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Dynamic expression of proteins associated with 
adventitial remodeling in adventitial fibroblasts from 
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Aim: To identify proteins that could potentially be involved in adventitial remodeling in vascular adventitial fibroblasts (AFs) from 
spontaneously hypertensive rats (SHR).  
Methods: AFs were isolated from thoracic aortas of 4-, 8-, 16-, and 24-week-old male SHR and Wistar-Kyoto (WKY) rats and cultured 
to passage 4.  Proteomic differential expression profiles between SHR-AFs and WKY-AFs were investigated using 2-D electrophoresis 
(2-DE), whereas gel image analysis was processed using Image Master 2D Platinum.  Protein spots were identified using matrix-as-
sisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS).  Expression levels of annexin A1 in AFs and aortas 
from SHR and WKY rats were detected with Western blotting and immunofluorescence techniques.  
Results: In 4-, 8-, 16-, and 24-week-old SHR-AFs, 49, 59, 54, and 69 protein spots were found to have significant differences from the 
age-matched WKY-AFs.  Fourteen spots with the same changes  in patterns were analyzed in 4-, 8-, 16-, and 24-week-old SHR-AFs with 
mass spectrometry.  Except for cytoskeleton proteins such as tubulin beta 5, it was found that annexin A1, translation elongation factor 
Tu, endoplasmic reticulum protein 29 and calcium-binding protein 1 were expressed in vascular AFs and their levels changed signifi-
cantly in SHR-AFs compared with those in WKY-AFs.  A decrease in annexin A1 in SHR-AFs was confirmed with Western blotting and 
immunofluorescence staining at the cell and tissue levels.
Conclusion: The application of proteomic techniques revealed a number of novel proteins involved in adventitial remodeling of AFs from 
SHR, which provide new mechanisms responsible for the occurrence and development of hypertension and potential targets for influ-
encing vascular remodeling in hypertension.
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Introduction 
Vascular remodeling has traditionally been thought to occur 
through abnormalities in vascular endothelial and media cells.  
In recent years, however, evidence has emerged suggesting 
that the vascular adventitia is the “first responder” and that 
adventitial remodeling is the initiator of vascular remodeling 
in a variety of cardiovascular diseases[1–3].  Adventitial fibro-
blasts (AFs) differentiate into myofibroblasts (MFs) that are 

capable of proliferating, migrating and synthesizing extracel-
lular matrices.  Phenotypic differentiation of AFs into MFs has 
long been thought to be a key step in vascular remodel ing[4, 5].  
Results from our laboratory have shed light on the role and 
mechanism of transformation of AFs into MFs in vascular 
remodeling over the last decades.  However, the role of AFs 
in adventitial remodeling following chronic vascular injury, 
such as in hypertensive individuals, is rarely presented.  Zhu[6] 
first found that spontaneously hypertensive rats (SHR)-AFs 
proliferated faster than Wistar Kyoto rats (WKY)-AFs, and 
increased cell density in the adventitia of stroke-prone SHR 
was revealed by confocal microscopy[7].  Moreover, we also 
found that the migration of SHR-AFs was always greater than 
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that of WKY-AFs after treatment with various stimu lators[8, 9].  
Nevertheless, the mechanism of adventitial remodeling in 
SHR remains elusive.  Higher-throughput techniques of pro-
teomics and genomics are necessary to study the alterations 
of genes and proteins in SHR-AFs in order to obtain a better 
understanding of the increased proliferation and migration of 
SHR-AFs.  In this study, the proteomic differential expression 
profiles of SHR-AFs compared with age-matched WKY-AFs 
from animals 4 weeks to 24 weeks of age were investigated 
to explore proteins that are potentially related to adventitial 
remodeling in SHR-AFs during the occurrence and develop-
ment of hypertension.

Materials and methods
Cell culture
The rats used in this study were 4-, 6-, 8-, and 24-week-old 
male SHR and WKY rats with specific pathogen-free (SPF) 
grades, purchased from the Shanghai Institute of Hyperten-
sion.  All experimental procedures were performed according 
to the guidelines of the Animal Care Committee of the Ani-
mal Center at the Chinese Academy of Sciences in Shanghai, 
China.  One adventitial fibroblasts sample was isolated from 
two rat thoracic aortas[6], and each group consisted of three 
samples.  Cells were grown in DMEM supplemented with 
10% heat-inactivated FCS, 1% L-glutamine, 100 U/mL penicil-
lin, and 100 μg/mL streptomycin.  Cells were used in passage 
4.  The subconfluent cells were made quiescent by being incu-
bated in DMEM supplemented with 0.1% BSA for 48 h before 
harvest.

Sample preparation
Cells were counted and harvested by centrifugation, washed 
twice with Tris-buffered sucrose (10 mmol/L Tris base, 
250 mmol/L sucrose, pH 7.0), and dissolved in lysis buffer 
containing 7 mol/L urea, 2 mol/L thiourea, 4% CHAPS, 40 
mmol/L DTT, 40 mmol/L Tris base, and 2% IPG buffer pH 
3–10.  After vortex incubation at room temperature for 1 h, 
samples were centrifuged at 40 000×g and 4 °C for 1 h.  The 
supernatant was quantified using the Bradford assay and ali-
quoted.  The protein samples were stored at -80 °C until analy-
sis.  

Two-dimensional electrophoresis and analysis
Soluble proteins were separated by 2-DE.  Protein (200 μg 
for silver staining and 2 mg for Coomassie Brilliant Blue 
G-250 staining) was diluted in rehydration buffer containing 
8 mol/L urea, 2% CHAPS, 20 mmol/L DTT, 0.5% IPG buf-
fer pH 3−10 and 0.002% bromophenol blue and was applied 
to 24-cm IPG strips with a nonlinear pH range of 3–10 (GE 
Healthcare, Uppsala, Sweden).  The first dimension was per-
formed with the IPGphor system (GE Healthcare) according 
to the programmed settings: 30 V for 6 h, 60 V for 6 h, 200 V 
for 1 h, 500 V for 1 h, 1000 V for 1 h, 8000 V for 1 h at gradient 
type and 8000 V until reaching 55 kV·h.  Then, the IPG strips 
were equilibrated for 15 min in a buffer containing 6 mol/L 
urea, 30% glycerol, 2% SDS and 0.02% bromophenol blue with 

10 mg/mL DTT and then equilibrated for another 15 min in 
the same buffer but with 25 mg/mL iodoacetamide replacing 
DTT.  The second-dimensional separations were performed 
on 12.5% SDS-polyacrylamide gels with the Ettan Dalt twelve 
(GE Healthcare) initially set at 5 W per gel for 30 min and then 
at 20 W per gel until the dye front reached the gel bottom.  Sil-
ver staining and Coomassie Brilliant Blue G-250 staining were 
performed as previously described[10, 11].  The stained gels were 
scanned using ImageScanner II (GE Healthcare) and analyzed 
with ImageMaster 2D Platinum (GE Healthcare).  The intensi-
ties of the spots were normalized based on the total volumes 
on the gel.  Protein spots with significant changes (paired 
t-test, P<0.05) in a consistent direction (increase or decrease in 
three independent experiments and in cells from rats at four 
weeks of age) or with altered locations were excised for identi-
fication.  

Matrix-assisted laser desorption/ionization time-of-flight mass 
spectrometry (MALDI-TOF-MS) and database search
The protein spots were excised from 2-D gels stained with 
Coomassie Blue G-250 and digested as previously described[12].  
Aliquots (0.5 μL) of the tryptic peptides were mixed with 1.5 
μL of a matrix solution consisting of a saturated solution of 
alpha-cyano-4-hydroxycinnamic acid in 50% acetonitrile/0.1% 
TFA.  The mixture (1 μL) was immediately placed onto a 
MALDI plate and dried at room temperature.  The dried spots 
were analyzed in a Bruker-Daltonics AutoFlex TOF-TOF LIFT 
Mass Spectrometer (Bruker-Franzen, Germany) in reflex posi-
tive ion mode at an accelerating voltage of 20 kV and a reflex 
voltage of 23 kV.  The spectra were internally calibrated using 
trypsin autolysis products.  The peptide mass fingerprints 
(PMF) obtained were used to search through the SWISS-
PROT and NCBInr databases using the Mascot search engine 
(http://www.matrixscience.co.uk) with a tolerance of 0.2 D 
and one missed cleavage site[12].  

Western blot
The protein lysates (30 μg protein per lane) were analyzed as 
previously described[13].  Annexin A1 was detected by anti-
annexin A1 antibody (Santa Cruz, USA).  β-actin was detected 
by mouse anti-β-actin mAb (Sigma-Aldrich, USA) to confirm 
equal loading.  

Immunofluorescence staining
The expression of annexin A1 in the thoracic aortas of 
16-week-old SHR and WKY rats was analyzed by immuno-
fluorescence staining.  Cryosections of the aortae (8-µm thick) 
were thawed and fixed in ice-cold acetone for 10 min.  Non-
specific binding was blocked in 5% BSA for 1 h.  Tissue sec-
tions were incubated with Annexin A1 antibodies (1:200, Santa 
Cruz Biotechnology).  After being rinsed with PBS, tissue sec-
tions were incubated with secondary antibody conjugated to 
FITC (1:100).  Then, sections were stained with DAPI (1:10 000) 
at room temperature for 10 min after washing with PBS.  
Fluorescent images were acquired using a Nikon Eclipse 80i 
microscope and analyzed using MetaMorph image-analysis 
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software (n=3).

Statistical analysis
The values were expressed as means±SD.  The paired t-test 
was used for statistical analysis between two groups.  The sig-
nificant level was set at P<0.05.

Results 
Comparison of protein expression profiles between SHR-AFs and 
WKY-AFs
To explore the differences in protein expression between SHR-
AFs and WKY-AFs, the proteins from SHR-AFs and WKY-
AFs from 4-, 8-, 16-, and 24-week-old mice were separated by 
2-DE.  Gels using three different samples from the same group 
were performed simultaneously and analyzed by ImageMas-
ter 2D Platinum Analysis Software.  In total, 1228±132 spots 
were detected on the maps, and the overall protein expression 
profiles with pH 3−10 and molecular masses of 10 to 90 kDa 
were very similar within the three samples of the same group 
as analyzed by ImageMaster 2D Platinum, indicating high 
stability and reproducibility of the 2-DE in our test system.  
In comparison with the 2-DE maps of age-matched WKY-
AFs, the number of altered spots, up-regulated spots, down-
regulated spots and spots with changed locations for SHR-AFs 
were, respectively, as follows: 4-week-old rats, 49, 29, 19, and 1 
spots; 8-week-old rats, 59, 34, 23, and 2 spots; 16-week-old rats, 
54, 33, 20, and 1; and 24-week-old rats, 69, 42, 25, and 2.  Thir-
teen protein spots with significant changes in volume (paired 
t-test, P<0.05) in a consistent direction (increased or decreased 
in all three samples per group and in four age groups) and one 
spot with an altered location were judged as differential spots 
and excised for identification as noted in Figures 1 and 2.

Identification by MALDI-TOF-MS with peptide mass fingerprinting 
(PMF)
These 14 excised spots were identified by MALDI-TOF-MS 
analysis with PMF followed by database searching.  The prop-

erties and changes of identified proteins with altered expres-
sion in SHR-AFs compared to that in age-matched WKY-AFs 
are presented in Table 1 and Figure 2.  Among them, there 
were eight proteins with definite biological functions, two pro-
teins with undefined function and four proteins derived from 
a genomic sequence.  Eight proteins were separately involved 
in inflammation, energy metabolism, molecular chaperon, cell 
cycle and proliferation, cytoskeleton, and regulation of ion 
influx.

Annexin A1 decreased in SHR-AFs
Annexin A1 (spot 4 in Table 1), a putative inflammation-
related protein, presented consistent changes between SHR-
AFs and WKY-AFs from 4-, 8-, 16-, and 24-week-old rats 
(Table 1), which was confirmed by Western blot analysis.  
Annexin A1 was down-regulated in SHR-AFs from 4-, 8-, and 
16-week-old rats compared with expression in age-associated 
WKY-AFs (paired t-test, P<0.05), and Annexin A1 expression 
tended to be lower in SHR-AFs from 24-week-old rats com-
pared with that in age-matched WKY-AFs, although signifi-
cance was not achieved as observed in Figure 3.  Moreover, the 
effect of age on Annexin A1 expression was different between 
the two strains.  Annexin A1 expression was reduced with 

Figure 2.  Altered location of spot 13 in 2-DE maps of vascular adventitia 
fibroblasts from SHR and WKY rats.

Figure 1.  Representative 2-DE maps of vascular adventitia fibroblasts from SHR and WKY rats and differentially expressed protein spots that were 
further identified by mass spectral analysis.  Cell lysates (200 µg) were loaded onto IPG strips (24-cm, pH 3−10 non-linear), followed by the second 
dimension on a vertical continuous gel (12.5%), and visualized by silver staining.  The horizontal dimension of the images represents the linear 
immobilized pH gradient for IEF.  The positions of standard mass biomarkers for the second dimension are shown on the left sides of images.  The 
identified proteins were labeled with arrows and the Arabic numeral represents the number of spots.  n=3.
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age in WKY-AFs, while in SHR-AFs, no obvious association of 
annexin A1 expression with age was exhibited.

To make further confirmation, we detected Annexin A1 
expression in thoracic aortic sections from 16-week-old SHR 
and WKY rats.  Immunofluorescence indicated that the total 
annexin A1 immunofluorescence intensity was 8.72±2.97 units 
in tissue sections of SHR rats compared with 46.89±8.75 units 
in tissue sections of WKY rats.  In tissue sections, the annexin 
A1 signal was mainly detected in the adventitia (Figure 4).

Discussion 
In this study, we identified 13 proteins with consistently 
altered expression in pre-hypertensive and hypertensive stage 
SHR-AFs with MALDI-TOF-MS.  The higher relative weights 
and protein contents found in aortas from newborn SHR may 
reflect a remodeling of this organ[14].  In addition, an adven-
titial remodeling in SHR was demonstrated by the increased 
proliferation and migration in AFs from SHR at the cytologi-
cal level.  The appearance of aorta hypertrophy so early in 
the hypertensive process indicates an intrinsic abnormality in 
the aorta of SHR not caused by the pressure overload that we 
used as a basis to select proteins with changes in 4-, 8-, 16-, 
and 24-week-old SHR-AFs.  Moreover, we also chose a spot 
for identification that divided into two spots in 8-week-old 
and 16-week-old SHR-AFs because this change suggests that 
the identified spot was a proteolytic degradation product or 
the result of other post-translational modifications.  

Of special interest, the expression of annexin A1 (spot 4), 
a putative anti-inflammation factor, was significantly down-
regulated in SHR-AFs as compared with expression in age-
matched WKY-AFs at all ages in the present study.  Annexin 
A1 is a member of the family of phospholipid and calcium-
binding proteins and has been implicated in several cell func-
tions, including inhibition of cell proliferation, anti-inflamma-
tory effects, regulation of cell differentiation, and membrane 
trafficking.  For cell proliferation, annexin A1 has been shown 
to inhibit OKT3-stimulated and mitogen-induced cellular pro-

liferation of T cells[15] and to be involved in mitogenic signal 
transduction by HGF[16], glucocorticoids[17], and the growth 
hormone receptor[18].  Furthermore, the active N-terminal pep-
tide of annexin A1 has been reported to block EGF-induced 
cell proliferation[19].  In this paper, decreased expression of 
annexin A1 perhaps attenuates the negative regulation of cell 
proliferation and results in increased proliferation in SHR-
AFs.  Based on this finding, we sought to determine the mech-
anism by which annexin A1 modulates SHR-AF function.  The 
antiproliferative mechanism of annexin A1 appears to involve 
modulation of the ERK signaling pathway.  Annexin A1 has 
been shown to modulate ERK but not p38 or JNK activity in 
lipopolysaccharride-induced responses[20] and regulate cell 
proliferation by disruption of cell morphology and inhibition 
of cyclin D1 expression through sustained activation of the 
ERK1/2 MAPK pathway[21].  Our previous studies showed 
that ERK1/2 was activated during phenotypic differentiation 
of AFs into MFs[22] and migration induced by Ang II[23].  More-
over, annexin A1 is a substrate for protein kinase C (PKC) and 
protein tyrosine kinases and has multiple phosphorylation 
sites as well as calcium and phospholipid binding properties.  
Whether PKC alpha, another molecule involved in phenotypic 
differentiation of AFs into MFs[24], attenuates annexin A1 activ-
ity and regulates SHR-AF proliferation through the ERK1/2 
MAPK pathway is another area of interest.  

Two other proteins involved in mitochondrial function, 
translation elongation factor Tu (EF-Tu) and mitochondrial 
ATP synthase, H+ transporting F1 complex, beta subunit 
(ATP5B), were identified.  Expression of EF-Tu (spot 2) was 
decreased and that of ATP5B (spot 14) was increased in SHR-
AFs as compared with the age-matched WKY-AFs.  The 
coupling step in the biosynthesis of ATP in mitochondria is 
generally believed to involve an energy-requiring release of 
ATP that is bound to ATP5B.  Higher consumption of energy 
due to increased proliferation and migration of SHR-AFs may 
require more ATP5B involvement in this process.  In mito-
chondria, the major target of phosphorylation was EF-Tu[25, 26].  

Figure 4.  Expression of annexin A1 
in thoracic aor tae from 16-week-
old SHR and WKY rats.  Aortic tissue 
from 16-week-old SHR and WKY rats 
subjected to immunofluorescence 
staining to detect annexin A1 antigen.  
Annexin A1 was decreased in aortic 
adventitia from 16-week-old SHR rats.  
Scale bar: 50 μm; m indicates media, 
a indicates adventitia, P indicates 
perivascular adipose tissue.  Total 
magnification: ×100. 
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The phosphorylation of EF-Tu is increased in response to isch-
emia and in mitochondria from ischemic hearts[25].  Otherwise, 
EF-Tu content nearly disappears in pacing-induced heart fail-
ure, along with a number of other mitochondrial proteins[27].  
The status of EF-Tu in hypertension or abnormal vasculature 
remains elusive.  Further work will be necessary to understand 
the function of EF-Tu in AFs and the relationship between the 
content and phosphorylation of EF-Tu.

The expression of endoplasmic reticulum protein 29 (ERp29) 
(spot 8), a critical chaperone for protein maturation and secre-
tion[28–30], increased in SHR-AFs, which may indicate that secre-
tory behavior in SHR vasculature is more active than in WKY 
vasculature.  The culture components of supernatants derived 
from SHR-AFs and WKY-AFs is being investigated.  

A protein involved in cell cycle and proliferation, protea-
some subunit beta type 7 (spot 7), was identified as having 
increased expression in SHR-AFs.  This result is similar to that 
of our previous study, which showed that proteasome subunit 
beta type 4 was increased in myofibroblasts with characteristic 
of higher proliferation and migration rate induced by Ang II 
and TGF-β1[31].  

CaBP1 (spot 3), another protein with increased expression 
in SHR-AFs, has been shown to regulate TRPC5, voltage-
gated Ca2+ channels and inositol 1,4,5-trisphosphate receptors 
(IP3Rs) in neurons and Xenopus oocytes.  The role of CaBP1 in 
the cardiovascular system remains unknown.  The expression 
of other proteins such as ARP1 actin-related protein 1 homolog 
A (spot 1) and tubulin beta 5 (spot 6) was up-regulated in 
SHR-AFs.  Their roles in vascular remodeling in hypertension 
are still unknown.  Among the four proteins derived from a 
genomic sequence, the altered location of spot 13 suggested 
that the identified spot was a proteolytic degradation product 
or the result of other post-translational modifications and wor-
thy of deep mass spectral analysis.  

In conclusion, the application of proteomic techniques 
revealed novel proteins involved in abnormalities of AFs 
from SHR, which provide new avenues for investigating the 
mechanisms responsible for the occurrence and development 
of hypertension and potential targets for altering vascular 
remodeling in hypertension.
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