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Current understanding of TRPM7 pharmacology and 
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The initial excitement and countles efforts to find a pharmacological agent that disrupts the excitotoxic pathway of ischemic neuronal 
death have only led to disappointing clinical trials.  Currently, a thrombolytic agent called recombinant tissue plasminogen activator (rt-
PA) is the only pharmacological treatment available for patients with acute ischemic stroke in most countries.  Even though its efficacy 
has been confirmed repeatedly, rt-PA is considerably underused due to reasons including a short therapeutic window and repeated 
complications associated with its use.  A search for alternative mechanisms that may operate dependently or independently with the 
well-established excitotoxic mechanism has led researchers to the discovery of newly described non-glutamate mechanisms.  Among 
the latter, transient receptor potential melastatin 7 (TRPM7) is one of the important nonglutamate mechanisms in stroke, which has 
been evaluated in both in-vitro and in-vivo.  In this review, we will discuss the current state of pharmacological treatments of ischemic 
stroke and provide evidence that TRPM7 is a promising therapeutic target of stroke.
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Introduction
Stroke is one of the most common causes of death and a lead-
ing cause of disability worldwide[1, 2].  The burden of stroke on 
stroke survivors, their family members and society as a whole 
is unquestionably immense.  The mean lifetime cost of stroke 
per person in the United States is estimated to be $ 103,576 in 
1990, which was an averaged estimate across all stroke sub-
types[3].  The socioeconomic burden to meet the costs of man-
aging stroke is expected to further increase largely due to our 
aging population.  From 2005 to 2050, the direct and indirect 
costs of ischemic stroke alone in the United States is projected 
to exceed $2.2 trillion[4].  The most effective way of alleviating 
the burden of stroke is primary prevention.  Hence, high-risk 
or stroke-prone individuals should aim to reduce modifiable 
risk factors of stroke, which are well documented in a guide-
line from the American Heart Association[2].

A stroke can be classified as either ischemic or hemorrhagic 
stroke.  Ischemic stroke arises from an occlusion of a major 
cerebral artery (commonly the middle cerebral artery) by 
thrombosis or embolism, whereas hemorrhagic stroke arises 

from a rupturing of a blood vessel.  The ischemic stroke is 
about 10-times more frequent than hemorrhagic stroke in 
Western countries[5].  

Although compromised blood flow during ischemic stroke 
has detrimental effects on the entire neurovascular unit, 
neurons are particularly vulnerable to injury and even death 
due to their high metabolic demand and electrical excitabil-
ity.  With the use of quantitative neurostereology and stroke 
neuroimaging, Saver et al[6] estimated that a typical untreated 
large vessel ischemic stroke will result in losses of 120 million 
neurons, 830 billion synapses, and 714 km of myelinated fibers 
in each hour.  These abrupt neuronal losses that occur during 
1 h of untreated ischemia normally take 3.6 years to occur in a 
healthy aging brain.  Such estimates highlight the importance 
of urgent stroke care once ischemia begins.

Over the past decades, much attention has been given to 
developing effective pharmacological treatments that can be 
administered immediately after acute ischemic insults to mini-
mize cerebral damage.  Contrary to initial expectations and 
the early promising results gained from animal stroke models, 
an overwhelming number of attempts to treat ischemia phar-
macologically has failed to translate into clinical treatments.  
The only drug that is currently approved in most countries 
for clinical use is a recombinant tissue plasminogen activa-
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tor (rt-PA, alteplase), which relieves occlusion by dissolving 
clots[7, 8].  Although it has proven to be clinically effective, the 
usage is limited by several reasons that will be explained in 
the next section.  Therefore, there is still a pressing need to 
develop new effective treatments for stroke.  In this review, 
we will focus on the current situation with the acute pharma-
cological treatment of stroke.  Then, for the remaining part of 
the review, we will discuss the potential clinical benefits that 
could be gained by targeting the TRPM7 (Transient Receptor 
Potential Melastatin 7) channel, a recently discovered non-glu-
tamate mechanism shown to be involved in ischemic damage, 
during cerebral ischemia.  

Pharmacological approach
Traditionally, pharmacological agents for treating ischemic 
stroke have been broadly classified into two groups: throm-
bolytics and neuroprotectants[9–11].  Thrombolytics are com-
pounds that act to restore blood flow by dissolving blood clots, 
while neuroprotectants are compounds that are designed to 
interfere with the biochemical events in the ischemic cascade 
and thereby lessening neuronal damage.  

Thrombolytic agents
At present, recombinant tissue plasminogen activator (rt-PA, 
alteplase), the thrombolytic agent, is the only drug approved 
by Food and Drug Administration (FDA) for clinical use, and 
proven to be the only effective intervention available for early 
management of ischemic stroke[7, 8].  The original study done 
by the National Institute of Neurological Disorders and Stroke 
(NINDS)[12] reported that when rt-PA is given intravenously 
within the first 3 h after the onset of symptoms, there was 
an absolute increase in favourable outcome by 11%–13% at 3 
months as compared with placebo group.  

However, rt-PA is not without shortcomings.  Despite its 
proven efficacy, it is estimated that less than 2% patients 
receive rt-PA primarily due to inability to meet its short 3-h 
therapeutic window[13].  Although the initial 3-h therapeutic 
window has been expanded to 4.5 h[8, 14], the earliest possible 
administration is still highly recommended to maximize the 
benefit, while minimizing adverse complications.  Often, a 
poor understanding of stroke symptoms by stroke victims 
and/or their family members delay the time of hospital admis-
sion after onset[15].  Upon hospital admission, administration of 
rt-PA is further delayed when a computed tomography scan 
is done to exclude patients with a brain hemorrhage or major 
infarction.  This step inevitably limits more eligible patients 
from receiving the treatment.  Rt-PA administration in patients 
with acute ischemic stroke is also more frequently associated 
with symptomatic intracranial hemorrhage though it is still 
10 times more likely to benefit than to harm eligible patients 
with acute ischemic stroke[16].  Unlike its beneficial effect in 
the intravascular space by acting as a thrombolytic enzyme, 
emerging evidence also suggests that rt-PA in the extravas-
cular space lead to the development of edema and excitotoxic 
cell death.  Both beneficial and deleterious effects of rt-PA are 
thoroughly reviewed by Yepes et al[11].

Neuroprotectants
Aside from thrombolytics that aid reperfusion of blood flow 
in an ischemic area, researchers have been seeking ways to 
screen and/or develop neuroprotectants that protect neurons 
by interfering with ischemic cascades triggered by acute isch-
emic episodes.  With expanding knowledge of the molecular 
pathways leading to ischemic neuronal damage, more than 
1000 experimental drugs have been evaluated for the neu-
roprotective effects over the years, but all failed to translate 
bench findings to the patient bed[17].  Until recently, finding a 
way to disrupt the glutamatergic mechanism has been the key 
aim in neuroprotective research.  Although the contribution 
of excitotoxic-cascade in ischemic injuries is well established 
and unquestionable, the repeated failure of clinical trials sug-
gest that solely targeting excitotoxic cascade is not sufficient.  
Increasingly more attention has been given to finding other 
novel processes that may either work independently or jointly 
with glutamate pathways.  Some of the channels involved 
in the non-glutamate mechanisms include (Figure 1A): tran-
sient receptor potential (TRP) channels[18–22], acid-sensing ion 
channels[23–25], volume-regulated anion channels[26], hemichan-
nels[27–29], ATP-sensitive potassium channels[30–32], sodium-
calcium exchangers[33–35] and non-selective cation channels[36].

Glutamate receptors: traditional, most sought-out therapeutic 
target
The glutamate-mediated excitotoxic mechanism (Figure 1A) 
is the most extensively studied pathway in the context of 
ischemic neurodegeneration.  Consequently, developing neu-
roprotectants that may interfere with glutamatergic signal-
ing has been the focus of the early neuroprotection research.  
Following the early anoxic depolarization due to the failures 
of energy-dependent pumps, a massive release of glutamate 
in conjunction with the impairment (or reversal) of reuptake 
mechanisms result in accumulation of extracellular glutamate.  
This over-activates glutamate receptors, NMDAR (N-methyl-
D-aspartic acid receptor) and AMPAR (DL-a-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid receptor), and 
causes excessive Ca2+ overload, triggering Ca2+ mediated 
harmful activation of enzymes, free radical formation and 
eventual cell death[37, 38].  In order to interrupt this toxic Ca2+ 

influx, various glutamate receptor antagonists were tested in 
rodents but failed to demonstrate efficacy in clinical trials[10].  

One suggested explanation for repeated disappointing 
outcomes is that pathological glutamate release takes place 
too early in the ischemic cascade and antagonizing glutamate 
receptors in time may not be attainable in clinical settings.  
Most currently tested NMDAR antagonists have a very short 
therapeutic window following the onset of ischemia.  For 
example, MK-801, which is a non-competitive antagonist for 
NMDARs, offers a neuroprotective effect only when given 30 
min after the onset of ischemia[39], and dextrorphan, which is 
another noncompetitive NMDAR antagonist, also has a short 
therapeutic window of 2 h[40].  

Furthermore, contrary to the simple traditional view that 
only focused on the destructive effects of NMDARs upon 
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ischemic activation, it was recently revealed that depending 
on the subcellular pools, activation of NMDARs could either 
be beneficial or deleterious[41].  Even though NMDARs get 
trafficked to synapses continuously, a substantial proportion 
of them remain as extrasynaptic receptors.  Stimulation of 
synaptic NMDARs leads to well-tolerated Ca2+ influx that trig-
gers downstream cascades that makes neurons more resistant 
to ischemic insults.  Comparable stimulation of extrasynap-
tic NMDARs, on the other hand, initiates cell death path-
ways.  These opposing effects of synaptic and extrasynaptic 
NMDARs may explain the disappointing results of previous 

neuroprotectants that tend to antagonize all NMDARs, regard-
less of their subcellular localizations and respective down-
stream signaling cascades.  

Another major setback that led to discontinuation of clini-
cal trial for most glutamate antagonists, both competitive 
and noncompetitive, was a similar pattern of side effects that 
were presented in patients, regardless of the pharmacology of 
drugs[42].  These symptoms tended to be neurological in nature: 
changes in sensory perception, dysphoria, hypertension, dis-
orientation, heightened agitation, paranoia, hallucination, and 
even catatonia at higher doses.  

Hence, a new therapeutic approach targeting the glutamate 
excitotoxic pathway should aim to block only the NMDARs 
that are linked to neurotoxicity with minimal (or tolerable) 
side effects.  This goal could also be met by developing drugs 
that can disturb downstream targets of NMDARs[43–45], or 
drugs that target the non-glutamate mechanisms.  Block-
ing NMDARs may not have been sufficient in clinical situa-
tions because there seem to be other newly discovered non-
glutamate mechanisms that contribute to ischemic neuronal 
cell death during stroke (see review[46]).  Among many of these 
promising targets in ischemic neurodegeneration (Figure 1A), 
TRPM7 will be the focus of remaining parts.  

TRPM7: Newly discovered, promising therapeutic target 
TRPM7 is the seventh member in the melastatin subfamily of 
TRP channels[47].  It is a ubiquitously expressed Ca2+permeable 
non-selective cation channel that is permeable to monova-
lent and most divalent cations with the selectivity profile in 
a sequence of[48]: Zn2+≈Ni2+>>Ba2+>Co2+>Mg2+≥Mn2+≥Sr2+≥ 
Cd2+≥Ca2+.  TRPM7 is unique in that it possesses the atypical 
serine/threonine protein kinase domain at the C-terminus[49].  
Binding of Mg2+-nucleotides to this kinase domain is sug-
gested to be important for the tonic inhibition of constitutively 
active TRPM7[50].  Though this functional enzymatic domain 
is homologous to a family of alpha-kinases[49], there is a very 
limited understanding of its substrates and associated physi-
ological functions.  It has been proposed that TRPM7 kinase 
phosphorylates a conserved serine residue (Ser5) in N-termi-
nus of annexin 1[51].  This phosphorylation may modulate the 
activity of annexin 1 as this region is important for interacting 
with other proteins and membranes, but further investigation 
is required to determine the functional significance of phos-
phorylating annexin 1.  TRPM7 kinase also seems to phospho-
rylate myosin IIA, IIB, and IIC, which in turn affects actomyo-
sin contractility and cell adhesion[52, 53].  However, no study 
has shown the involvement of the kinase domain in neuronal 
injury during stroke.  Under physiological conditions, it has 
been repeatedly suggested that TRPM7 has a critical role in 
cell survival and proliferation[54–56].  Tight regulation of TRPM7 
expression seems to be the key as both deletion[54, 55] and over-
expression of the gene[57] lead to cell death.  Although TRPM7 
is constitutively active[48, 58], its activities seem to be modulated 
by various factors, including the ones that normally occur dur-
ing ischemic stroke.  For instance, TRPM7 activity is potenti-
ated by oxidative stress[59] and reductions in extracellular pH 

Figure 1.  (A) Schematic diagram of molecular pathways during ischemia 
including the traditional glutamate dependent mechanism and newly dis-
covered non-glutamate dependent mechanisms.  Glutamate dependent 
mechanism of cerebral ischemia is the most extensively studied mech-
anism and it is thought that energy failure due to ischemia leads to de-
polarization of presynaptic neurons, which leads to a massive release of 
glutamate.  Increased glutamate in the extracellular space hyper-activates 
glutamate receptors, which consequently leads to excitotoxic Ca2+ over-
load.  Recently, other non-glutamate dependent mechanisms that may 
contribute to the overall ionic imbalance have been discovered and these 
are: TRPM7, ASICs, VRACs, hemichannels, KATP, NCXs, and NSCCs.  These 
pathways may even interact with each other suggesting complex molecu-
lar cascades upon ischemic insults.  (B) Current working model of TRPM7 
activation during cerebral Ischemia.  Ischemic conditions are associated 
with decreases in extracellular pH (acidic) and concentrations of divalent 
ions (Ca2+ and Mg2+) and these changes may activate TRPM7 independ-
ent of other pathways.  The initial influx of Ca2+ via glutamate-dependent 
pathway stimulates productions of nitrogen oxide (NO) and superoxide (O2

–) 
and these combine to produce peroxynitrite (ONOO–).  These reactive oxy-
gen species and reactive nitrogen species (ROS and RNS) further promote 
sustained activation of TRPM7, which consequently causes a prolonged 
build up of intracellular Ca2+ leading to ischemic damages.  
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(acidic)[60, 61], extracellular concentrations of Ca2+ and Mg2+.  In 
line with these properties, several lines of evidence convinc-
ingly suggest that activation of TRPM7 during ischemic condi-
tion is a glutamate excitotoxicity-independent pathway that 
significantly contributes to the pathological Ca2+ overload.  
The first evidence of the role of TRPM7 channels in cerebral 
ischemia came from an in vitro study using an oxygen-glucose 
deprivation (OGD) model in cultured primary cortical neu-
rons[22].  Compared to the control, neurons that were trans-
fected with siRNA targeting TRPM7 showed inhibition of its 
characteristic outward rectifying current, and decreases in ROS 
production, radiolabeled Ca2+ influx, and cell death.  More 
interestingly, these neuroprotective effects observed with 
TRPM7 knockdown remained for a longer period of time than 
pharmacologically antagonizing the widely accepted contribu-
tors (eg glutamate NMDA and AMPA receptor and L-type 
calcium channels) of excitotoxicity, suggesting that TRPM7 
has an independent role in OGD-mediated cell death and tar-
geting TRPM7 may have a longer treatment window.  More 
recently, in vivo data further confirmed the role of TRPM7 
in mediating ischemic neuronal cell death[21].  When TRPM7 
channels in hippocampal CA1 neurons of adult rat brains 
were suppressed by injecting viral vectors containing a small 
hairpin RNA (shRNA) sequence targeting TRPM7, neurons 
showed no signs of adverse effects on cell survival, neuronal 
and dendritic morphology, or synaptic plasticity.  When these 
rats were subjected to 15 min of global ischemia, TRPM7 sup-
pression rendered neurons more resilient to neuronal death, 
preserved normal morphological integrity and enhanced 
functional outcomes, which were exemplified by behavioural 
tests such as fear-associated and spatial-navigation memory 
tasks.  Such findings confirm the pathological roles of TRPM7 
in ischemic neuronal damages, and suggest it as a promising 
therapeutic target that could be better tolerated when acutely 
blocked and offer a different therapeutic window than target-
ing the traditional NMDAR-mediated glutamatergic pathway.  

According to the current working model of TRPM7 activa-
tion during cerebral ischemia (Figure 1B), conditions associ-
ated with cerebral ischemia, such as reduction in extracellular 
Ca2+ and Mg2+ concentrations and decrease in pH, activate 
TRPM7.  The initial rise in intracellular Ca2+ through NMDARs 
stimulates formation of reactive oxygen and nitrogen species 
(ROS and RNS), and these products feedback to TRPM7 and 
further activates TRPM7.  The latter activation mechanism 
with ROS and RNS makes the role of TRPM7 more substantial 
and clinically relevant since it creates self-sustaining positive 
feedback loop.  Consequently, even with glutamatergic chan-
nel antagonism, the intracellular Ca2+ accumulation during 
ischemia may be prolonged via TRPM7.  

Developing potential TRPM7 blocker
Although more thorough investigations on molecular mecha-
nisms of TRPM7 in the context of ischemic stroke should be 
done before validating it as a therapeutic target, one of the 
current issues with TRPM7 research is not having a selective 
pharmacological inhibitor[47].  Currently, some non-selective 

inhibitors are used to assist the understanding of its role in 
physiological and pathological conditions.  These include: tri-
valent ions, such as Gd3+ ((IC50 ~1.4–2.5 μmol/L) and La3 (IC50 
~17 μmol/L)[22, 62], 2-aminoethoxydiphenyl borate (2-APB) 
(IC50 ~50 μmol/L)[63], NDGA (nordihydroguaiaretic acid, IC50 
~6.3 μmol/L)[64], AA861 (IC50 ~6.0 μmol/L)[64], MK886 (IC50 
~8.6 μmol/L)[64] and carvacrol (IC50 ~307 μmol/L)[65].  Among 
these non-selective TRPM7 blockers, a group of 5-lipoxyge-
nase inhibitors (5-LOX), NDGA, AA861, and MK886, showed 
potent effects on blocking TRPM7 whole-cell current in 
TRPM7 overexpressing HEK293 cells without affecting the 
TRPM7 protein expression[64].  These blockers also efficiently 
reduced the characteristic cell rounding that normally occurs 
with overexpressing TRPM7 in HEK293 providing another 
line of evidence that these blockers have an inhibitory effect 
on TRPM7.  In contrast, other 5-LOX inhibitors, 5,6-dehy-
droarachidonic acid (5 μmol/L) and zileuton (50 μmol/L) 
did not affect the channel activity and was unable to prevent 
TRPM7-mediated cell rounding, suggesting that these inhibi-
tory effects of NDGA, AA861, and MK886 on TRPM7 are 
independent of their actions on 5-lipoxygenase.  This indepen-
dency was further confirmed when addition of 5-lipoxygenase 
products, leukotriene B4 and leukotriene D4, did not stimulate 
channel activities of TRPM7.  Carvacrol, a predominant part 
of the essential oils found in herbs, suppressed constitutively 
active TRPM7 current in a concentration-dependent manner 
only in TRPM7-transfected HEK293 cells and not in mock 
transfect HEK293 cells.  Furthermore, the action of carvacrol 
was also shown to be sufficient to block TRPM7-dependent 
transmitter release in CA3-CA1 hippocampal neurons over-
expressing TRPM7 channels, which is a functional role of 
TRPM7 that has previously been observed in cholinergic sym-
pathetic neurons[66].  In the same study[65], drosophila TRPL, 
which belongs to the TRPC subfamily, was also inhibited by 
carvacrol.  Other than inhibiting TRPM7 and TRPC, carvacrol 
has shown to activate thermoTRPs, TRPV3, and TRPA1 in 
earlier study[67].  At present, the mechanisms of TRPM7 modu-
lation by these non-specific blockers are not clear.  Although 
these are currently the best pharmacological tools available for 
studying TRPM7 functions, especially useful for the biophysi-
cal characterizations, finding and developing a specific phar-
macological blocker would be the first priority in the road of 
targeting TRPM7 as a novel therapeutic approach for stroke.  

Noticing the pressing needs for discovering selective phar-
macological blockers, Castillo et al[68] recently developed and 
optimized a Fura-2 based high-throughput screening (HTS) 
assay that can be used to narrow down the TRPM7 inhibitors.  
This bioassay utilizes HEK293 cells that have a tetracycline-
inducible TRPM7 expression system.  Compared to non-
induced cells, induced TRPM7-HEK293 cells exhibit TRPM7-
mediated Mn2+ entry, which can be monitored by measuring 
the fluorescent quench of Fura-2 by Mn2+.  Hence, using this 
bioassay, potential TRPM7 blockers would block TRPM7-
mediated Mn2+ entry and subsequently increase Fura-2 fluo-
rescence.  Instead of monitoring TRPM7-mediated Ca2+ entry, 
quenching of Fura-2 with the entry of Mn2+ was measured for 
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the following reasons: (1) Mn2+ provides the largest quench of 
Fura-2 in TRPM7 overexpressing HEK293 cells; (2) TRPM7 is 
more permeable to Mn2+ than other competing channels, such 
as calcium-release activated calcium (CRAC) channels; and 
(3) the assay can be done in physiological levels of Ca2+ and 
Mg2+, unlike measuring Ca2+ influx, which normally requires 
Ca2+-deficient assay conditions for the optimal measurement.  
The assay conditions were carefully evaluated to achieve the 
most optimal, high reproducible 96-well plate HTS assay.  
For instance, when the optimized bioassay was used for two 
known non-selective TRPM7 inhibitors, LaCl3 and 2-APB, the 
potencies were comparable to the previous published data 
under the following conditions: (a) seeding cell density of 
60 000 cells/well, (b) Fura-2-AM (dye) loading concentration 
of 2 µmol/L, (c) Fura-2-AM loading time of 60 min, (d) Mn2+ 
(Fura-2 quenching agent) concentration of 10 mmol/L, (e) 
MET (vehicle solvent) concentration of 1%.  So far, no study 
using this HTS bioassay to screen potential TRPM7 channel 
inhibitors has been published.  Along with the known non-
selective inhibitors, newly screened candidates may even help 
us understand molecular and/or structural characteristics to 
design specific inhibitors de novo[69].  

Once potential blockers are carefully screened/designed, 
preclinical experiments should be designed to follow rec-
ommendations for preclinical stroke drug development 
established by the Stroke Academic Industry Roundtable 
(STAIR)[70, 71].  In response to striking discrepancy of the results 
between animal stroke models and human clinical trials, the 
STAIR group gathered in the late 1990s and published a set of 
criteria that should be followed before advancing candidates 
into clinical trials.  Although meeting these criteria does not 
guarantee clinical success, close adherence to these guidelines 
will help us reduce the likelihood of failure and improve the 
chance for successful clinical trials.

Conclusions
Contrary to initial expectations formed based on the early ani-
mal stroke models, solely blocking glutamate receptors seems 
to be insufficient to preserve neurons during ischemic stroke.  
Considerable knowledge is gained about the non-glutamate 
dependent mechanisms of ischemic neuronal death and the 
idea of targeting these novel pathways offers a glimpse of 
hope in rather disappointing neuroprotection research.  With 
in vitro and in vivo validation of the pathological effects of 
TRPM7 in cerebral ischemia, TRPM7 seems to be a promising 
target for the future generation of neuroprotective approach.  
Although there is no selective antagonist available for TRPM7, 
it may be possible to find or design a selective TRPM7 inhibi-
tor with a thorough screening for potential compounds.  Once 
found, extensive preclinical studies that fully adhere to rec-
ommendations from STAIR committee should be conducted 
before moving towards clinical trials.  
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