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Aim: The conventional method for analyzing 24-h ambulatory blood pressure monitoring (24-h ABPM) is insufficient to deal with the 
large amount of data collected.  The aim of this study was to develop a novel cyclic fluctuation model for 24-h ABPM in Chinese patients 
with mild to moderate hypertension. 
Methods: The data were obtained from 4 independent antihypertensive drug clinical trials in Chinese patients with mild to moderate 
hypertension.  The measurements of 24-h ABPM at the end of the placebo run-in period in study 1 were used to develop the cyclic 
fluctuation model.  After evaluated, the structural model was used to analyze the measurements in the other 3 studies.  Models were 
fitted using NONMEM software.  
Results: The cyclic fluctuation model, which consisted of 2 cosine functions with fixed-effect parameters for rhythm-adjusted 24-h mean 
blood pressure, amplitude and phase shift, successfully described the blood pressure measurements of study 1.  Model robustness 
was validated by the bootstrap method.  The measurements in the other 3 studies were well described by the same structural model.  
Moreover, the parameters from all the 4 studies were very similar.  Visual predictive checks demonstrated that the cyclic fluctuation 
model could predict the blood pressure fluctuations in the 4 studies.  
Conclusion: The cyclic fluctuation model for 24-h ABPM deepens our understanding of blood pressure variability, which will be 
beneficial for drug development and individual therapy in hypertensive patients.  
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Introduction
Twenty-four-hour ambulatory blood pressure monitoring 
(24-h ABPM) is an important indicator in hypertension diag-
nosis and the evaluation of the effects of antihypertensives[1–3].  
Multiple measurements of blood pressure within a day using 
24-h ABPM can be relatively objective and can truly reflect 
the patient’s blood pressure levels compared to casual blood 
pressure measurement.  Thus, this method can diagnose white 
coat hypertension, masked hypertension and morning hyper-
tension.  Moreover, it also facilitates understanding the circa-
dian rhythm of blood pressure and fluctuation characteristics.  
Recently, 24-h ABPM has been regarded as a confirmatory 
method for the diagnosis of hypertension in the British hyper-

* To whom correspondence should be addressed. 
E-mail zhengqscn@21cn.com
Received 2012-08-28    Accepted 2013-03-14

tension guidelines[4].  In addition, 24-h ABPM is also indicated 
to predict target organ damage and the prognosis of cardio-
vascular disease patients.  It has been confirmed that 24-h 
average blood pressure is more related to target organ damage 
and the prognosis of hypertension than casual blood pressure 
measurement[5–7].

The ideal antihypertensive drug should lead to a steady 
decline in blood pressure over an entire 24-h period.  Accord-
ing to the guiding principle for clinical trials of new anti-
hypertensive drugs by the Chinese SFDA, an ABPM study 
conducted in a certain number of hypertensive patients must 
be included as a part of new antihypertensive drug clinical 
trials[8].  Although many 24-h ABPM studies have been con-
ducted in China, the commonly used analytic method for 24-h 
ABPM is still insufficient with regard to the large amount of 
acquired data.  Some cyclic fluctuation models for 24-h ABPM 
have been developed in non-Chinese populations[9, 10].  How-
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ever, higher nighttime blood pressure has been observed in 
Chinese patients compared with non-Chinese patients[11, 12].  
In the Chinese population, a high-salt diet and gene poly-
morphisms may also influence the pattern of blood pressure 
changes[13, 14].  It is important to understand and describe the 
cyclic fluctuations of blood pressure in Chinese hypertensive 
patients.  The goal of this study was to develop a cyclic fluctu-
ation model for blood pressure in patients with mild to mod-
erate hypertension in 4 antihypertensive drug clinical studies 
in China.  This model will be beneficial for antihypertensive 
therapy in clinical practice and new drug development.

Materials and methods
Data sources and study design
The 24-h ABPM data were collected from 4 antihypertensive 
drug clinical trials that were conducted in accordance with 
the Declaration of Helsinki.  Patients were enrolled in these 4 
studies if they were 18–75 years of age with mild or moderate 
hypertension (mean sitting systolic BP/mean sitting diastolic 
BP, mild: 140–159/90–99 mmHg, moderate: 160–179/100–109 
mmHg)[15].  The major exclusion criteria included significant 
cardiovascular, hepatic, and renal disease and concomitant 
type 1 diabetes or uncontrolled type 2 diabetes, childbear-
ing potential, current use of anticonvulsant or antidepressant 
therapy, and history of drug abuse.  All subjects signed an 
informed consent before any study-related procedures were 
performed.  

The 4 studies included a 2-week placebo run-in period, fol-
lowed by an 8-week, open-label antihypertensive treatment 
period.  Drugs (placebo or antihypertensive agents) were 
administered orally between 7 and 10 AM once daily.  On 
study visit days, patients were instructed not to take their 
study medication until the assessments were completed.  
Twenty-four-hour ABPM was used at the end of each period.  
The blood pressure measurements in all studies were per-
formed every 15 min from 8 AM to 10 PM and every 30 min 
from 10 PM to 8 AM with an Ambulatory Blood Pressure 
Monitor (SunTech Medical Instruments, Raleigh, NC, USA).  

The blood pressure fluctuation model in this study was based 
on the 24-h ABPM data collected at the end of the run-in 
period.  Patient demographics and the description of 24-h 
ABPM at the end of the placebo run-in period are shown in 
Table 1.

Modeling and validation
Structural model 
The blood pressure fluctuation model was based on a model 
of the 24-h ABPM profile without drugs present that was pre-
viously described by Hempel[9, 10].  The original model for the 
ABPM measurements was represented as follows:

In this equation, k=1 is systolic blood pressure, k=2 is dia-
stolic blood pressure, BPk(t) is the blood pressure as a function 
of t (the unit of t is day), Basek is the rhythm-adjusted 24-h 
mean, Aik is the amplitude of the cosine terms, and PHSik is the 
parameter for phase shifts of the cosine terms.  The number of 
cosine functions (n) was selected based on the minimum objec-
tive function values (OFVs) and diagnosis plots.  Additional 
forms of the original model were also tested.

Two independent sets of parameters were used to fit the 
fluctuation models for diastolic and systolic blood pressure 
measurements, respectively.  Based on a graphical inspection 
of the raw data, equal values of phase-shift parameters (ie, 
PHSi1=PHSi2) for both diastolic and systolic blood pressure 
measurements were also used.  Model selection was based on 
the goodness-of-fit plots, estimates and standard errors of the 
population parameters, and OFVs.

Covariate model selection
The influence of covariates was evaluated after the structural 
model was developed.  The covariates considered in the BP 
model parameters were demographic factors [gender, age, 
weight, body mass index (BMI)].  Diagnostic plots of possible 
covariates versus the inter-individual variabilities were first 

Table 1.  Patient demographics and description of the data sets used.   

                                                                         Study 1                                   Study 2                              Study 3                          Study 4
 
No of patients        38        42       25        29  
Sex    
  Male        17        22       16        15
  Female        21        20          9        14
Age (year)* 51.6±7.83 (35, 69) 50.9±7.91 (35, 69) 51.0±12.3 (28, 72) 48.8±9.79 (36, 72)
Weight (kg)* 65.5±9.27 (45, 85) 73.9±10.8 (55, 95) 65.9±10.4 (46, 90) 72.9±11.0 (52, 105)
Height (cm)*  165±8.05 (152, 183)  168±7.30 (150, 180)  164±7.71 (149, 183)  167±8.26 (150, 183)
BMI (kg/m2)* 24.0±2.91 (17.6, 28.7) 26.2±2.80 (20.8, 30.0) 24.5±2.72 (18.4, 29.7) 26.0±2.75 (23.0, 30.3)
Average 24-h SBP (mmHg)*  141±15.6  (120, 175)  145±16.1 (122, 194)  139±15.1 (125, 165)  137±13.9 (118, 157)
Average 24-h DBP (mmHg)* 90.4±10.2 (80, 119)  92.8±10.8 (80, 124)  90.2±10.5 (80, 117)  90.2±9.8 (81, 103) 
No of SBP measurements      2110      2927      2346      1687
No of DBP measurements      2110      2927      2346      1687

*Mean±SD (minimum and maximum values in parentheses).  Average 24-h blood pressures were directly read from the automatic analysis. 



1045

www.chinaphar.com
Sheng YC et al

Acta Pharmacologica Sinica

npg

used to screen for relevant covariates that could influence the 
individual parameters obtained from the structural model.  
The screened covariates were evaluated by changes of the 
OFV.  Assuming that the differences in the OFVs had a chi-
square distribution, a decrease in OFV greater than 3.84 from 
the structural model (P<0.05) was used for stepwise forward 
inclusion.  The full model was built by introducing all signifi-
cant covariates.  Subsequently, the final model was developed 
using a stepwise backward elimination procedure.  Covari-
ates remained in the final model when the elimination of the 
variable caused a significant increase in OFV greater than 6.63 
compared to the full model (P<0.01).  Goodness-of-fit graphs 
were also applied for model evaluation.

Continuous covariates were standardized to their mean val-
ues and were modeled as an exponential function by the fol-
lowing equation:

Categorical variables were modeled using a proportional 
change model as shown:

θ=θT(cov1+θcov cov2)

where cov1 and cov2 were indicator variables set equal to ‘1’ 
to denote the ith covariate value and ‘0’ otherwise, θT was the 
model parameter for cov1, and θcov was the fractional change 
of cov2 from θT, respectively.

Statistical models
We attempted to add the inter-individual variability (ηi) 
into the parameters of each model, and it was assumed to 
be log-normally distributed.  The expression for subject i is 
Pi=Ptv*exp(ηi), where Pi is the estimate for the model param-
eter of the i individual, Ptv is the typical population estimate, 
and ηi is the inter-individual random-effect assumed to have 
an expected mean 0 and variance ωi

2.
The residual variability was modeled with an additive error 

model as shown: Yij=IPREij+ε, where Yij and IPREij represent 
the jth observed or predicted blood pressure for the ith subject, 
respectively.  ε is the residual random effect defined as being 
normally distributed with mean 0 and variance σ2.

Software
The population analysis was performed with non-linear mixed 
effects modeling using NONMEM version 7.2 (Icon Develop-
ment Solutions, Ellicott City, MD, USA).  NONMEM runs 
were executed using Wings for NONMEM (WFN720, http://
wfn.sourceforge.net).  The first-order conditional estimation 
method with interaction (FOCE-I) was used throughout the 
analysis.  Perl-speaks-NONMEM 3.5.3[16] was used to facilitate 
processing the NONMEM output and for parallel execution of 
the bootstrap.  Xpose[17] was used to evaluate the goodness-of-
fit of the models and for plotting.

Model evaluation
Graphical and non-parametric statistical methods were used 

for model evaluation.  Goodness-of-fit plots, including plots of 
observed versus population and versus individual predicted 
values, individual weighted residuals (IWRES) versus individ-
ual predicted values and weighted residuals (WRES) versus 
time, were used to evaluate model bias.  The final model was 
evaluated using a nonparametric bootstrap re-sampling tech-
nique.  A total of 1000 bootstrap replicate datasets were gener-
ated by sampling randomly from the original data of study 
1 with replacement.  The accuracy of the model parameters 
was evaluated by comparing the 90% confidence interval of 
the parameter estimates from the bootstrap datasets with the 
parameter values obtained from the original dataset.

The predictive performance of the final model was validated 
internally using the data from study 1.  A visual predictive 
check (VPC) based on 1000 simulations for the final model 
was used to evaluate the model.  The measured time points 
were binned into one-hour intervals.  For each bin, the median 
blood pressure and the 2.5th and 97.5th percentiles were cal-
culated from the simulated data.  The observed blood pressure 
and confidence interval of the simulated data were plotted 
together for visual inspection.

The data from study 1 were used as the developmental data-
set for model building.  After model evaluation and valida-
tion, the same structural model was used for the data from the 
remaining 3 studies.  The ability of the final model to describe 
the observed data was also investigated using the visual pre-
dictive check.  For generalization to future studies, the data 
from all 4 studies were also combined and analyzed using the 
structural model built in study 1.  The same model-developing 
procedure introduced previously was also applied for the 
pooled data.

Results
The following equation containing two cosine functions was 
selected as the circadian rhythm model to describe the blood 
pressure changes over time:

In this equation, k=1 is systolic blood pressure, k=2 is diastolic 
blood pressure, BPk(t) is the blood pressure as a function of t 
(the unit of t is day), Basek is the rhythm-adjusted 24-h mean, 
A1k and A2k are the amplitude of the cosine terms, and PHS1 
and PHS2 are the parameters for phase shifts of the cosine 
terms.

As shown in the plots of systolic and diastolic blood pres-
sure versus time, the time trends of both blood pressure 
measurements were similar.  The circadian rhythm models 
were developed successfully for diastolic and systolic blood 
pressure measurements, respectively (Figure 1).  Because the 
phase-shift parameters in the two models were very close, the 
same phase-shift parameters were used for the final model 
in which systolic and diastolic blood pressure were modeled 
together.  The parameter estimates and their corresponding 
standard error (in percentage points) obtained from the final 
model are listed in Table 2.  The typical values of the rhythm-

θ=θT (
     cov    )

θcov

           Meancov

BPk(t)=Basek+Alk·cos[ 2
·π·(t-PHS1) ]+A2k·cos[ π·(t-PHS2) ]

                                              0.5                                  0.5
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adjusted 24-h mean diastolic and systolic blood pressures 
were 140 mmHg and 89.5 mmHg, respectively.  The standard 
error percentages of all fixed-effect parameters were less than 
10%, indicating that these parameters were sufficiently accu-
rate and that the blood pressures were well described by the 
final model.  The goodness-of-fit plots (Figure 1) of the pre-
dicted and observed data indicated that the model adequately 
described the systolic and diastolic blood pressures over the 
entire 24-h period.  The weighted residuals were evenly dis-
tributed around zero, and most of these were within an SD 
of ±2 of the normalized units.  Individual plots (Figure 2) of 
observations, individual predictions and population predic-
tions versus time also indicated the model’s adequate capture 
of both systolic and diastolic blood pressure measurements.  
The covariates, including gender, age, weight and BMI, did 
not significantly increase the goodness of fit.

Of the 1000 bootstrap re-sampling datasets, 974 were mini-
mized successfully with the covariance step.  Table 2 presents 
the results of the bootstrap distributions for the parameters of 
each model.  The medians of the bootstrap re-samples of all 
parameters were similar to the estimations based on the origi-
nal dataset.  In addition, the relatively small bootstrapped con-
fidence interval of all parameters indicated the accuracy and 
precision of the final model.

A total of 1000 simulated datasets based on the model 

parameters and graphical forecasts were also evaluated.  As 
shown in the visual predictive checks (Figure 3, Study 1) based 
on the estimations of the final model, the model prediction 
and the observed measurements of the systolic and diastolic 
blood pressures were in good agreement.  This also implied 
that the final model satisfyingly captured the tendency of the 
24-h blood pressure fluctuations.

For the 24-h blood pressure measurements in Studies 2, 3 
and 4, the predictions of the same structural model were good.  
All parameter estimates were similar among the 4 studies 
(Table 3).  The visual predictive check of these studies (Figure 
3, Studies 2, 3, and 4) also illustrated that the circadian rhythm 
model could adequately describe 24-h blood pressure.

When the data of the 24-h blood pressure measurements 
were pooled from all 4 studies, the fluctuation model also 
performed well, and only slight differences were shown in 
the parameters between the pooled analysis and the 4 study 
analyses.  This indicated that the developed circadian rhythm 
model was robust and predictable.  The inter-individual vari-
ability versus study plot and the residual variability versus 
study plot implied that there were no remarkable differences 
in the parameters among studies.  OFVs were not decreased 
significantly when inter-study variabilities were introduced 
into the model.  No covariate was introduced as a significant 
factor into the pooled model.

Table 2.  Model parameter estimates of the diastolic and systolic 24-h ABPM with 1000 nonparametric bootstrap procedures of Study 1. 

Parameter                                 Annotations
                                                           Estimate         Shrinkage%       Bootstrap                Bootstrap 

                                                                                                                                   (SEM%)                            (P value)                  median                     95% CI
 
Cyclic fluctuations model parameters    
Base1 Rhythm-adjusted 24-h mean SBP (mmHg) 140 (1.8)  140       136–145
Base2 Rhythm-adjusted 24-h mean DBP (mmHg)   89.5 (1.8)    89.6      86.7–92.6
A11 Amplitude first cosine term of SBP     7.52 (8.7)      7.52      6.37–8.79
A21 Amplitude second cosine term of SBP      8.64 (9.1)      8.58      6.89–10.19
A12 Amplitude first cosine term of DBP     5.61 (7.6)      5.60      4.70–6.50
A22 Amplitude second cosine term of DBP      6.27 (9.3)      6.32      5.21–7.50
PHS1 Phase-shift first cosine term    -0.652 (1.3)     -0.651   -0.668–0.862
PHS2 Phase-shift second cosine term      3.61 (0.8)      3.61      3.50–3.69

Inter-individual variability    
ωBase1 (CV%) Interindividual variability of Base1     0.079 (20.6)  -0.68 (0.999)     0.079   0.061–0.094
ωBase2 (CV%) Interindividual variability of Base2     0.12 (21.3)  -0.48 (0.999)     0.12   0.094–0.146
ωA11 (CV%) Interindividual variability of A11     5.63 (31.8) 20.5 (0.232)     5.47     3.42–7.14
ωA21 (CV%) Interindividual variability of A21     4.73 (33.0) 17.9 (0.282)     4.74     3.12–6.91
ωA12 (CV%) Interindividual variability of A12     6.58 (37.6) 21.6 (0.234)     6.39     3.20–8.70
ωA22 (CV%) Interindividual variability of A22     6.71 (35.6) 16.6 (0.421)     6.36     4.05–8.83
ωPHS1 (CV%) Interindividual variability of PHS1   10.9 (27.5)   4.96 (0.933)   10.05       7.0–13.3
ωPHS2 (CV%) Interindividual variability of PHS2     1.24 (37.6)   0.23 (0.988)     1.17    0.59–1.6

Residual variability    
σSBP Intraindividual residual variability of SBP (mmHg)   12.85 (6.5)   2.93   12.9      12.1–13.7
σDBP Intraindividual residual variability of DBP (mmHg)      9.11 (7.9)   2.96     9.10      8.46–9.79

SEM%, standard error %; 95% CI, 95% confidence interval; CV%, coefficient of variation; SBP, systolic blood pressure; DBP, diastolic blood pressure; 24-h 
ABPM, 24-h ambulatory blood pressure monitoring. 
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Discussion
Compared to casual blood pressure measurements, more data 
points are measured by 24-h ABPM.  Thus, 24-h ABPM pro-
vides a more precise diagnosis and better prediction of clinical 
outcomes in patients with hypertension and cardiovascular 
diseases.  However, the indices of conventional analyses of 
24-h ABPM, such as the trough-to-peak ratio, smoothness 
index, average 24-h BP and average daytime and nighttime 

BP, do not take full advantage of the features of large amounts 
of data.  Population modeling methods can effectively use all 
measurements from 24-h ABPM and reduce the influence of 
different measurement schedules among subjects.  

The circadian rhythm model was successfully applied in this 
study to capture the cyclic fluctuations of both systolic and 
diastolic blood pressures within 24 h.  The rhythm-adjusted 
24-h mean values of SBP and DBP from the model were almost 

Figure 1.  Basic goodness-of-fit plot of the final cyclic fluctuations model for systolic (left) and diastolic (right) 24-h ABPM in Study 1 (top) and pooled 
analysis (bottom).  
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Table 3.  Cyclic fluctuations model parameter estimates of the diastolic and systolic 24-h ABPM in Study 2, 3, and 4.

       Parameter                               Study 2                                     Study 3                                      Study 4                                    Overall*

                                                            Estimate (SEM%)                      Estimate (SEM%)                   Estimate (SEM%)              Estimate (SEM%)
 
 Cyclic fluctuations model parameters  
 Base1  144 (1.7)  138 (1.2)  136 (1.0)  139 (0.7)
 Base2    91.7 (1.8)    88.8 (1.2)    88.5 (0.8)    89.5 (0.7)
 A11      7.83 (8.5)      6.07 (8.6)      7.11 (9.2)      7.2 (4.6)
 A21      9.76 (8.2)      7.59 (7.6)    10.8 (6.3)      9.45 (4.7)
 A12      5.78 (5.5)      4.41 (6.1)      5.08 (8.5)      5.22 (4.8)
 A22      6.39 (10.1)      6.05 (9.8)      7.16 (7.0)      6.55 (5.1)
 PHS1     -2.18 (0.6)     -2.16 (0.3)      0.84 (1.1)     -2.16 (0.2)
 PHS2      3.61 (0.7)      3.58 (0.4)      4.58 (0.4)      3.59 (0.3)

 Inter-individual variability   
 ωBase1      0.108 (26.2)      0.068 (23)      0.0728 (16.6)      0.0933 (13.4)
 ωBase2      0.112 (20.8)      0.075 (21.8)      0.0587 (22.7)      0.0899 (13.0)
 ωA11      0.422 (30)      0.515 (29.8)      0.494 (25.4)      0.457 (14.7)
 ωA21      0.492 (24.3)      0.825 (22.8)      0.420 (20.3)      0.519 (13.0)
 ωA12      0.327 (34.5)      0.523 (29.7)      0.506 (24.9)      0.439 (16.2)
 ωA22      0.547 (33)      0.660 (22.7)      0.415 (22.0)      0.502 (14.3)
 ωPHS1      0.0379 (25.6)      0.0128 (28.1)      0.0816 (23.3)      0.0296 (15.5)
 ωPHS2      0.0424 (29.5)      0.0182 (52.6)      0.0318 (31.7)      0.0390 (19.7)

 Random variability   
 σSBP    12.8 (6.7)    12.6 (6.9)    11.3 (5.9)    12.2 (3.4)
 σDBP      9.28 (6.3)      9.74 (10)      8.96 (5.6)      9.23 (3.7)

SEM%, standard error %; *Combined data of Study 2, 3, and 4.

Figure 2.  Individual model prediction of systolic (left) and diastolic (right) 24-h ABPM.  Only the plots of the first 9 subjects were shown. 
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equivalent to the averaged values of those from the raw data.  
Compared with the published models for 24-h ABPM, which 
were studied in Europe[9, 10], rhythm-adjusted 24-h mean BPs 
(including SBP and DBP) were very close to those in Refer-
ence[10] but were slightly less than in that in Reference[9].  The 
likely reason is that only patients with mild-to-moderate 
hypertension were enrolled in our studies and in Reference[10], 
and no such criteria were mentioned in Reference[9].  In addi-
tion, the additive residual variabilities for both SBP and DBP 
were similar to those of previous models.  However, there 
were some features of the circadian rhythm model in this 
study.  First, the model structure changed from multiplication 
to addition based on goodness of fit.  Second, the same phase-
shift parameters were applied to describe both systolic and 
diastolic blood pressures in the model.  Because the model 
development procedure was based on previous experience, 
these modifications most likely indicate that the cyclic pattern 

of blood pressure fluctuations in Chinese patients is slightly 
different from that in non-Chinese patients.

The predictive performance of the model was assessed in 
two steps.  The first step was performed using a visual predic-
tive check to evaluate the ability of the model to generate the 
data on which the model was built (Study 1).  The second step 
involved 3 datasets from three other 24-h ABPM studies (Stud-
ies 2–4).  In both steps, the model performed well and showed 
the ability to predict the central tendency of blood pressure 
in patients with mild to moderate hypertension in China with 
reasonable confidence.  Furthermore, the fluctuating changes 
of blood pressure showed a “two peaks and a valley” feature 
in the visual predictive check plots.  The “dipping pattern,” 
which indicated that the average difference between daytime 
and nighttime systolic and diastolic BPs was 10%–20%, was 
also observed as an overall trend of all the studies.  Although 
"non-dipper" changes (nocturnal decline of <10%) were found 

Figure 3.  Visual predictive check of the cyclic fluctuations model 
for four 24-h ABPM studies and pooled analysis.  The open circle 
represents the observations, the lines represent 5th, 50th, and 95th 
percentiles of the 1000 simulated datasets.
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in some patients (IDs 2 and 7 in Figure 2), the model's predic-
tive performance in these subjects was good as well.  This 
pattern in the patients is also an important source of inter-
individual variability of the model parameters.  Eating, physi-
cal activity and emotional state, which will affect blood pres-
sure readings, were not recorded in these 4 studies and were 
therefore not included in the model.  These influential factors 
should be collected in future 24-h ABPM studies and intro-
duced into the model in an appropriate way to improve the 
accuracy of model predictions.

According to the regular circadian rhythm pattern of blood 
pressure fluctuations, individualized therapy based on the 
principle of time therapeutics has gradually received much 
more attention in the treatment of essential hypertension[18].  
The cyclic fluctuation model developed in this study can be 
applied to estimate the variation in individual hypertensive 
patients.  It also can provide the basis for individualized treat-
ment, such as selecting the appropriate antihypertensive drugs 
and adjusting the dose and the time that medicine is taken.

In this study, the cyclic fluctuation model, which was built 
based on the data from study 1, was still able to achieve 
successful performance in fitting and predicting data from 
the other three studies.  The general parameters were also 
obtained from the pooled data of four studies.  The criteria 
for screening patients with mild-to-moderate hypertension in 
our studies also suggest the possibility of using this model for 
other antihypertensive studies.  Moreover, the model parame-
ters of all studies were very similar, indicating that this model 
has good productivity and extensive suitability and could be 
used as a reference in future 24-h ABPM studies.  Blood pres-
sure can be described and simulated at any time point using 
the developed model.  In new antihypertensive drug develop-
ment, the pharmacokinetic-pharmacodynamic model can be 
added to the circadian rhythm model to describe and predict 
blood pressures over time after drug administration.  Using 
these models, different dosing regimens and study designs 
of new antihypertensive clinical trials can be simulated and 
assessed[19].  As a result, the uncertainty of new antihyper-
tensive drug development could be reduced by answering a 
series of “what-if” problems based on these models.
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