.2 71.7 66.6 
 (48.1–85.4) (56.5–82.7) (58.5–76.2) (67.4–72.8) (65.1–78.8) (64.6–70.1)
ADAS-cog 10.26 11.73  11.16  10.33  13.71  19.11 
 (1.00–27.00) (3.00–21.00) (5.00–16.00) (9.00–11.00) (9.00–22.33) (13.33–26.33)
Hippocampus (mL) 7.028 6.549  6.165  5.827 4.663  5.315 
 (4.087–9.902) (4.425–9.613) (4.338–7.920)  (3.858–7.686) (3.514–5.914) (4.704–6.346)
Aβ42 (µg/mL) 203.4 146.3  122.8  208.1 140.9  112.5 
 (127.4–304.3) (92.1–263.8) (84.5–156.2) (165.2–249.4) (114.2–163.2) (80.6–137.7)
p-tau (µg/mL) 33.1  48.2  52.4  49.7  51.7  44.7
 (10.8–91.4) (19.1–136.0) (19.5–98.8) (17.0–109.3) (31.4–119.6) (31.7–61.0)
The Ratio 9.38 3.72  2.67  8.47  3.49  2.60 
 (1.62–23.59) (1.01–9.30) (1.16–4.64) (1.51–14.67) (0.95–4.86) (1.95–3.32)
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modeling strategy can be readily applied to systematically test 
hypotheses about the temporal relationships between other 
biomarkers and other neurodegenerative diseases.  

In summary, the developed cascade model was suitable for 
describing the progression from NL to AD.  Baseline disease 
state (DS) has an impact on all of the three endpoints (the 
Ratio, hippocampal volume and ADAS-cog), while APOEε4 
genotype and age only influence the Ratio and hippocampal 
volume, respectively.  The model provided a suitable tool for 
clinical trial simulations and could aid in the design of efficient 
clinical trials in the future.  Using the Ratio, we are able to 
approximate the disease stage of an individual.  Clinical mea-
sures in combination with the Ratio can improve the accuracy 
of MCI to AD conversion forecasting.
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