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Introduction
Many review articles describe in detail the differentiation of 
osteoblasts[1–7] and chondrocytes[8–13] from stem cells (SCs) fol-
lowing hormone and growth factor (GF) exposure, as well as 
mechanical stimulation, both converging towards gene regu-
lation by transcription factors (TFs), co-activators, associated 
proteins and repressor molecules.  However, it seems that it is 
still difficult to arrive at a consensus as to which parameters 
are more important to predict/measure true functional fea-
tures needed for osteoblasts or chondrocytes to function as 
proper cells maintaining bone or cartilage in a 3D-structure 
in vivo, rendering them able to withstand challenge from 
immobilization, overuse and/or inflammatory processes.  This 
paper will focus on the role of microRNA in the present enig-
matic issue.

Current status of cell engineering (replacement therapy) 
of bone and cartilage
The necessity for an approach in order to establish interdisci-
plinary therapeutic strategies for the treatment of bone defects 
has been addressed by scientists for many years.  This aware-
ness is apparent from the multitude of approaches taken (eg  
GF-based therapy, gene therapy, SC-based therapy, scaffold-
based therapy) to engineer tissues, integrating contributions 
from many medical and technical disciplines, eg immunology, 
biomechanics and material science[14–20].  The ultimate goal will 
be to use test-engineered cells on scaffolds in vitro and in vivo 
to assess the ideal, site- and environmentally adaptable pheno-
type and resilience of the engineered osteoblastic cells.

The use of mesenchymal stem cells (MSCs) for cartilagi-
nous cell therapy and regeneration comprises at least two 
approaches.  The first pertains to ex vivo cartilage tissue 
engineering, in which a replacement tissue is constructed in 
vitro using MSCs combined with scaffolds under appropriate 
environmental stimuli.  The second is in vivo cartilage regen-
eration via MSC-based therapy using its anti-inflammatory 
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and immunosuppressive effects[21–25].  MSCs are expanded and 
injected locally into the affected joint, but can also be applied 
systemically.  Due to their potential regenerative trophic role, 
they may influence the articular micro-environment and aid in 
the regeneration of the cartilage.  However, there is no consen-
sus as to the optimal cues for cartilage formation in vitro, be it 
the proper MSC source, the make of bioactive scaffolds, envi-
ronmental factors for differentiation of MSCs, in vitro char-
acteristics predictive for in vivo functioning and site-related 
adaptation, long term chondrocyte stabilization etc.  

Importance of the osteo-chondro transition area
The process of endochondral ossification, from loose mesen-
chyme to initial osteoblast differentiation, entails intermediate 
chondrocyte differentiation.  The loose mesenchymal progeni-
tor cells proliferate and organize into the condensed mesen-
chyme comprised of osteo-chondral progenitor cells[10].  The 
cells of the condensed mesenchyme differentiate into chon-
drocytes, and the cells at the centre of the condensation stop 
proliferating and become hypertrophic[10, 26, 27].  Perichondral 
cells adjacent to the hypertrophic chondrocytes differentiate 
into osteoblasts and form the bone collar, as the invasion of 
blood vessels begins along with continued osteoblast differen-

tiation[10, 28, 29].
Whether or not the endochondral ossification potential is 

necessary to maintain in engineered chondrocytes, it may 
be worth while preserving the potential to vascularise, since 
several attempts to replace chondrocytes have failed, due to a 
lack of vascularization in vivo, thus stimulating the shedding 
of cartilage containing dead chondrocytes[29–31].  Furthermore, 
it may well be necessary to produce a fraction of chondrocytes 
of the hypertrophic type, since they have been shown to be 
involved in both cartilage and bone remodelling by secreting 
MMPs, ADAMs, and RANK-L [10, 32, 33].

Signalling systems in developing osteoblasts and 
chondrocytes
The osteoblast
The differentiation of MSCs towards osteoblasts undergoes 
several phases including osteoprogenitor cells, their differen-
tiation into pre-osteoblasts and mature osteoblasts.  The latter 
are transformed into osteocytes, which may constitute the 
mechano-sensing lattice and nervous system junction connect-
ing bone to the outer “environment”[2, 5, 34–40], or they are sub-
jected to apoptosis (Figure 1).  A concerted action of both posi-
tive and negative regulatory factors determines the developing 

Figure 1.  The differentiation of stem cells (SCs) towards osteoblasts.  The impact of hormones and growth factors (GFs), mechanical loading, as well as 
transcription factors (TFs) and TF-modulating proteins are indicated.  Some TFs and TF-modulating proteins are negatively or positively influencing the 
activity of Runx2, while others are involved in the differentiation process independently of Runx2.  MicroRNA species negatively affecting the differentia-
tion of SCs elicited by GFs and/or TFs are depicted (see especially microRNAs 29, 125, 133, and 135).  The osteoblast secretes matrix proteins, whose 
gene transcripts are modulated by TFs.  It also affects osteoclast differentiation and activation by secreting the opposite acting factors RANK-L and OPG.  
Finally, the osteoblast might be subjected to apoptosis or acquiring an osteocytic state.  Osteocytes serve as a connection between the bone tissue and 
the nervous system, while also perceiving the mechanical load on the skeleton.  
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phenotype of the osteoblastic cells, including the processes of 
bone modelling and remodelling.  This involves the concerted 
action of secreted RANK-L and OPG, acting on osteoclastic 
cells[2, 4–6, 41, 42].  Major functional features of the osteoblast per-
tain to sequential synthesis and deposition of matrix proteins 
and enzymes necessary to complete these processes.  Finally, 
the transition of osteoblasts to osteocytes are also modulated 
by several factors (Figure 1), yielding a complete and versatile 
cellular system, being able to adapt to various physiological 
conditions, when necessary[2, 5, 43].    

The osteoblast commitment, differentiation and various 
functions are governed by several TFs, resulting in expres-
sion of phenotypic genes responsible for the acquisition of the 
plasticity of the osteoblastic phenotype[2, 3].  Runx2 and Runx3 
are present in osteoblastic lineage cells.  Runx2 controls bone 
formation during both skeletal development and post-natal 
life.  Expression of Runx2 is both necessary and sufficient for 
MSC differentiation towards the osteoblastic lineage[3, 4, 6, 44].  
The Runx regulatory element can be found in the promoter 
of all major genes controlling their expression, including col-
lagen Iα1, osteopontin, BSP and osteocalcin.  Runx2 can be 
phosphorylated and activated by the MAPK cascade by the 
activation of α2β1-integrins on the osteoblast surface[2, 45, 46].  
Finally, Runx2 has been found to negatively control osteo-
blast proliferation by acting on p85 PIK3 and GADD45β, the 
latter known to be associated with cell cycle G2-M arrest[47].  
However, Runx2 is not essential for the maintenance of the 
expression of major bone matrix protein genes in the mature 
osteoblast, since over-expression of Runx2 yields osteopenia, 
due to a reduced number of osteoblasts and an increased 
number of osteoclasts[48, 49].  Runx2, being considered a crucial 
factor in osteoblast recruitment and differentiation, is tightly 
controlled by other TFs, protein-DNA or protein-protein 
interactions.  In early pre-osteoblast development, the factors 
Hoxa2 and Satb2 regulate Runx2 activity[50].  Some complex 
mechanisms involving factors like Stat1, Sox9, Sox8, Aj18, 
MEF, Nrf2, and YAP repress Runx2 expression[2, 51–54], while 

most of the published literature describes factors (Rb, TAZ, 
HoxA10, BAPX-1, Smad1&5, CEBP/β&δ, and Menin) actively 
enhancing the function of Runx2[2, 55–58].  Runx2 protein deg-
radation may be accelerated by Smurf1, however this loss of 
Runx2 may be counteracted by factors like YAP, TAZ, and 
WWP1-Schnurri[2, 59].  A compilation of factors known to affect 
Runx2 regulation is shown in Figure 2A–2C.  Of the ones 
depicted, some deserve further comments.

Osterix (or SP7), a zink-finger TF, acts down-stream of 
Runx2 and complexes with NFATc1.  In turn, this co-acti-
vation stimulates the Wnt-pathway, which is considered 
very important for bone formation, being predictive of bone 
mass[60–62].  Wnt-protein interaction with Frizzled and LRP5/6 
co-receptors enhances β-catenin phosphorylation, nuclear 
accumulation and enhanced gene expression promoted by the 
LEF/TCF1 TFs.  Wnt-mediated signalling (by Wnt10b) also 
activates Runx2, osterix, and Dlx5 expression[2, 6, 41, 63, 64].

Cyclic AMP, a long “forgotten” second messenger in this 
field, also appears to be involved in bone formation.  ATF4 
(or CREB type 2) interacts with Runx2 to stimulate osteocalcin 
expression, while also enhancing the amino acid transport into 
osteoblasts.  The latter system stimulates protein synthesis in 
bone[65, 66], where essential amino acid loading seems to be very 
important for maximizing peak bone mass[67, 68].  Some homeo-
box proteins, like Msx1&2, Dlx5&6 play a role in osteoblast 
differentiation.  Msx2 inhibits Runx2-mediated differentiation, 
while Dlx5 activates the expression of Runx2[69–72].  Further-
more, some helix-loop-helix proteins, like Id and Twist are 
appearing during osteoblast proliferation, of which Twist con-
trols Runx2 expression[73, 74].  PPARγ2 may interact with Runx2 
to induce adipocyte differentiation[2, 75].  PPARγ2-agonists, 
which are used to enhance insulin secretion and restore insulin 
sensitivity in diabetic patients, may thus disfavour bone mass 
maintenance.  Other TFs involved in adipocyte differentiation 
are the C/EBPs, which may also down-regulate the effect of 
Runx2 on MSC-acquisition of the osteoblast phenotype[76, 77].

In general, several hormones and growth factors (GFs) are 

Figure 2.  The influence of transcription factors (TFs) and transcriptional modulating molecules on functional gene expression (A), on pre-commitment 
and differentiation (B), and on Runx2 function in osteoblastic cells (C).  Some TFs exert their function on osteoblast pre-commitment and early osteob-
last genes, while others are active during later stages of the osteoblast’s functional repertoire.  However, several TFs are somehow involved in the activ-
ity of Runx2, which is deemed important for osteoblast differentiation and function in general.
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involved in osteoblast differentiation, and of those, PTH, 
oestrogen, glucocorticoids, PGE2, calcitriol, BMP-2, TGFβ, 
FGF-2, and IGF-1 impinge on signalling cascades converging 
towards mechanisms of action involving the TFs mentioned 
above, along with nuclear co-modulators and associated 
proteins[1, 2, 14, 15, 21, 35, 39, 78, 79].  Certain of these GFs have served as 
standards in the differentiation of MSCs towards osteoblastic 
cells for cellular therapy.  Some of these signalling systems 
will be outlined in a later paragraph.      
	    
The chondrocyte
Formation of cartilage is initiated by the differentiation of 
MSCs into chondrocytes, which proceed through chondro-
progenitor cells with final terminal differentiation of chondro-
cytes, vascular invasion and cartilage matrix calcification, and 
finally ossification[8, 10, 11, 80, 81].  Many signals appear to be stim-
ulatory, however, some are also inhibitory of this process (Fig-
ure 3).  The chondrocytes synthesize many matrix products, 
enzymes to degrade them, as well as RANK-L.  Stimulation of 
osteoclasts is confined to hypertrophic chondrocytes, sharing 
many phenotypical features with the osteoblast[9, 10, 12, 13, 32].

Skeletal elements are prefigured in mesenchymal condensa-
tions, and common precursor mesenchymal cells divide into 
chondrogenic and myogenic lineages.  The cartilaginous nod-
ules appear in the middle of the blastema, and simultaneously, 
cells at the periphery become flattened and elongated to form 

the perichondrium.  The differentiated chondrocytes can then 
proliferate to undergo the complex process of hypertrophic 
maturation[10, 82, 83].  The initiation of condensation is associated 
with increased hyaluronidase activity and the appearance of 
cell adhesion molecules, neural cadherin and neural adhe-
sion molecules (N-CAM).  TGFβ, which is among the earliest 
signals in chondrogenic condensation, stimulates synthesis of 
fibronectin, which in turn regulates N-CAM[10, 84, 85].  A current 
view is that a series of patterning systems functions sequen-
tially over time.  FGF, hedgehog, BMPs and the Wnt-pathways 
coordinate signalling through three axes to secure correct 
patterning along the dorso-ventral and the anterior-posterior 
axes[86, 87].  Important signalling molecules in this respect are 
Wnt2A, Wnt2C, Wnt3A, Wnt7A, FGF-10, and FGF-8.  The 
FGFs induce Wnts, which act through the β-catenin pathway 
in osteoblasts, while mainly through JUNC and PKC signal-
ling in chondrocytes[88, 89].  These early events involve homeo-
box transcription factors (TFs) like HoxA, HoxD (especially 
HoxD11&13) and Gli3[82, 87, 90–92] in a sequential manner.  Apart 
from initiating chondrocyte differentiation, the BMPs (eg type 
2, 4, and 7) co-ordinately induce chondrocyte hypertrophy in 
concert with BMP receptors and BMP antagonists, like chordin 
and noggin[87, 93, 94].

The chondrocyte differentiation process is characterized by 
deposition of a cartilage matrix consisting of collagens II, IX 
and X and aggrecan, regulated by a family of SOX-proteins, 

Figure 3.  The differentiation of stem cells (SCs) towards chondrocytes.  Hormones and growth factors (GFs) responsible for this transition are depicted.  
Transcription factors (TFs) and TF-modulating proteins are also indicated.  Most of the subject GFs and TFs are stimulatory, however some exert 
negative effects on chondrocyte differentiation.  Some of the microRNAs negatively affecting GFs and/or TFs are given (see especially microRNAs 140 
and 199).  The chondrocyte synthesizes and secretes matrix proteins like collagens, glycosaminoglycans (GAGs) and proteases (MMPs and ADAMs), as 
well as RANK-L, which will activate osteoclasts.
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namely the transcription factors Sox9, L-Sox5, and Sox6[85, 95, 96].  
The expression of SOX-proteins is dependent on BMP-signal-
ling via BMPR1A&B, which are actively expressed in conden-
sating chondrocytes[97, 98].  Runx2 expression also appears in all 
chondrocytes undergoing terminal differentiation, and BMP-
induced signalling involves the canonical SMAD pathway, 
including the Runx2-activating Smads1, 5&8[99, 100].   

Throughout chondrogenesis, BMPs and FGFs determine the 
rate of proliferation, thereby adjusting the pace of differentia-
tion[101].  Proliferation of chondrocytes in the growth plate is 
regulated by FGFs through signalling converging towards 
the cyclin D1 gene.  This effect is balanced through FGFR3, 
which inhibits proliferation by Stat1-mediated transcription 
of the cell cycle inhibitor p21[102, 103].  The proliferation in the 
lower proliferative and pre-hypertrophic zones is controlled 
by negative feed-back loops involving PTHrP and Ihh.  PTHrP 
acts through PKA- and PKC-mediated signalling, while Ihh 
employs a set of Gli transcription factor (Gli1-3) to modulate 
proliferation, in order to balance the number of chondrocytes 
being recruited to the hypertrophic stage[92, 104, 105].

Hypertrophic chondrocytes express collagen X, ALP, posi-
tively regulated by Runx2, which interacts with Smad1[26, 27].  
Runx2 is also instrumental in the synthesis and secretion of 
MMP-13 (acting synergistically with MMP-9), thus initiating 
cartilage matrix remodelling and ensuring angiogenesis, which 
is necessary for the replacement of cartilage by bone[10, 28, 98, 106].  
One signal responsible for angiogenesis is VEGF through 
receptors like Flk, Npn1, and Npn2.  Runx2 is also acting 
in concert with AP-1 family members during cytokine- and 
PTHrP-induced MMP-13 expression in both chondrocytes and 
osteoblasts[28, 106, 107].  In the hypertrophic chondrocyte, one may 
find many of the features of osteoblasts including a complex 
Runx2 regulated system (Figure 3).  

Mechano-stimulation
Mechano-stimulation is important for the net building of bone 
mass and cartilage on a long term basis[39, 40, 108–110].  The loads 
which arise from functional activity generate deformation in 
bone and cartilage tissue through pressure in the intramedul-
lary cavity and within cortices, transient pressure waves, shear 
forces through canaliculi and even dynamic electric fields as 
interstitial fluid flows past charged bone crystals[111].  Dur-
ing vigorous activities, peak strain magnitude measured in 
the load-bearing regions of the skeleton of adult species are 
ranging from 2000 to 3500 micro-strain (µε)=2000×1/1 000 000 
change in cell length/diameter [112].

These mechanical forces render cells in the bone modelling 
mode.  The remodelling and disuse modalities lie below this 
threshold and yield either zero net bone production or bone 
loss.  It has been shown that both immobilization and overuse 
will lead to loss of both tissue types[39, 40, 109, 110].  Many cell types 
display different, but measurable elasticity in cell cultures (eg  
chondrocytes=0.5−8 kpA, depending on where it is situated 
(endothelial or articular) and osteoblasts=1−2 kpA) indicating 
that there are certain forces needed to observe a certain inden-
tation in the cells depending on the matrix and orientation of 

the cells within it[113].  However, these shape alterations are 
conveyed by external devices (like matrix proteins) and picked 
up by mechano-receptors linked to the same signalling sys-
tems known to regulate cell differentiation and induction of 
functional characteristics[111].  But pressure may have different 
effects than strain: chondrocytes subjected to cyclical tension 
caused an increase in MMP-13 and decreased TIMP-1, while 
cyclical hydrostatic pressure increased TIMP-1 and decreased 
MMP-13.  Normally, cyclical exposure of cells to pressure or 
strain may be essentially anabolic, while chronic exposure 
might lead to loss of both bone and cartilage, even when the 
level of micro-strain applied is intermediary or low[114].  

In the present paragraph, we focus on the signalling sys-
tems picking up the mechanical stimuli reaching bone and 
cartilaginous tissues.  In osteoblasts, both shear and strain 
forces have, since long been known to be implicated in 
modulating proliferation[115, 116], differentiation (via Runx2, 
osterix, β-catenin)[116, 117], bone remodelling (via RANK-L 
osteoprotegerin=OPG)[111, 118, 119], cytokine secretion (via PGE2, 
NO)[119–121] and activation of genes related to secretion of 
matrix proteins (like osteopontin, collagenase-3)[122, 123].  Appar-
ently, several signalling systems are involved in the mechano-
stimulation of osteoblasts and chondrocytes, many of which 
are common to those used by hormones and GFs[111].  MAPK 
is activated by stretch and shear forces in many cell types, 
including osteoblasts, stromal cells and osteocytes, as well 
as chondrocytes and alveoblasts.  Stromal cells exposed to 
mechanical forces secrete RANK-L, which stimulates osteoclas-
togenesis, however, mature osteoclasts seem to be responding 
to increased mechano-stimulation by enhancing their bone 
resorbing potential[118, 124, 125].  Vascular cells and stromal cells in 
bone release NO (a second messenger activating a soluble gua-
nylate cyclase), which may reach many adjacent cells through 
its rapid diffusion and high lipid penetrability[119, 126].

Candidate mechano-receptors are ion channels, integrins 
and integrin-associated proteins, connexins and other mem-
brane based structures[111, 127–129].  The ion channels involved 
are mechano-sensitive channels susceptive to gadolinium 
chloride and nifedipine, respectively[111], and the former drug 
reduced mechanically elevated PGI2 and NO synthesis[130].  
The β1-integrin binds ligands like collagens I & III and 
fibronectin[131], and fluid flow has been shown to activate 
MAPK via β1-integrin.  In osteoblasts, steady fluid forces up-
regulate β1-integrin expression and activate αvβ3, which co-
localizes with src[132–134].  Focal adhesion kinase (FAK) seems to 
be critical for integrin clustering, while also being a signalling 
molecule, which is subjected to auto-phosphorylation[135, 136].  
Thereafter, FAK contributes to MAPK activation via inter-
action with c-src, Grb2, and Ras[136–138].  FAK activation also 
increases the activity of PLCγ1, which is involved in Ca2+-
fluxes, since fluid force elicited Ca2+-mobilization requires 
PLC-mediated IP3-release[111].  Shear stress has been shown 
to increase the expression of connexins, making cells more 
communicative through gap junctions[111].  These channels 
are often located to dendritic processes, and osteocytes have 
been shown to increase PGE2 (an anabolic bone factor), when 
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mechanically stimulated[111, 129, 139].  Membrane structures, like 
lipid rafts, have also been shown to integrate mechano-stimu-
lation, conveying the signal to the cell interior[140, 141].  Mechani-
cal forces translocate signalling molecules to the cavaolae, 
involving activation of signalling molecules like MAPKs, such 
as ERK1/2, small GTPases, GEFs, RhoA, and Rac1[142, 143].

In general, mechano-stimulation will activate many of the 
same signalling systems like, for example, VEGF-mediated 
MAPK-enhancement and cAMP/cGMP- and DAG/IP3-
mediated signalling[118, 144–146] (Figure 4).  In osteoblasts, mech-
ano-stimulation increases both cAMP and IP3 levels.  Cyclic 
AMP may be stimulated by PGE2-release, however, many 
G-proteins like Gαq and Gβγ may activate GTP-ases like Ras 
and Rho GTP-ases.  The PGE2-mediated cAMP increase leads 
to enhancement of connexin-43 expression through CREBP-
activation[111, 139, 145–147].  Calcium spikes in osteoblasts can be 
obtained from mechano-sensitive ion channels, but also from 
IP3-stimulated opening of calcisomes, leading to increased 
COX2 activity and c-fos activation[148].  MAPK is involved 
through stimulation of the cascade ERK1/2, p38 MAPK, BMK-1, 
and JNK.  Following the up-regulation of MAPKs activities is 
a down-regulation of RANK-L secretion and an increase in the 
expression of eNOS.  As a result, eNOS-induced NO-synthesis 
ensues, which eventually leads to reduced RANK-L expres-
sion through activation of the guanylate cyclase, yielding the 
cells low in RANK-L/OPG-ratio[111, 119, 126, 149].

In terms of cell engineering, one may ask the following 
questions: which type and application schedule of mechanical 
forces are producing the better osteoblasts and chondrocytes 
for cell replacements?  Which are the major mechano-trans-
ducing molecules in these cells?  And which of the signalling 
pathways are more prone to the detrimental effect of senes-
cence and disease?  

The Wnt- and Notch-pathway of signalling
The Wnt-pathway along with the Notch-pathway of signall
ing[2, 20, 41, 150–152], may serve as switch types of regulators in 
bone, as well as cartilage remodelling, since they are involved 
in the stabilization of recruitment of SCs to the different cel-
lular species, as well as the acquisition of precise phenotypic 
features.  The increase of ROS with age antagonizes the skel-
etal effects of Wnt/β-catenin by diverting β-catenin from TCF- 
to FoxO-mediated transcription.  Activation of FoxO-mediated 
transcription by ROS via JNK is deemed to lead to the proc-
esses of senescence.  The adapter protein p66shc is activated 
by increased intracellular ROS and also generates ROS in the 
mitochondria.  The Wnt/β-catenin signalling cascade is, on 
the other hand, related to bone remodelling and/or modelling.  
Activation of the LRP5/6-fz receptor complex by Wnts leads 
to inactivation of GSK-3β, which prevents the proteosomal 
degradation of β-catenin and, thereby promotes its accumula-
tion in the cytoplasm.  Upon its translocation into the nucleus, 
β-catenin associates with the TCF/LEF family of transcription 
factors and regulates the expression of Wnt target genes.  With 
increasing age, increased ROS production diverts the limited 
pool of β-catenin from TCF/LEF to Foxo-mediated transcrip-
tion, thus tilting the balance.  This shift of the balance may 
be responsible for the conversion of the beneficial effects of 
Wnt/β-catenin on bone (ie enhanced osteoblastogenesis, and 
reduced apoptosis of osteoblasts, as well as diminished osteo-
clastogenesis).  FoxO-mediated signalling increases transcrip-
tion of the superoxide dismutase gene, as well as the genes 
for catalase and Gadd45, while β-catenin/TCF/LEF enhance 
the levels of Axin2, OPG, and ALP, of which Axin (along 
with APC) ensures binding to β-catenin/TCF/LEF.  Thereby, 
the Wnts will ensure transcription of genes leading to bone 
accrual, also overcoming the problem of diminished osteob-

Figure 4.  Mechano-stimulation of osteoblasts 
(and chondrocytes).  Signalling molecules like 
BMPs, FGFs, G-protein activating hormones, the 
extracellular matrix (ECM), and Ca2+-channels 
are impinging on intracellular signalling media
tors converging towards transcription factors 
(TFs) and TF-modulating proteins determining 
gene transcriptional activities, here exemplified 
by TF-binding elements in osteoblasts associat
ing with Smads, Runx2, CREBP, and β-catenin.
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last differentiation and maintenance of bone tissue due to the 
onset of senescence[39, 151] .

The Notch-signalling mechanism leads to suppressed oste-
oblast differentiation.  Direct interaction of Notch with its 
ligands, Delta or Jagged, leads to the cleavage, release, and 
nuclear translocation of its intracellular domain (NICD).  In 
the nucleus, NICD forms a complex with CSL proteins and 
masterminds the regulation of gene transcription.  This com-
plex or the product of the NICD target gene, Hey1, binds 
to Runx-2 to inhibit osteoblastogenesis.  NICD also inhibits 
Wnt signalling mediated by β-catenin and, either directly or 
through its interactions with FoxO1, has the potential to inhibit 
NFATc1 signalling.  The down-regulation of NFATc1 eventu-
ally leads to the inhibition of osteoblastogenesis.  In addition, 
the abundance of RANK-L is decreased by Notch signalling, 
whereas that of OPG is increased, which leads to impaired 
osteoclastogenesis.  Hence, the Notch pathway interferes with 
the Wnt-pathway by inhibiting its effect on osteoblastogen-
esis.  However, the direction of the overall switch mechanism 
(between the anabolic and catabolic stages) depends on the 
levels of FoxO1, Runx2, APC/axin, β-catenin, as well as other 
factors[151, 152].

The Wnt/β-catenin pathway in osteocytes (as well as oste-
oblasts and to a certain extent chondrocytes) responds to 
mechanical loading[39, 111].  Mechanical load applied to bone 
is perceived mostly by the osteocyte through an unknown 
mechanism, although induced fluid flow through the lacunar-
canalicular system may be a critical component.  Perception 
of load (strain) triggers a number of intracellular responses 
including the release of PGE2 through a poorly understood 
mechanism into the lacunar-canalicular fluid, where it can act 
in an autocrine and/or paracrine fashion.  In this, connexin-43 
hemi-channels (Cx43HC), PGE2 and integrin proteins appear 
to be involved.  Binding of PGE2 to its EP2 and/or EP4 recep-
tor, leads to a downstream inhibition of GSK-3β, (likely 
mediated by Akt) and the intracellular accumulation of free 
β-catenin, but integrin stimulation can also lead to Akt acti-
vation and GSK-3β inhibition[39, 41].  New evidence suggests 
that the endoplasmic reticulum may participate in the nuclear 
translocation of β-catenin, which leads to changes in the 
expression of a number of key target genes.  One of the appar-
ent consequences is the reduction in sclerostin and Dkk1 (Wnt 
inhibitors), with ensuing increased expression of Wnt.  The net 
result of these changes is to create a permissive environment 
for the binding of Wnt to Lrp5-Fz and an amplification of the 
load-related signalling[151, 152].	  	   

Micro-RNA as phenotype controllers
Scrutinizing the above mentioned mechanisms responsible for 
pre-commitment of either osteoblasts or chondrocytes and the 
many factors responsible for the sequential acquisition of phe-
notypic characteristics, it seems mandatory to look for ways 
the cells may control the developmental processes and secure 
minimal or non-existent de-differentiation or trans-differenti-
ation between them.  Such a system may be constituted by a 
species of small RNAs, designated microRNAs[153–155].

MicroRNAs are small RNAs, 21–25 nt in length, encoded in 
the genome, and exert important regulatory roles[156–158].  Most 
of the microRNAs more or less perfectly match the sequence 
of mRNAs and result in their degradation.  These small RNAs 
reside within the introns of other genes or, more commonly, 
they can be located outside genes.  They may be found in 
polycistronic clusters or exist individually[159, 160].  Hence, some 
may be regulated in parallel with other genes and some may 
not.  However, most microRNAs are transcribed by poly-
merase II from flanking promoters and contain caps.  Firstly, 
a pre-miRNA is processed into a stem-loop structure (60−80 
nt) by the RNA endonuclease Drosha.  These pre-miRNAs are 
exported into the cytoplasm, where the hair-pin is cleaved by 
Dicer, releasing a miRNA duplex.  The two strands separate 
and release one 21−25 nt mature microRNA.  This microRNA 
is incorporated into a protein complex (RISC), which inter-
acts with its target mRNA by base-pairing, preferentially in 
its 3’UTR[159, 160].  MicroRNAs act through two mechanisms; 
mRNA cleavage or translational repression of mRNA without 
cleavage.  However, most animal microRNAs suppress gene 
expression by repressing protein translation (Figure 5A) and/
or enhance mRNA degradation[161].  Presently, more than 1200 
microRNAs encoded by the human genome have been pub-
lished.  Furthermore, genomic sequences of putative micro-
RNAs have been reported.

Each microRNA species may target hundreds of mRNAs 
and some targets are combinatorially affected by multiple 
microRNAs.  In this context, it should be noted that the wiring 
of most microRNA target pairs depends on minimally comple-
mentary “seed” matches that are experimentally insufficient 
to confer overt repression.  Hence, it should be expected that 
focussing on single species of microRNAs in loss-of and/or 
gain-of experiments may not yield significant findings, while 
a group or cluster approach may do so[157, 158, 162].  However, the 
latter approach is both tedious and costly to perform.

The role of microRNAs in gene regulation may be regarded 
as feed-forward loops to safeguard the complete repression 
of certain gene transcripts related to a given cell pheno
type[153–155], with reference to the cell cycle (“beyond the point 
of no return”).  In a coherent model, TFs repress transcription 
of a certain target gene, while also stimulating the expres-
sion of microRNA(s) responsible for nullifying the transla-
tion of “leaking” mRNAs of the same target gene (coherent 
FFL).  Alternatively, the TFs may enhance the expression of 
a certain target gene, while also inhibiting the expression of 
microRNA(s) repressing the same target gene (coherent FFL).  
This gives the opposite result, ie a continuous exposure of 
the cellular environment to the gene product in question.  A 
third variant (incoherent FFL) is that a set of TFs augment the 
transcription of a certain target gene, while simultaneously 
inhibit the expression of microRNA(s) repressing the same 
target gene.  This arrangement yields an unstable, or a transi-
tion state for the expression of the target gene in question.  
This mental modelling exercise for elucidation of the action of 
microRNAs may be extended to include co-activators of TFs, 
associated proteins, and repressors (Figure 5B).
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Hence, clusters or small families of microRNAs may appear 
important to identify and follow through the entire differ-
entiation process to be able to identify the minimal group of 
microRNAs to ensure proper differentiation from stem cells 
(SCs) or parent cells[157, 158, 163].  It is therefore not straightfor-
ward to assert that a microRNA species exerts a static role in 
terms of gene translation control.  The impact of microRNAs 
may be classified in several ways in terms of targets, level of 
target repression and time-course of their presence in a certain 
cell phenotype[153–155].  One model of microRNA classifica-
tion action depends on whether their major effect is mediated 
through one or a few targets or through many targets (tens or 
hundreds).  All known genetic switches concern cases of one 
or a few important microRNA targets, although it is theoreti-
cally possible for one microRNA to have many genetically 
important targets.  In a setting, in which hundreds of targets 
are simultaneously repressed by a given microRNA, it may 
be that one of the individual regulatory events is particularly 
important, but that the system collapses when all the regula-
tory links are broken.  In such a setting, a microRNA might 
serve as a global enforcer of a cell or organ identity[154].  

Nevertheless, the microRNA system may represent the con-
trolling “switch” in the transition state between two different 
cellular phenotypes, eg the transition of MSCs into osteoblasts 
or chondrocytes.  A further consequence of this concept is 
that, in the transition phase between phenotypes, there is a co-
expression between certain microRNAs and their target genes, 
while before and after, there is an inverse relationship between 
microRNAs and their target genes.

Some mammalian microRNA species appear to be ubiq-
uitously expressed, but most have been found to exhibit 
developmentally regulated expression patterns in a variety 
of normal and cancer cells and tissues[159, 164–166], as delineated 
in the above described conceptual model systems.  Many 
microRNAs are specifically expressed during embryonic stem 
cell (ESC) differentiation and embryogenesis, as well as during 

brain development, neuronal differentiation and differentia-
tion of haematopoietic lineages[167–176].  Most of these micro
RNAs are more or less unique to hESCs, however, some might 
also be present at a lower amount (cfr the incoherent pathway 
of regulation).  This indicates that most hESC microRNAs are 
subject to a regulation of the type 1 coherent FFL, indicating 
that one might look amongst genes that will be switched on 
during differentiation to incorporate them into such FFLs.   

In this review, however, we will only concentrate on microR-
NAs reported to exist in MSCs and which microRNAs have 
been shown to exert important functions in osteoblasts/osteo-
cytes and chondrocytes.  The following microRNA species 
have been found to exist in hESCs: miRNAs Let-7a, 15b, 16, 
17, 18ab, 19b, 20, 21, 29a, 92, 93, 106a, 127, 130b, 134, 143, 154, 
200c, 222, 290, 291, 292, 293, 294, 295, 296, 302abcd, 367, 368, 
371, 372, 373, 494 [168–171].  Many of these microRNAs have been 
demonstrated to be involved in cancer development[159, 165, 166], 
however, most of them are definitively involved in the regu-
lation of gene-related pathways being important for self-
renewal[167, 177–180].  Among the genes highly expressed in dif-
ferent hESC lines and tissues, were TFs like Oct3/4, FoxD3, 
Sox2, and a DNA methyl-transferase DNMT3B.  In addition, 
genes involved in the Wnt/β-catenin signalling pathway, 
such as Frizzled 7, Frizzled 8, and Tcf3 were also highly 
expressed.  Furthermore, also all 4 variants of the FGF fam-
ily were expressed in hESCs[177–180].  Finally, it was also shown 
that, in six different hESC lines, the genes for Oct3/4, Nanog, 
GTCM-1, connexin 43/GJA1, TDGF1 and Galanin were highly 
expressed[167, 177–180].  A cross-comparison of the gene lists gen-
erated by these efforts shows that Oct3/4, Nanog, Sox2, Rex1, 
DNMT3B, Lin28, TDGF1, and GDF3 are commonly expressed 
in all hESCs.

When it comes to haematopoietic stem cells (HSCs), a cross-
comparison among efforts to demonstrate components evolu-
tionally conserved and developmentally prominent regulated 
pathways, the following list emerged: Wnt pathway (Lef1, 

Figure 5.  Production of microRNA-RISC complexes (A) and the effect of microRNA species on target gene transcripts related to the integrated effect of 
transcription factors (TFs) and TF-modulating proteins (B).  Pri-miRNAs are transcribed, trimmed by Drosha to pre-miRNAs, exported to the cytoplasm, 
made into duplexes by Dicer, and incorporated into a miRNA-RISC complex.  This construction will bind to mRNA species and block the translational 
process and/or facilitate degradation of mRNAs.  The microRNA species may target TFs, however, one should also take into consideration which of 
several known repressors, co-activators or associated proteins might be affected by the action of other microRNA species.  Together, several microRNAs 
will ensure a proper time-related expression of genes characterizing a given cell phenotype.  
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Tcf4, Dsh), the TGFβ super-family (BMP4, Activin C, serine, 
and threonine kinases NIK and Ski), the Sonic hedgehog (Shh) 
pathway (Smoothened, SMO), the Notch family (Notch 1 and 
Manic Fringe), members of the homeobox regulatory cascade 
(Hoxa9, Meis-1, TGIF, and Enx-1) and Bmi-1[167, 177–180].

Using different search engines available (MirnaViewer, 
Sanger, PicTar, and others) for some of the human MSCs 
deemed necessary for self-renewal, it is possible (according 
to the concept of coherent FFLs) to arrive at some predicted 
microRNAs responsible for the arrest of the stem cell pheno-
type, ie the identification of microRNAs putatively important 
for the onset of differentiation.  The following result was 
achieved for the “disappearance” of the first member of the 
different gene families, ie Lef1, BMP4, NIK, SMO, Notch1, and 
Hoxa9 (Table 1). 

If one compares the cluster of predicted microRNAs affect-
ing the expression of the above mentioned genes responsible 
for stem cell renewal with published lists of microRNAs being 
associated with hESCs, one will notice that Lef1 may be heav-
ily affected by the observed microRNAs 93, the 302-series and 
the 367–374 series; NIK expression may be blocked by a cluster 
of microRNAs consisting of 17-5p, 19, 93, 106a, 130b, 301, the 
302-series, and the 367–374 series; and Hoxa9 might be down-
regulated by microRNAs 19b, 26ab, and 301.  Interestingly, 
one paper recently published in silico and in vivo studies cor-
roborating these speculations[181].

This yields 3 out of 6 genes, which may be affected directly 
by known microRNAs expressed in hESCs, and thus, these 
microRNAs may serve the purpose of “priming” the mRNAs 
for repression until some crucial, other microRNAs come 
along.  These could be up-regulated during differentiation 
processes and may be found within the group consisting of, 
amongst others: Lef1 (microRNAs 22, 24, 34a, 145, 149); NIK 
(microRNAs 20, 211, 214, 326, 331, 345); Hoxa9 (microRNAs 
128, 139, 147, 196, 205).   Indeed, many of the microRNAs 
listed immediately above, like microRNAs 17-5p, 22, 24, 34ac, 
125ab, 128b, 149, 193, 326, and 337 actually are putative targets 

of most of the transcription factors which are listed in Figure 3.  
Hence, many switch microRNAs suppressing osteoblast dif-
ferentiation may be found amongst these microRNA species.

However, only a few articles published over the past 3 
years have dealt with microRNA expression and function in 
osteoblasts and chondrocytes[182–186].  Some interesting find-
ings deserve mentioning.  Mir-125b has been shown to down-
regulate osteoblastic cell differentiation, by down-regulating 
cell proliferation, where it targets VDR and possibly also 
ErbB2 and osterix[184, 186].  BMP2-induced osteoblast differen-
tiation involves mir-135 and mir-133, which target Smad5, a 
mediator of the BMP-2 signalling, as well as Runx2.  Several 
other microRNAs are also mentioned (miRNAs 9, 17, 27, 
29, 30, 96, 106, 133, 138, 181, 182, 320, and 326)[183].  Recently, 
mir-29b has been shown to contribute to the positive regu-
lation of osteoblast differentiation[185], targeting inhibitors 
of osteoblastogenesis, like the transcripts and/or proteins 
encoded by the HDAC4, TGFβ3, ACVR2A, CTNNBIP1, and 
DUSP genes.  Furthermore, silicate-based synthetic bone up-
regulated miRNAs 26a, 30b, and 92, while reduced miRNAs 
337, 377, 25, 200b, 129, 373, 133b, and 489, while finally, bone 
prosthesis material (Anatase®) appear to exert biological 
effects on bone cells, since miRNAs 1, 34c and 210 exhibit a 
significant up-regulation, while miRNAs 17-5p, 22, 23, 24, 
93, 130, and 377 are diminished[187–190].  In chondrocytes from 
growth plates, 30 microRNAs were preferentially expressed, 
however, these were scarcely expressed in osteoblastic cells 
(ie miRNAs 1, 10, 22, 122, 127, 134, 196, 202, 206, 299, 300, 322, 
329, 362, 376, 377, 380, 381, 409, 410, 431, 433, 434, 495, 496, and 
500)[182].  Interestingly, some of these microRNAs were virtu-
ally absent in osteoblasts (ie miRNAs 196, 202, 380, 434, 496, 
and 500).  It should also be mentioned that miRNA 140 has 
been demonstrated to target histone deacetylase 4 (HDAC4) in 
chondrocytes, apparently allowing an increase of Runx2 func-
tioning during the phase of hypertrophia and endochondral 
ossification[191].  Finally, it was reported that mir-199b, a BMP-2 
responsive microRNA, regulates chondrogenesis in a time-de-
pendent fashion via direct targeting the Smad1 transcript[192].   

At the moment, no other microRNAs than mir-125b, mir-
133b, and mir-135a distinguish themselves due to experi-
mentally proven effects and target-analysis, as one singular 
microRNA, to play the role as a switch between osteoblast 
and chondrocyte commitment and/or phenotype acquisi-
tion and stability.  When searching through lists of genes 
important for early phase chondrogenesis derived from the 
literature[10] and/or the GenoStem array[193], miRNAs 125b, 
133b and 135a appear (to a major extent) to leave such genes 
unperturbed.  Mir-125b is expressed in very large quantities 
in chondrocytes[194], so is also the case for mir-135b, while mir-
133a seems to much less abundant.  Hence, these microRNA 
species may either introduce a collapse of the system main-
taining all the important cellular functions constituting the 
chondrocytic phenotype, or also serve as a switch away from 
osteoblastic development (ie pre-commitment).  Mir-135a tar-
gets BMPR1a, BMPR2, Jak2, Msx2, Smad5, and Stat6, while 
mir-133b targets Runx2, FGFR1, and TCF7[183], signifying that 

Table 1.  In silico search for microRNA species targeting transcripts of 
family members of evolutionally conserved and developmental prominent 
genes shown to be important for the self-renewal and/or pluripotency of 
stem cells (SCs).   

   Gene	                MicroRNA (according to MiRNA Viewer and PicTar)                                 
 
Lef1	 22, 24, 26ab, 34abc, 93, 145, 149, 193, 302abcd, 320,
	 370, 372, 373
BMP4	 206, 337
NIK=MAP3K14	 17-5p, 19ab, 20, 27ab, 93, 106ab, 130ab, 155, 204,
	 211, 214, 301, 302abcd, 326, 331, 345, 370, 372, 373
SMO	 326, 346, 370
Notch1	 15a, 15b, 32, 34abc, 125a, 125b, 139, 195, 223
Hoxa9	 Let-7abcefgi, 19b, 26ab, 32, 96, 98, 99, 101, 126, 128ab, 
	 139, 144, 145, 147, 182, 186, 196ab, 199, 205, 301
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they possess powerful abilities to knock down osteoblasto-
genesis in their own right.  Mir-125b, which overtly hampers 
the expression of genes responsible for perpetuating the cell 
cycle[184, 186], may be more ubiquitous in its nature, and thus 
affect many more cell types than osteoblasts and chondrocytes.

However, according to the newly proposed concept of 
transcription factor (TF) and microRNA interactions[156], 
where TF-TF and microRNA-microRNA regulatory loops 
are favoured over TF-microRNA loops, one may speculate 
whether or not clusters of microRNAs targeting a certain set of 
TF transcripts may play a more important role than regulatory 
loops consisting of only two elements.  Hence, we performed a 
literature search for TFs important for osteoblastogenesis (Fig-
ure 2C) and an in silico analysis for putative microRNAs tar-
geting two or more of 14 transcriptional modulators selected 
(APC2, Runx2, RNF11, TAZ, Osterix, SP3, Satb2, VDR, ATF4, 
Dlx5, ETS1, NFATc1, HES1, and LEF1).  From a list of putative 
microRNAs, we selected six (miRNAs 16, 24, 125b, 149, 328, 
and 339) for further analysis.  It appeared that these microR-
NAs were virtually non-existent in differentiating osteoblasts, 
while abundantly expressed both in MSCs and differentiating 
chondrocytes[182].  Their putative targets were also confirmed 
using double luciferase-containing psiCHECK2 vector con-
structs with different 3’UTR sequences [194].  Interestingly, the 
14 transcriptional modulators seem to be part of a cluster of 
genes (located by the search engine Ingenuity) inter-connected 
to TNFα and to p38 MAPK (Figure 6A).  When searching for 
inter-connections between the transcriptional modulators 
and other proteins (using the PINA search engine), 25 gene 
products emerge, of which 23 are transcriptional modulators, 
one is a protein kinase C type (PRKCA), and one is a histone 
acetyl transferase (EP300) (Figure 6B).  Hence, it is quite clear 
that the transcriptional modulators chosen as targets for oste-
oblastogenesis are heavily involved in complex transcriptional 
processes.  Targeting the chosen microRNA species with spe-
cific antago-miRNAs did block the TGFβ3- and BMP-2 induced 
differentiation of MSCs towards chondrocytes.  The subject 
microRNA species act synergistically and apparently serve 
as “switches” between the osteoblastic and the chondrocytic 
phenotypes[194].  This is in line with the concept that one micro-
RNA species may reduce the “activity” of a given mRNA by 
at most 50%, and that more microRNA species, acting syner-
gistically, may reduce the EC50 from some 200−250 pmol/L for 
one microRNA acting alone, down to almost zero, when more 
than 6−7 work together[195].  Interestingly, these microRNAs 
(miRNAs 16, 24, 125b, 149, 328, and 339) appear to be both nec-
essary and sufficient to fully modulate in vitro dexamethasone-
induced osteoblastogenesis, but only partly for TGFβ-induced 
chondrogenesis using human MSCs[194] during a differentia
tion period of 21 days.

Finally, it should be mentioned that cells are able to shed 
micro-vesicles (exosomes) containing many types of signalling 
molecules, as well as microRNA species, which may be taken 
up into adjacent cells of different phenotypes[196, 197].  This phe-
nomenon adds to the complexity of microRNA and TF interac-
tions in tissues containing multiple cell types.  For example, 

activated immune cells (ie Th-1>Th-2=Th-17 cells) appear 
to express very high levels of mir-24, mir-34a, and mir-296, 
which putatively target the transcriptional modulators APC2, 
ETS1, LEF1, Satb2, VDR, and Sox9.  The subject microRNA 
species may thus serve as a “switch” tilt the chondrocyte and/
or MSC phenotypes towards the osteoblast phenotype, as seen 
in hypertrophic and senescent articular chondrocytes[194, 198].   
Other microRNAs (like mir-16 and mir-125b) known to be 
highly expressed in chondrocytes also appear much more 
abundantly in blood from patients with rheumatoid arthritis 
(RA)[194, 199].  It is therefore possible to use various microRNA 
species as diagnostic and/or prognostic biomarkers[196, 197] for 
both severity and/or drug responsiveness in inflammatory 
processes leading to destruction of bone and cartilage due to 
rheumatoid conditions.   

Concluding remarks
Many qualities may be deemed necessary for engineered cells 
to exhibit, some of which are: in vitro functionality, ability to 
interact with the local environment in vivo, ability to arrange 
themselves in a real-time 3D-structure, self-correction of phe-
notype according to their position and exposure of O2, nutri-
ents, hormonal and GF gradients, and phenotype resilience.  
The latter characteristic is construed as the ability to withstand 
wide variations in mechano-stimulation, short- and long-term 
alterations in access to certain nutritional elements, as well as 
robustness to counteract local inflammatory processes.  Prob-
ably, the understanding of the links between important signal-
ling and especially TFs and microRNAs involved in regulatory 
loops evolving throughout the life-span of osteo-chondral 
cells, will enable the cells to acquire the above mentioned 
qualities for a successful cell replacement therapy.

In this respect, a successful approach to obtain engineered 
cells for replacement of bone and cartilage maybe target a set 
of microRNAs using pre-miRNAs and/or antago-miRNAs 
and siRNA modulating selected TFs into polycistronic vector 
constructs to ensure acquisition of proper characteristics of 
engineered osteoblasts or chondrocytes.  One may also exploit 
the fact that cells may communicate with each other through  
micro-vesicles (exosomes) containing microRNAs, thus 
enabling the subject cells to withstand alteration of phenotype, 
when being confined to a multi-cellular micro-environment 
(eg in an inflamed joint invaded by immune cells like Th-cells).  
MicroRNAs from immune cell signatures or osteoblast/chon-
drocyte signatures may therefore serve as biomarkers to char-
acterize the severity of inflammatory processes in bone and 
cartilage and/or their responsiveness to drug therapy.
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