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Introduction
Calcium (Ca2+) entry via voltage-gated calcium channels 
(VGCCs), conveys the electric signals to intracellular trans-
duction cascades in a wide variety of cells including neurons, 
muscle cells and endocrine cells[1].  Ca2+ dependent-signalling 
cascades are largely mediated by Ca2+ binding proteins[2, 3], and 
are essential for multiple cellular and subcellular processes in 
physiological conditions.  Perturbations of VGCCs functions 
can cause abnormity of cellular events, leading to pathological 
consequences.  Ca2+ binding proteins mediate Ca2+-dependent 
signal transduction pathways and regulate Ca2+ influx via the 
VGCCs in Ca2+-dependent feedback mechanisms.  

VGCCs are classified into L-, N-, P/Q-, R-, and T-types, 
based on their distinct electrophysiological and pharmaco-
logical properties[4, 5].  VGCCs are heteromultimeric protein 
complexes composed of a pore forming α1 and four distinct 
auxiliary subunits: α2, δ, β, and γ subunits[4–7].  Mammalian α1 
subunits are encoded by at least 10 distinct genes[6, 7].  The high 
voltage-activated VGCCs include CaV1 and CaV2 subfamilies.  
The CaV1 subfamily (CaV1.1 to CaV1.4) conducts L-type Ca2+ 
current and includes the channels containing α1S, α1C, α1D, and 
α1F subunits.  The CaV2 subfamily (CaV2.1 to CaV2.3) conducts 
P/Q-type, N-type, and R-type Ca2+ currents, through the chan-

nels containing α1A, α1B, and α1E subunits, respectively.  The 
CaV3 subfamily (CaV3.1 to CaV3.3) conducts low voltage-acti-
vated T-type Ca2+ current mediated by the channels containing 
α1G, α1H, and α1I subunits, respectively.  The cell- and tissue-
specific expression of these subunits allows for a vast variety 
of the channel subtypes exhibiting distinct functions.  

Ca2+-binding proteins containing EF-hand Ca2+ binding 
motifs regulate mostly high voltage-activated VGCCs[8–12].  The 
EF-hand motif is a conserved Ca2+-binding structure, spanning 
a region of 30–35 amino acids containing a 12-residue Ca2+ 
binding loop flanked by the N- and C-terminal α-helix regions 
which are differentially exposed in the presence of Ca2+ [3, 13, 14].  
Each EF-hand protein has distinct Ca2+ binding affinity and 
cellular localization.  The EF-hand Ca2+-binding protein super-
families[2, 3, 15], such as calmodulin (CaM), calcineurin, calcium 
binding proteins (CaBP), and neuronal Ca2+ sensors (NCSs), 
contains 2 to 4 functioning EF-hand Ca2+ binding domains.  
The EF-hand Ca2+-binding proteins may achieve their cellular 
effects through Ca2+-dependent or Ca2+-independent signal-
ling mechanisms[16, 17] (Figure 1).  Many EF-hand Ca2+-binding 
proteins alter Ca2+ kinetics directly through regulation of 
VGCC properties[8–12].  With the availability of human genetic 
databases and advanced molecular technologies, growing 
evidences suggest that dysfunctions in Ca2+-binding protein 
mediated VGCC regulation may be one of the mechanisms 
leading to human diseases.  
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Calmodulin mediated P/Q-type regulation in familial 
hemiplegic migraine type 1
The best studied Ca2+ binding protein that regulates 
VGCCs is CaM[18–20].  CaM contains 4 functional EF-hand 
motifs[21, 22], and regulates VGCCs properties in an enzyme-
inhibitor like fashion[23].  CaM binds to various high-voltage 
activated VGCCs and causes the Ca2+-dependent inactivation 
(CDI)[8, 9, 24, 25] or Ca2+-dependent facilitation (CDF)[10, 12, 26] 
(Figure 1).  In brief, CaM has a higher binding affinity to Ca2+ 
in the N-lobe than the C-lobe EF-hand motifs.  This allows 
for antagonistic regulation of the Ca2+ channel through 
differential Ca2+ binding to CaM[27].  Specifically, CDI of CaV1.2 
channels[8, 9, 24] and CDF of CaV2.1 channels depend on Ca2+ 
binding to the C-lobe of CaM[10, 27].  Conversely, Ca2+ binding 
to the N-lobe of CaM induces CDI of CaV2.1[10, 12, 28], CaV2.2[10, 12], 
and Cav2.3[10] type channels.  The differential regulatory effects 
of CaM on VGCCs are likely due to different conformational 
changes in the structure of CaM following Ca2+ binding at 
alternate sites.  CaM-mediated regulation of the presynaptic 
VGCCs results in a dual feedback regulation.  The cellular 
and molecular mechanisms underlying CaM mediated VGCC 
regulation have been extensively reviewed previously[18–20].

FHM is characterized by recurrent migraines and includes 
visual disturbance, sensory loss, hemiparesis and ataxia.  
FHM type 1 is an autosomal dominant type of migraine 
with aura and hemiparesis, which is linked to the VGCC 
α1-subunit gene, CACNL1A4 encoding CaV2.1[29–31].  All five 
FHM1 mutations change the biophysical properties of CaV2.1 
channels, leading to both gain and loss of P/Q-type channel 

func tion[32, 33].  Specifically, single channel recording showed 
that the mutations enhanced the open probability of the CaV2.1 
channels and shifted the activation gating of the channel to 
more negative voltages, allowing increased Ca2+ influx at 
more negative membrane potentials in cerebellar neurons[33, 34].  
Common treatments with Ca2+ channel blockers, such as 
verapamil, is effective in some FHM1 patients, carrying the 
CACNA1A mutations due to decreased open probability of 
P/Q-type CaV2.1 channels and reduced Ca2+ influx[35].  

Consistent with reports of increased open-channel 
probability[32, 33], a recent study showed that FHM-1 missense 
mutants of the C-terminus in CaV2.1 subunit, R192Q and 
S218L, permitted a larger Ca2+ influx during action potentials 
than the wildtype channels in the cerebellar neurons[36].  Inter-
estingly, these FHM-1 gain-of-function missense mutations 
characteristically occlude CDF of human CaV2.1 channels in 
both recombinant preparations and the cerebellar Purkinje 
cells.  The altered CDF of CaV2.1 channels coincided with a 
decrease in short-term synaptic facilitation at the parallel fiber-
to-purkinje cell synapse in the cerebellum in FHM-1 mutant 
mice[36].  The compelling evidence suggests that FHM-1 gain-
of-function missense mutations of CaV2.1 channels favour 
a constitutively facilitated state that prevents further Ca2+-
dependent CaM-mediated channel facilitation.  It is hypoth-
esized that disruption of CaV2.1 CDF may cause the cerebellar 
ataxia-associated FHM-1 due to an imbalance between excit-
atory and inhibitory inputs to the cerebellar Purkinje cells.  
This disruption suppresses the intrinsic pacemaker activity 
of these cells, thus leading to motor deficits[36].  The knock-in 

Figure 1.  Ca2+ binding proteins regulate 
voltage-gated Ca2+ channels (VGCCs) via Ca2+-
dependent inactivation (CDI), Ca2+-dependent 
facilitation (CDF) and Ca2+-independent regula-
tion (CIR) of the channels, hence contributing 
to Ca2+ homeostasis.  Disrupting Ca2+-binding 
protein-mediated VGCC regulation results 
in pathophysiological processes leading to 
human diseases.  CDI: Ca2+ ions entering 
the cell through VGCCs bind to Ca2+ binding 
proteins to (a) inactivate the channel via 
negative feedback mechanism, reducing 
further Ca2+ entry through the channel and 
(b) lead to downstream mechanisms and 
pathways implicated in human diseases.  CDF: 
Ca2+ ions entering the cell through VGCCs bind 
to Ca2+ binding proteins to (c) facilitate the 
channel via a positive feedback mechanism, 
thus enhancing further Ca2+ entry through 
the channel and (d) lead to downstream 
mechanisms and pathways implicated in 
human diseases.  CIR: Ca2+ binding proteins, 
in  absence of Ca2+ binding (e) regulate VGCCs 
and (f) lead to downstream mechanisms and 
pathways implicated in human diseases.
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mouse model carrying FHM-1 R192Q mutation exhibited an 
enhanced velocity of cortical spreading depression in vivo[34], 
and it is thus important to demonstrate whether the cortical 
hyper-excitability is also associated with perturbation of CDF 
of the mutant CaV2.1 in future studies.  

CaBPs mediated L-type channel inactivation
CaBPs consist of 8 members (CaBP 1–8) and are considered 
similar to CaM in that they bear four recognizable, but not 
necessarily functional EF-hands[37].  CaBP1, also known as 
caldendrin (a splice variant of CaBP1)[38], has ~50% sequence 
homology to CaM and is widely expressed in the brain, includ-
ing the cerebral cortex, hippocampus, in the cone bipolar 
and amacrine cells of the retina[39], and in the inner hair cells.  
CaBP1 interacts with CaV2.1 P/Q -type channels[40, 41], and 
L-type channels[42].  CaBP1 accelerates inactivation kinetics, 
prevents CaM-induced CaV2.1 channel facilitation, and shifts 
the voltage-dependent activation of CaV2.1 channels[40].  These 
effects of CaBP1 are mediated by binding to the CaM-binding 
IQ-domain in the α1A subunit of CaV2.1 channels.  CaBP1 bind-
ing to the CaM binding domain (CBD) of α1A causes a signifi-
cantly faster inactivation of CaV2.1 channel than CaM.  

CaBPs regulate L-type channels in a Ca2+-independent 
manner[40, 42-44] (Figure 1), in contrast to CaM.  CaBP1 and 
CaBP4 act as negative regulators to compete with CaM 
binding to the C-terminal IQ motif in the CaV1.2 and CaV1.3 
subunit[42, 44–46].  CaBP1 also interacts with the N-terminal 
domain of CaV1.2 to prolong the channel activation, inde-
pendent of CaM effect[42, 44].  Some CaBPs, such as CaBP1 and 
CaBP4, have the capacity to negatively regulate influx of Ca2+ 
through a direct inhibitory interaction with plasma member 
P/Q-type channels in cochlear cells[45–47].  In the inner ear, at 
least 4 CaBPs have been found in hair cells, including CaBP1, 
CaBP2, CaBP4 and CaBP5.  Sustained activation of presynaptic 
CaV1.3 channels triggers graded changes in neurotransmit-
ter release which is required for sound detection[46].  CaBP1 
binding to CaV1.3 channels on CaM interaction sites, induced 
a stronger, than CaBP4, inhibition of Ca2+-dependent channel 
inactivation[46].  Closely co-localization between CaBP1 and 
CaV1.3 at the presynaptic ribbon synapse of adult inner hair 
cells further suggests CaBP1-mediated inhibitory effect on 
Ca2+-dependent inactivation of CaV1.3 channel is critical for 
auditory transmission[46].  

CaBP4[48] and CaBP5[49] regulates L-type channels in pho-
toreceptors.  CaBP4 is located at the photoreceptor synaptic 
terminals in the retina, and is important for developing and 
sustaining synaptic transmission to bipolar cells[43].  CaBP4 
regulates CaV1.4 channel and shifts the activation of CaV1.4 to 
more hyperpolarized potentials through a direct interaction 
with the C-terminal domain of the CaV1.4 channel protein.  
CaBP4-/- mice exhibited visual deficits similar to that caused 
by dysfunction of CaV1.4 channels[43, 50, 51].  CaBP4, like CaBP1, 
is found to interact with CaM-binding IQ domain in CaV1.3 to 
dampen the inactivation of the channel[40, 46].  CaBP4 has the 
capacity to eliminate even the baseline Ca2+ dependent inacti-
vation of CaV1.3[45].  Phosphorylation of S37 of CaBP4 by pro-

tein kinase Cζ in retina regulates CaV1.3, likely by facilitating 
the low-affinity interaction which exerts inhibitory regulation 
of CaV1.3 channel inactivation[48].  Phosphorylation of CaBP4 is 
critical for tuning presynaptic Ca2+ signals required for light-
induced neurotransmitter release.  Incomplete congenital sta-
tionary night blindness (CSNB2) is linked to mutations in both 
CaBP4[52, 53] and CaV1.4[54-56].  Interrelation between CaBP4 and 
CaV1.4 in CSNB2 remains to be determined.  

Bestrophin-1 mediated CaV1.3 modulation in macular 
degeneration
Bestrophins are a family of calcium-activated chloride 
channels[57] encoded with VMD2 (Best vitelliform macular dys-
trophy-2) gene on chromosome 11q13[58].  Human bestrophin-1 
(hBest1) is a founding member of the family and contains one 
EF-hand (EF1, 350–390) at the C-terminal and a regulatory 
domain adjacent to EF1 that is required for Ca2+ activation of 
the channel[59].  EF1 has a slightly higher Ca2+-binding affinity 
than the third EF hand of CaM and lower affinity than the sec-
ond EF hand of troponin C.  Mutations in hBest1 are involved 
in ~100 human diseases[58].  

Retinal cell death, induced by glaucoma, diabetic reinopathy 
and age-related macular degeneration are primarily caused by 
a form of metabolic stress which results from a lack of nutrient 
supply.  This process is initiated primarily through the acti-
vation of NMDA receptors with a subsequent influx of Ca2+ 
and Na+ ions into the cells[60].  The close relationship between 
ataxia and macular degeneration suggests that these disorders 
may share a common molecular network[61].  Oxidative stress, 
an important cause of retinal pigmental eipithelium death and 
subsequent age-related macular degeneration, induces calcium 
overload and leads to cell injury[62].  Oxidative stress induced 
elevation of Ca2+ level is sensitive to VGCC blocker[62], suggest-
ing the role of VGCCs in retinal cell death.

The hBest1 is localized at the basolateral plasma membrane 
of the retinal pigment epithelium cells[63].  Mutations of the 
hBest1 gene are associated with macular degeneration[58].  
Bestrophin-1 is co-localized with CaV1.3 channels and the aux-
iliary β4-subunit in the cell membrane in the retinal pigment 
epithelium, and inhibits CaV1.3 channels via a direct interac-
tion with the CaVβ4 subunit[64, 65].  Mutations of hBest1 on P330 
and P334 prevented Best1-mediated inhibition of CaV1.3[64, 65].  
These findings provide new insights into the mechanisms of 
the retinal degeneration involved in hBest1-mediated CaV1.3 
channel regulation.

Calcineurin regulation of Ca2+ channels in human 
diseases
Calcineurin is a calcium-dependent phosphatase activated 
by Ca2+/CaM[66].  It is a heterodimer and consisted of a 59 
kDa catalytic subunit and a 19 kDa Ca2+-binding regulatory 
subunit.  Calcineurin regulatory subunit is encoded with four 
putative EF-hand Ca2+-binding motifs[33].  The high-affinity 
Ca2+ binding site has a Kd of ~24 nmol/L to Ca2+ whereas three 
low-affinity binding sites have a Kd of 15 µmol/L to Ca2+[33].  
Calcineurin regulates L-type channels in both myocytes[67] and 
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neurons[68, 69].  

Calcineurin regulation of CaV1.2 L-type channel in cardiac hyper-
trophy
Ca2+ signalling pathways play a critical role in the develop-
ment of cardiac hypertrophy, one of the predisposing factors 
related to hypertension and development of heart failure.  
The downstream effector of calcineurin, NFAT signalling 
transduction pathway, plays a critical role in pathological 
cardiac hypertrophy response[70, 71].  L-type CaV1.2 channels 
play an important role in blood pressure and development of 
myogenic tone.  In cardiac muscles, L-type currents through 
CaV1.2 channels stimulate the excitation-contraction cou-
pling.  The C-terminus of this channel serves an autoinhibi-
tory role to mediate the fight-or-flight response.  Inactivation 
of CaV1.2 was found to reduce mean arterial blood pressure 
in mice and there was a severe dampening of response to 
penylephrine and angiotensin II, due to a significant por-
tion of penylephrine-induced resistance being dependent on 
calcium influx through the CaV1.2 channel[72].  The trunca-
tion in the distal C-terminus of the α1 subunit of CaV1.2 leads 
to 10–15 fold increase in channel activity in mammalian cell 
lines[73]. The increased force of contraction during the fight-
or-flight response is thought to be mediated by regulation of 
CaV1.2 channels via activation of secondary systems which act 
to phosphorylate the channel[74].  Deletion of this C-terminus 
causes a reduction in Ca2+ currents, as a result of lower surface 
expression of the channel, and leads to development of cardiac 
hypertrophy and premature death after E15 during embryonic 
development in mice[25].  

Recently, an EF-hand containing Ca2+ and integrin-binding 
protein-1 (CIB1) was found to specifically enhance cardiac 
pathological hypertrophy, without a role in altering physio-
logical hypertrophy, through a regulation of calcineurin inter-
action with the sarcolemma[75].  One mechanism of calcineurin 
function is thought to be via L-type channels, which mediates 
Ca2+ influx into cardiomyocytes.  Transgenic mice express-
ing an activated form of calcineurin were found to exhibit 
an enhanced ICa density compared with the non-transgenic 
littermates and to have a faster kinetics of ICa inactivation[67].  
Calcineurin can directly bind to both N- and C-termini (a.a.  
1943–1971) of CaV1.2 channels, and dephosphorylate the chan-
nels, which in turn increase the channel conductance[76].  Mag-
nesium ions (Mg2+) bind to the C-terminal EF-hand to inhibit 
CaV1.2 channels, thereby reducing Ca2+ influx to maintain the 
intracellular Ca2+ at low levels[77].  Supplement of Mg2+ dur-
ing global ischemia resulted in myocardial protection and 
improved functional recovery[78].  These evidences suggest that 
calcineurin serves as a key modulator of Ca2+-dependent path-
ways via regulation of CaV1.2 activities and in turn mediates 
the pathological electrical remodelling in cardiac hypertrophy.

Calcineurin regulation of L-type channels in neurodegenerative 
diseases
Calcineurin selectively enhances L-type channel activity 
in hippocampal neurons[68, 69].  Application of FK506, an 

inhibitor of calcineurin, reduces high-voltage-activated 
Ca2+ current via L-type, but not P/Q- or N-type channels[68].  
PKA and calcineurin bind to A-kinase anchoring protein 
79/150 (AKAP79/150), which interact with endogenous and 
recombinant CaV1.2 channels in hippocampal neurons and 
HEK293 cells, respectively[66].  Disruption of AKAP79/150-
calcineurin anchoring increases Ca2+ current amplitude[66].  In 
contrast to CaM, calcineurin does not affect Ca2+-dependent 
inactivation of the neuronal L- or N-type channels; this 
conclusion is based on the findings that FK506 has no effect on 
the time-course of Ca2+ current inactivation of L-type channel 
in rat pituitary tumor cell line (GH3) and N-type channels in 
chicken dorsal root ganglion neurons, while Ca2+-dependent 
inactivation of the channels is prevented by Ca2+ chelator 
EGTA[79].  Calcineurin promotes dephosphorylation of 3’, 
5’-cyclic AMP response element binding protein (CREB)[29].  
Overexpression of calcineurin prevents[30] and inhibition of 
calcineurin enhances long-term memory formation[31, 80].  The 
activity of calcineurin increases in the hippocampus during 
aging, and L-type channel block reduces calcineurin activity[81].  
Cleavage of calcineurin by Ca2+-sensitive protease calpain[82] 
enhances its phosphatase activity, which coincides with an 
increase in the number of neurofibrillary tangles in human 
brains of patients with Alzheimer’s disease[83].  Interestingly, 
amyloid-β protein also increases the activity of calcineurin, 
leading to dephosphorylation of the proapototic protein BAD 
(Bcl-2/Bcl-XL-antagonist) causing cell death[84] and subsequent 
activation of apoptotic pathways in Alzheimer’s disease[85].  
Calcineurin activity is implicated in age-related Ca2+ dysre gu-
la tion in neurodegenerative disorders[69].  However, the role 
of EF-hand motifs in calcineurin-enhanced L-type channel 
activation, and the causal relation between calcineurin and 
VGCC regulation in degenerative disorders remain to be 
further investigated.  

Perspectives and future directions
Functional diversity within related Ca2+-binding proteins 
may enhance the specificity of Ca2+ signalling by VGCCs in 
different cellular contexts.  These channels undergo feedback 
mechanisms by Ca2+-dependent facilitation or inactivation.  
Such feedback is largely mediated by Ca2+ binding proteins.  
Increasing evidences demonstrate that the diverse and integra-
tive roles of the abundant calcium binding proteins in VGCC 
regulation and Ca2+ signalling may be attributed to human dis-
eases.  However, our understanding of the role of such regula-
tion in human diseases is rather limited, due to the complexity 
of the intracellular protein networks in which integrative func-
tions of Ca2+ binding proteins must alter continuously to fit to 
the dynamic changes of Ca2+ signalling.  

Many Ca2+ binding proteins have been found to regulate 
VGCCs, however, little is known about how such regulations 
are related to the pathophysiological processes.  For instance, 
neuronal Ca2+ sensor-1/frequenin-1 (NCS-1/frq1) containing 
three functional EF-hand Ca2+ binding motifs[15, 86–88] exhibits a 
10 fold higher affinity for Ca2+ than CaM[89].  NCS-1 is highly 
localized at the presynaptic terminal of the vertebrates[90–95] and 
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invertebrates[88, 96–98], and facilitates synaptic transmission.  It 
increases the P/Q-type Ca2+ current in the Calyx of Held of the 
giant presynaptic terminal[90], and regulates the presynaptic 
N-type channels in motoneurons[99] and growth cone VGCCs 
in Lymnaea neurons[100, 101].  Another example is visinin-like pro-
tein-2 (VILIP-2), a highly homologous subfamily of NCS pro-
teins and capable of undergoing Ca2+-myristoyl switch[102, 103].  
VILIP-2 slows inactivation[104] and enhances facilitation[105] of 
the presynaptic P/Q-type Ca2+ channels, by a direct interaction 
with the CBD of the C-terminus of CaV2.1.  However, whether 
and how NCS-1 or VILIP-2-mediated VGCC regulation con-
tributes to human diseases remain unclear.  Conversely, 
down-regulation of VILIP-1 has been reported in several types 
of human cancers[106, 107], and in heart failure/cardiac hypertro-
phy[108].  However, whether VILIP-1 effect is associated with 
VGCC regulation is unknown.  Thus, it is necessary to further 
investigate if there is interrelation between VGCC regulation 
by Ca2+ binding proteins and human diseases.

Dysregulation of Ca2+ homeostasis leads to pathophysio-
logical processes related to human diseases.  For instance, a 
disruption of basal and stimulus-dependent Ca2+ levels has 
been reported in brains of patients suffering from Alzheimer’s 
disease[109].  The level of Ca2+-sensitive protease calpain-1 in 
the prefrontal cortex is 3-fold higher in the postmorten brains 
of individuals with Alzheimer’s disease, than those with 
other neurodegenerative disorders, such as Huntington’s or 
Parkinson’s disease.  Calpain-1 activates Ca2+-sensitive phos-
phatase calcineurin by cleaving lysine501 at the C-terminal[83].  
The abnormally enhanced calpain and truncated calcineurin 
activities correlate with the level of secreted amyloid precur-
sor protein and progression of Alzheimer’s disease[110, 111].  
Thus, disruption of Ca2+ homeostasis in neuropathology of 
Alzheimer’s disease may be mediated by hyperactivity of 
calpain-1 and calcineurin.  Similarly, α-synuclein, a key pro-
tein in the pathophysiology of Parkinson’s disease[112, 113], binds 
to calmodulin in a Ca2+-dependent manner[114].  α-Synuclein-
calmodulin interaction accelerates fibrilization of synuclein, 
crucial for forming the core of Lewy bodies.  α-Synuclein 
also colocalizes with other Ca2+-binding proteins, including 
calbindin and parvalbumin[115], implicating the significance 
of Ca2+-dependent signalling in the development of Parkin-
son’s disease.  One implication of these findings is that a tight 
regulation of Ca2+ homeostasis by Ca2+/Ca2+-sensitive proteins 
serves as a compelling mechanism for pathophysiological pro-
cesses in neurodegenerative and/or cardiovascular disorders.  
Understanding such mechanisms allows us to identify poten-
tial drug targets for delaying or prevention of the onset of the 
related human diseases.  However, this line of research is still 
at its infancy, and deserves further attention.  With current 
advancement in genetic and epigenetic sequencing techniques 
and increased availability of the gene and protein databases 
of human diseases, exploring the role of Ca2+ binding proteins 
in VGCC regulation and their involvement in human diseases 
are becoming feasible in future studies.  
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