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Pathophysiology of pulmonary fibrosis
Pulmonary fibrosis is a disease characterized by the replace-
ment of the lung tissue with scar tissue, resulting in the per-
manent loss of the normal alveolar architecture.  The disease 
is usually progressive, and death is often the direct result of 
either respiratory insufficiency or right heart failure due to 
pulmonary hypertension.  Pulmonary fibrosis can be directly 
induced by a variety of insults to lung tissue including expo-
sure to drugs, organic or inorganic particles, bacterial or viral 
infection, or clinical irradiation for the treatment of cancer[1, 2].  
The condition may also occur idiopathically[1].  Treatments for 
pulmonary fibrosis consist of anti-inflammatory and immu-
nomodulatory agents, cytotoxic agents (eg, methotrexate, 
cyclophosphamide), antioxidants (eg, N-acetylcycteine), anti-
fibrotic agents (eg, pirfenidone, colchicine), interferon-gamma 
1β, and/or lung transplantation[3, 4].  The pulmonary fibrosis 
patient’s response to treatment often depends on the etiology 
of the disease.  However, currently available treatments are 
largely ineffective in halting the progression of the disease.

The progression of pulmonary fibrosis is believed to involve 
a failed or dysregulated injury response, which may be accom-
panied by inflammation[5].  An emerging view of lung remod-
eling suggests that the disease may develop as the result of 

repeated stimuli, with early cycles of injury to alveolar epi-
thelial and endothelial cells, followed by inflammation and 
attempted repair, ultimately leading to aberrant wound heal-
ing and fibrosis[2, 6].  

Cellular alterations in pulmonary fibrosis 
In pulmonary remodeling, the loss of the normal pulmonary 
architecture is characterized by: 1) the loss of alveolar epi-
thelial and endothelial cells; 2) the persistent proliferation of 
activated fibroblasts, or myofibroblasts; and 3) the extensive 
alteration of the extracellular matrix (Figure 1).  Two primary 
animal models have been developed for the study of experi-
mentally-induced pulmonary fibrosis: thoracic irradiation and 
the profibrotic chemotherapy drug bleomycin.  Both of these 
agents induce pulmonary fibrosis in humans with similar 
pathophysiology.  

Studies of lung fibrosis have demonstrated the presence of 
extensive and apparently progressive epithelial cell apoptosis, 
especially in regions adjacent to fibrotic foci[7–10].  Endothelial 
cell apoptosis has been less studied but has also been identi-
fied as a prominent event in fibrotic human lung tissue[9].  In 
rodent models of experimental lung fibrosis, extensive apop-
tosis occurs, similarly to that observed in human lung fibrosis 
patients[11, 12].  Rodent models have also demonstrated lung 
microvascular and pulmonary artery endothelial cell injury 
and apoptosis[11, 13, 14].
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Lung fibrosis patient samples have increased levels of trans-
forming growth factor β1 (TGF-β1) and angiotensin II (Ang 
II)[15–17] that induce apoptosis and/or growth arrest in epithe-
lial and endothelial cells[18].  Tumor necrosis factor-α (TNF-
α), a ligand for the death receptors, as well as death receptors 
themselves, are increased in the lung tissue of patients with 
IPF[19–21].  Data indicate many of the same factors identified in 
human lung fibrosis are also increased in animal models of 
the disease[22–29].  The imbalance of homeostatic factors created 
by increased production of pro-apoptotic factors is further 
exacerbated by a decrease in the production of factors that sus-
tain epithelial and endothelial cell survival, including hepa-
tocyte growth factor (HGF) and keratinocyte growth factor 
(KGF)[30–34].  The inhibition of cellular apoptosis by a caspase 
inhibitor or by blocking Ang II signaling significantly miti-
gated fibrotic remodeling in mice treated with bleomycin[35, 36].  
Specific inhibition of endothelial cell death was also demon-
strated to prevent TGF-β1-induced fibrosis in a rat model of 
lung fibrosis[14].  

Activated fibroblasts, or myofibroblasts, a central topic 
in pulmonary fibrosis research, are thought to be a primary 
causative cell type in the progression of the disease[37–39].  Lung 
tissue from IPF patients contain increased levels in specific fac-
tors that support fibroblasts and/or mesenchymal cell growth 
including TGF-β1, basic fibroblast growth factor (bFGF), plate-
let-derived growth factor (PDGF), TNFα, interleukins-1β and 
-8, and insulin-like growth factor[15–17, 21, 25, 40–44].  At the same 
time, IPF lung tissue has reduced levels of factors that sup-
press fibroblast growth, such as cyclooxygenase-2 (COX-2) and 
its downstream product prostaglandin E2 (PGE2)[45, 46].  Myofi-
broblasts, either from patient sample, or from animal models 
of pulmonary fibrosis, have pathophysiological characteristics 
consistent with their key role in affecting alterations associated 
with fibrotic remodeling[47].  1) They exhibit rapid proliferation 
and secrete autocrine factors including bFGF, PDGF, and TGF-

β1[48, 49].  2) They display significant resistance to apoptosis, 
including that mediated by Fas[50–52].  3) They are contractile 
and express α-smooth muscle actin, and these cells are highly 
motile[38].  And finally, 4) they significantly alter the extra-
cellular milieu of the lung by secreting extracellular matrix 
proteins, including collagen types I and III, and by producing 
reactive oxygen species that contribute to the oxidative state of 
the lung in fibrosis and to the cross-linking of the extracellular 
matrix[53–56].  Unlike normal fibroblasts that provide a support-
ive environment to the resident epithelial and endothelial tis-
sues of the lung, myofibroblasts create a toxic environment for 
other lung cells.  Myofibroblasts are a primary source of many 
pro-apoptotic factors that induce epithelial and endothelial 
cell death in lung fibrosis.  Data from in vitro experiments 
using myofibroblasts cultured from fibrotic tissue indicate that 
these cells induce growth arrest and apoptosis in primary lung 
epithelial and endothelial cells[35, 47].  

Multiple cellular origins of myofibroblasts have been 
identified in pulmonary fibrosis.  Originally, it was thought 
that resident lung fibroblasts provided the sole source for 
this pathological cell type.  Myofibroblasts can be derived 
from fibroblasts through the process of transdifferentiation, 
believed to be driven by sustained over-expression of TGF-β1 
in fibrotic tissue[4, 38, 57].  Myofibroblasts can also derive from 
alveolar type II pneumocytes through epithelial-mesenchymal 
transformation (EMT)[58–60]; this process, like transdifferentia-
tion, is also induced by TGF-β1[2].  A third potential source 
of myofibroblasts are the mesenchymal stem cells from adult 
bone marrow, which can be recruited to the injured lung[61–63].  
Circulating fibrocytes are increased in IPF patients compared 
to healthy control subjects[64, 65], and studies tracking bone mar-
row-derived fibroblasts suggest that fibrocytes may migrate 
to the lung and contribute to remodeling[61, 63, 66].  The inhibi-
tion of factors that induce myofibroblast transdifferentiation 
and EMT processes, such as TGF-β1 and Ang II, significantly 
attenuates the development of pulmonary fibrosis in ani-
mal models[17, 26, 36, 67–69].  Likewise, the inhibition of fibrocyte 
extravasation to the lungs, for instance by inhibiting CXCL12 
signaling, was shown to reduce collagen deposition and fibro-
sis in mouse models[2, 70].  

Hepatocyte growth factor in normal and fibrotic tissue 
repair
HGF is a paracrine factor produced by cells of mesenchymal 
origin (eg, fibroblasts and macrophages), while the HGF recep-
tor, Met, is expressed by epithelial and endothelial cells[71].  
HGF is a heterodimeric protein comprised of a 55–60 kDa α 
chain and a 32–34 kDa β chain linked by a single disulfide 
bond[71].  The Met receptor is a tyrosine kinase receptor with 
a single transmembrane spanning region and a conserved 
tyrosine kinase domain.  Met is translated as a single poly-
peptide chain which is proteolytically cleaved to form a ~145 
kDa β heavy chain and a ~35 kDa α light chain linked by a 
single disulfide bond[71].  The exclusion of Met expression 
from fibroblasts provides specificity for HGF-induced survival 
and proliferative activities on epithelial and endothelial cell 

Figure 1.  Schematic diagram depicting the development of lung fibrosis 
following irreparable damage to lung cells.  A number of pro-survival 
factors including HGF, KGF and Cox-2 normally promote survival of 
epithelial and endothelial cells, fibroblasts quiescence and normal 
regulation of extracellular matrix (ECM) which altogether results in 
homeostasis in the lung.  Injuries such as bleomycin, radiation, and pro-
fibrotic factors may cause epithelial and endothelial apoptosis as well as 
fibroblast activation and myofibroblast proliferation – events observed in 
the development of lung fibrosis.
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types.  Met contains a number of critical tyrosine residues 
that are phosphorylated in response to HGF binding (Figure 
2)[72].  A juxtamembrane tyrosine (Y1001) is involved in down-
regulation of Met following activation[72].  Two tyrosines in 
the kinase domain (Y1234 and Y1235) are required for kinase 
activity of the receptor[73].  Two other critical tyrosines (Y1349 
and Y1356) are found in the carboxy terminal domain of Met, 
in the “multifunctional docking region”[74].  These latter phos-
phorylation sites are required for the association with multiple 
adaptor proteins and signaling molecules[75].  

Signal transduction by HGF leads to a variety of biological 
responses including migration, proliferation and morphogene-
sis, especially branching tubulogenesis in specific cell types[71].  
HGF is required for normal embryogenesis and develop-
ment[76, 77], including for the lung[78].  However, in the adult a 
primary function of HGF is tissue repair[79].  HGF promotes 
normal tissue regeneration and prevents fibrotic remodeling 
in the lung, heart, kidney, and liver[80–84].  HGF is expressed 
locally in response to injury in a number of tissues, including 
the lung, kidney, and liver[82, 83, 85–88].  HGF is also produced in 
the lung in response to distal injuries, suggesting an endocrine 
function for tissue repair[89].  

The role of HGF in lung tissue repair has been well estab-
lished[82, 90].  Studies indicate that HGF is elevated in the lung 
following injury.  HGF mRNA levels are elevated in damaged 
lung tissue[82, 91], and HGF protein levels are increased in bron-
choalveolar fluid extracted from injured lungs[92].  The time 
course of HGF induction following lung injury correlates with 
proliferation of the alveolar epithelial cells[82, 93] and lung vas-
cular endothelial cells[94].  Administration of HGF neutralizing 
antibodies resulted in reduced DNA synthesis in alveolar 
epithelial cells after ischemia-reperfusion lung injury in rats[95].  

Although HGF is increased in response to tissue injury, an 
inverse correlation has been identified for HGF expression 
during the development and/or progression of fibrosis in 
several tissues including the lung[31, 96, 97].  Lung tissue from 
patients with pulmonary fibrosis has reduced expression of 
factors that sustain epithelial and endothelial cell growth and 
survival, including HGF[31].  Lung fibroblasts isolated from 
IPF patients have decreased HGF expression and activation 
relative to fibroblasts from control patients[30].  In cell culture 
and animal models, suppression of HGF synthesis occurs in 
response to treatment with the pro-fibrotic factors TGF-β and 
Ang II[98–101].

Studies in animal models have provided strong evidence 
that HGF-induced lung repair prevents the induction of 
fibrotic remodeling.  In vivo studies have shown that HGF 
potently mitigates the effects of acute and chronic lung inju-
ries caused by oxidative stress and inflammation.  Admin-
istration of HGF protein or adenoviral expression of HGF 
prevents fibrotic remodeling in several animal models of lung 
fibrosis[91, 102–104].  Transient in vivo expression of HGF, using 
non-viral plasmids, also prevents fibrotic lung remodeling.  
Using albumin-derived particles to transfect lung endothelial 
cells, in vivo transient transfection of HGF increased repair and 
prevented collagen deposition and remodeling in mice[105, 106].  
Because HGF is secreted, it was reasoned that “nondiseased-
organ-targeting gene transfer” could also be used to produce 
HGF protein, which would then reach the lung through the 
circulatory system[107].  Electrotransfer of an HGF-encoding 
plasmid into muscle tissue was also demonstrated to suppress 
bleomycin-induced fibrotic remodeling in mice[107].  Impor-
tantly, studies show that HGF has protective activity when 
given either simultaneously with or 7 d after administration of 
a pro-fibrotic treatment, suggesting that HGF is effective dur-
ing both the initiation phase and the progressive phase of the 
disease[102].  

Because human patients are usually diagnosed only during 
the progressive phase of pulmonary fibrosis, the identification 
of factors effective during this phase of the disease is critical 
for development of treatments and cures.

HGF signaling to induce epithelial and endothelial 
survival and growth
Regeneration of normal epithelium and endothelium is critical 
to healthy repair following tissue injury.  Thus, normal tissue 
repair requires factors, such as HGF, that specifically support 
growth in epithelial and endothelial cells, but not in myofibro-
blasts, may be required for antifibrotic tissue repair[93, 108].  HGF 
is mitogenic, motogenic, and induces survival in pulmonary 
endothelial and alveolar type II epithelial cells[71, 109–114].  HGF 
also releases lung epithelial and capillary endothelial cells 
from growth arrest induced by the profibrotic factor TGF-
β1[115].  

HGF blocks apoptosis in lung epithelial and endothelial 
cells.  The cell survival activities by HGF have been attrib-
uted to the activation of a number of anti-apoptotic signaling 
pathways[112, 116–119] although the specific anti-apoptotic mecha-

Figure 2.  HGF/c-Met signal transduction.  Two tyrosine phosphorylation 
sites (Y1349/Y1356) in the multi-functional docking domain interact with 
multiple adaptor proteins and signal transduction enzymes.  STAT3 has 
been shown to bind directly to c-Met in some cell types, but the site has 
not been defined.
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nisms of HGF appear to differ among cell types[118, 120].  Three 
predominant pathways implicated in survival by HGF are 
ERK/MAPK, PI3K/Akt, and signal transducer and activator 
of transcription 3 (STAT3) (Figure 2)[121].  Although much of 
the research on HGF signaling for proliferation and survival 
has been performed on cancer cell types, some studies have 
investigated the mechanisms for HGF-induced survival and 
proliferation in primary lung cells.  

In murine lung endothelial cells subjected to hypoxic 
stress followed by reoxygenation, a procedure that activates 
the extrinsic apoptotic pathway through the death induc-
ing signaling complex (DISC) and caspase-8.  HGF confers 
protection against extrinsic apoptosis through PI3K/Akt-
dependent up-regulation of the caspase-8 inhibitor FLICE-
like inhibiting protein (FLIP) and through down-regulation 
of DISC forma tion[122].  This report additionally showed that 
HGF inhibited Bax translocation into the mitochondria, also in 
an Akt-dependent manner[122].  An investigation of the effects 
of HGF on H2O2- and TNF-α-induced apoptosis in pulmonary 
epithelial cells demonstrated that survival of epithelial cells by 
HGF involved the activation of nuclear factor-kappa B (NF-κB)
[118].  The mechanism by which HGF activates NF-κB in these 
cells is unknown.

Both cell culture and in vivo studies provide evidence that 
HGF regulates gene expression of the anti-apoptotic members 
of the Bcl-2 protein family.  Studies of hypoxia-reoxygenation 
injury to endothelial cells demonstrate that HGF exerts Akt-
dependent anti-apoptotic activity by enhancement of the 
expression of anti-apoptotic protein Bcl-xL

[118, 122].  Investigation 
of HGF treatment prevented cellular apoptosis and increased 
Bcl-xL expression in mice following ischaemic reperfusion 
injury to the lung[123].

HGF may also block fibrotic remodeling through indirect 
mechanisms, including the regulation of pro-fibrotic factors.  
As stated above, Ang II is a potent inducer of epithelial and 
endothelial cell apoptosis in lung fibrosis, and studies sug-
gest that de novo generation of Ang II is required for FAS- and 
TNF-α induced apoptosis of alveolar epithelial cells in cell 
culture[124, 125].  The enzyme angiotensin converting enzyme 
(ACE) is required for the proteolytic activation of Ang II from 
its inactive precursor angiotensin I (Ang I), and bleomycin-
induced fibrosis can be blocked in vivo using an ACE inhibitor 
or an Ang II receptor antagonist[35].  Our laboratory demon-
strated that HGF reduces ACE expression in lung endothelial 
cell culture[126].  The down-regulation of ACE might provide a 
potential indirect mechanism for HGF reduction of lung cell 
apoptosis through Ang II suppression.  

HGF inhibition of myofibroblast accumulation
Rodent models for lung fibrosis indicate that HGF treatment 
restricts myofibroblast recruitment.  Three potential mecha-
nisms for this effect of HGF are: 1) the induction of quiescence 
in lung fibroblasts and inhibition of transdifferentiation; 2) 
the inhibition of EMT of lung epithelial cells; and 3) induction 
of apoptosis in myofibroblasts.  Direct inhibition of fibroblast 
transdifferentiation by HGF has not been demonstrated, but 

regulation of myofibroblast development may occur through 
indirect mechanism(s).

HGF reduces fibroblast activation to the myofibroblast 
phenotype.  HGF may affect fibroblast activation indirectly 
through the regulation of lung endothelial cell expression of 
cyclooxygenase 2 (COX-2), a potent activator of prostaglan-
din E2 (PGE2) synthesis[127, 128].  PGE2 is secreted by pulmonary 
endothelial cells, induces fibroblast quiescence and is a potent 
inhibitor TGF-β1-induced fibroblast transdifferentiation[57, 129].  
Our laboratory has shown that HGF regulates COX-2 expres-
sion in primary lung epithelial cells through Akt- and beta 
catenin-dependent up-regulation of COX-2 mRNA[127]. This 
suggests a possible mechanism for HGF-mediated COX-2 inhi-
bition of fibroblast transdifferentiation.  

EMT is an important process during development and 
organogenesis, and HGF has been demonstrated to induce 
EMT under specific cellular conditions[130, 131].  However, EMT 
associated with fibrotic remodeling is negatively modulated 
by HGF[96].  Rat alveolar epithelial cells that were treated with 
TGF-β to induce EMT, HGF inhibits the expression of myofi-
broblast markers such as α-SMA, collagen type I, and fibronec-
tin[132].  The inhibitory activity of HGF on EMT requires upreg-
ulation of Smad7 expression and its export from the nucleus 
to the cytoplasm.  The export of Smad-7 to cytoplasmic com-
partment results in the inhibition of signal transduction by the 
TGF-β receptor[132].  HGF may also indirectly affect EMT pro-
cesses.  Endothelial nitric oxide attenuates EMT[133].  Increased 
nitric oxide results in the retention of epithelial morphology 
while inhibition of NOS leads to increased α-SMA expression 
and fibroblast-like morphology in TGF-β1-treated alveolar epi-
thelial cells[133].  HGF stimulates activity of endothelial nitric 
oxide synthase (eNOS) via a PI3K/Akt-dependent pathway in 
endothelial cells[134, 135].  

Finally, it has been shown recently that HGF affects the via-
bility of myofibroblasts through direct mechanisms.  Although 
normal fibroblasts lack the HGF receptor Met, myofibroblasts 
taken from the fibrotic lungs of experimental animals have 
been shown to express Met[136].  In the Met-expressing myofi-
broblasts, HGF was shown to induce apoptosis in a caspase-
dependent manner[136].  This apoptotic activity of HGF is asso-
ciated with increased degradation of the extracellular matrix.  
Treatment of myofibroblasts with HGF increases in the activi-
ties of predominant enzymes involved in fibronectin degrada-
tion and a decrease in a fibronectin central cell binding domain 
which is involved in FAK phosphorylation; both of these 
activities lead to decreased survival of myofibroblasts[136].  

Conclusion
Findings from animal models of pulmonary fibrosis show 
that HGF can inhibit both the initiation and progression of 
lung fibrosis (Figure 3).  However, the critical mechanism(s) 
for HGF protection of the lung from fibrotic remodeling and 
promotion of normal tissue regeneration remains poorly 
understood.  HGF directly induces epithelial and endothelial 
proliferation and survival, and may indirectly modulate myo-
fibroblast accumulation in the lung after injury.  Despite the 
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potential clinical applications for HGF for wound repair and 
prevention of fibrotic remodeling, its complex structure has 
precluded its development for clinical use.  The future devel-
opment and study of HGF mimetics and/or Met agonists may 
aid in the understanding of HGF mechanisms of tissue repair 
as well as provide potential therapies for treatment of lung 
fibrosis.
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