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Introduction
Cardiovascular disease is the leading cause of death in

Western societies, causing approximately one million deaths
annually[1].  It is both a primary and a secondary disease,
resulting from several other disorders, such as hypertension,
diabetes, alcoholism, obesity and the metabolic syndrome.
Cardiovascular disease is defined as any disorder that de-
creases normal heart and/or vascular function.  One of the
leading causes of cardiovascular disease is diabetes, of both
type 1 and type 2 origins.  The incidence of diabetes is pre-
dicted to double by the year 2030 because of people’s sed-
entary lifestyles and an ever-growing cluster of pre-diabetic
syndromes including metabolic syndrome, obesity, and in-
sulin resistance[2].  Almost all of these metabolic disturbances

are considered major risk factors in the development of heart
dysfunction and congestive heart failure[3–7].  Nevertheless,
the cellular mechanisms that relate to the development of
cardiovascular complications in patients with diabetes have
not been fully elucidated.
     Diabetes mellitus is a group of metabolic disorders that
are characterized by hyperglycemia resulting from defects in
insulin secretion, action or both.  Chronic hyperglycemia
causes end-stage organ damage, dysfunction and failure of
various organs, including the kidneys, nerves, eyes, blood
vessels and hearts.  Several pathological processes are
involved in the development of diabetes, ranging from
autoimmune destruction of the β-cells of the pancreas with
resultant insulin deficiency (type 1 diabetes) to abnormalities
that result in resistance to insulin (type 2 diabetes).
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Impairment of insulin action and resistance to the action of
insulin often coexist in the same patient, so it is unclear which
abnormality is responsible for the hyperglycemia.  Symptoms
of chronic hyperglycemia include polyuria, polydipsia, weight
loss and blurred vision.  Long-term complications of diabetes
include retinopathy[8] with potential loss of vision; peripheral
neuropathy[9] with risk of amputation; autonomic neuropathy
causing gastrointestinal, genitourinary and cardiovascular
symptoms; and nephropathy[10] leading to kidney failure.

Functional alterations in diabetic cardiomyopathy
Sustained diabetes mellitus leads to a deterioration of

heart function that is known as diabetic cardiomyopathy,
which occurs independently of the macro- and micro-vascu-
lar diseases that are frequently seen in diabetic patients[11].
Diastolic dysfunction is the most prominent mechanical de-
fect in diabetic cardiomyopathy and is characterized by de-
creased compliance and slower rates of myocardial relax-
ation[11–13].  Both systolic and diastolic dysfunctions have
been characterized to include prolonged contraction and
relaxation, reduced velocity of contraction and relaxation,
and depressed myocardial contractility in whole heart, tissue,
and isolated ventricular myocytes from both diabetic pa-
tients and experimental animals[11–13].  Functional changes
have been observed by electrocardiogram and echo-
cardiography, which are manifested by shorter left ventricu-
lar ejection time, increased pre-ejection period, increased wall
stiffness, decreased fractional shortening, decreased rate of
left ventricular filling and increased action potential dura-
tion in diabetes[14,15].  All of these findings suggest that dia-
betic cardiomyopathy is represented by left ventricular
dysfunction.

The chronic alterations at the end stages of diabetes are
believed to be due to increased glucose levels[16,17].  Although
the pathogenesis of diabetic cardiomyopathy has not been
precisely described, several mechanisms have been
speculated, including reduced energy production because
of decreases in mitochondrial respiration and pyruvate de-
hydrogenase activity, accumulation of free radical species,
glucose toxicity-induced oxidative stress and malfunction
of cardiac contractile and intracellular Ca2+ regulatory pro-
teins such as myosin, sarco(endo)plasmic reticulum Ca2+-
ATPase (SERCA), and Na+-Ca2+ exchanger[18–21].  The in-
creased risk of diabetic cardiomyopathy and other heart com-
plications warrants stringent and aggressive treatment
against hyperglycemia, hyperinsulinemia, dyslipidemia and
oxidative stress.

The most commonly used therapeutic regimes in diabetic
patients with heart dysfunction include angiotensin-convert-

ing enzyme inhibitors, digoxin, diuretics, β-blockers, Ca2+

antagonists and spironolactone.  Insulin-sensitizing agents
such as thiazolidinediones are often prescribed in the treat-
ment of diabetes more often than insulin-secretion-enhanc-
ing agents to avoid hyperinsulinemia and insulin resistance.
In addition to pharmacological interventions, primary care
for diabetic patients also includes lifestyle modifications such
as smoking cessation, weight control, exercise and dietary
restriction[7].

Diabetic cardiomyopathy type 1 diabetes
Type 1 diabetes mellitus leads to a cardiomyopathy in

both human and animal models.  The existence of a diabetic
cardiomyopathy in humans is based on the presentation of
ventricular dysfunction in patients without evidence of any
other known cardiovascular disease (reviewed in Sowers et
al [22] and Spector[23]).  The clinical presentation of diabetic
cardiomyopathy in type 1 diabetic patients was first pre-
sented by Rubler et al[24] based on four diabetic patients
who suffered from congestive heart failure (CHF) in the ab-
sence of discernable coronary artery disease, valvular or
congenital heart disease, hypertension or alcoholism.  Nu-
merous studies carried out since 1972 have supported the
view that diabetic cardiomyopathy is a pervasive problem in
type 1 diabetes and is first manifested by diastolic dysfunc-
tion[11,23].  Diabetic cardiomyopathy in experimental animal
models of type 1 diabetes is characterized by phenotypic
changes in the ventricular myocytes that occur in the pres-
ence or absence of coronary artery disease.  This cardiomy-
opathy is well described in animal models with long-term
type 1 diabetes and results in abnormal cardiomyocyte exci-
tation-contraction (E-C) coupling [eg, prolonged action
potentials, slowed cytosolic Ca2+ effluxes and slowed myo-
cyte shortening and relengthening (reviewed by Pierce and
Russell[25] and Chatham et al[26])].  The cellular mechanisms
that contribute to myocyte dysfunction involve depressed
expression and function of SERCA and Na+/Ca2+ exchanger
(NCX)[27].  Regulation of E-C coupling is also impaired in
diabetic hearts, such that β-adrenergic receptor signaling is
depressed, which may result from changes in β-adrenergic
receptor density or redistribution of β-adrenergic receptor
subtypes[28], or perhaps signaling downstream of the recep-
tors[29].  Elevated protein kinase C (PKC) activity and changes
in the expression of specific PKC isoforms are also found in
type I diabetic hearts[30,31].

Diabetic cardiomyopathy in type 2 diabetes

The more prevalent type 2 diabetes is a combination of
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resistance to insulin action and an inadequate compensa-
tory insulin secretory response.  Type 2 diabetic patients are
able to survive with little or no insulin supplementation; how-
ever dietary modification and exercise are imperative for liv-
ing with the disorder.  Diabetic cardiomyopathy has also
been determined clinically in the type 2 diabetic patients.
Investigators in the Strong Heart Study (SHS) performed
detailed echocardiographic analysis of a population of Ameri-
can Indians with a high rate of type 2 diabetes and reported
that diabetes was associated with increased left ventricular
(LV) mass, LV wall thickness, reduced systolic and particu-
larly diastolic function, independent of hypertension[32,33].
Similar to diabetes, investigators from the Framingham Heart
Study reported increased LV mass and wall thickness in indi-
viduals with glucose intolerance and insulin resistance[34].
There was also an association between left atrial (LA) size
and insulin resistance.  Since no relationship was found be-
tween systolic function and insulin resistance, one explana-
tion for the relationship between LA size and insulin resis-
tance offered was that the rising LA size might reflect the
presence of diastolic dysfunction in insulin resistance (type
2 diabetes)[34].  Other studies in patients with diagnosed type
2 diabetes support the notion that the earliest cardiac abnor-
mality is diastolic dysfunction[35].  Several investigators have
experimentally shown that diabetes mellitus is associated
with a specific cardiomyopathy[12,13] and depressed cardiac
function independent of macro-/micro-vascular disease, sug-
gesting the existence of a primary myocardial defect in both
type 1 and type 2 diabetes mellitus[13,36].

Impaired insulin action (ie, insulin resistance) is charac-
terized by a compensatory hyperinsulinemia and hyperlipidemia,
which are major metabolic dysfunctions associated with the
early stages of type 2 diabetes.  Elevated plasma insulin and
lipid levels can lead to numerous metabolic and pathophysi-
ological derangements in various tissues, including the heart.
Abnormal ventricular systolic and diastolic functions are
reported in type 2 patients presenting without macrovascular
disease or hypertension, providing indirect evidence that
there is a diabetic cardiomyopathy in humans[37].  Furthermore,
there is a considerable evidence that diastolic dysfunction
occurs early in the disease process, which may contribute to
high cardiac mortality among diabetic patients[38,39].  In clini-
cal studies, detectable cardiac dysfunction has been reported
to occur as early as the glucose intolerance phase (ie,
hyperinsulinemmia and hyperglycemia) that follows insulin
resistance[40].

The risk of congestive heart failure and other cardiovas-
cular diseases is greatly increased in diabetic patients[41].
The Framingham Heart Study revealed that diabetic men had

more than twice the frequency of congestive heart failure
than did non-diabetic males, whereas diabetic women had a
risk that was five times greater than non-diabetic women[34].
The development of diabetic cardiomyopathy is dependent
on many factors; however, it is likely that all patients with
diabetes will eventually develop some degree of diabetic
cardiomyopathy.

Mechanisms of diabetic cardiomyopathy
Diabetic cardiomyopathy is a major reason for the high

morbidity and mortality in diabetic populations[41], particu-
larly among elderly people and postmenopausal women.  In
adult patients with diabetes, the risk of cardiovascular dis-
ease is three to five times greater than that in the general
population.  Several mechanisms for the development of car-
diomyopathy have been postulated, including alterations in
intracellular ion homeostasis, reduction in intracellular en-
ergy metabolism, alteration in glucose metabolism, disrupted
polyol pathway and enhanced oxidative stress.  Several
mechanisms have been proposed to explain how all of the
pathologies involved in the progression of diabetic cardi-
omyopathy can result from hyperglycemia.  Four main hy-
potheses have been presented to describe how hyperglyce-
mia can cause all of these diabetic complications[42]:  in-
creased polyol pathway flux, increased advanced glycation
end-product (AGE) formation, increased protein kinase C
isoform expression, and increased hexosamine pathway flux
(Figure 1).  We hope to show that all of these pathways, as
well as several others, lead to hyperglycemia and increased
reactive oxygen species (ROS) formation, causing diabetic
cardiomyopathy.

Alterations in intracellular ions
Changes in intracellular cations are directly related to the

altered electromechanical activities of diabetic hearts.  Alter-
ations in intracellular Na+ are often accompanied by a de-
crease in K+ and Ca2+ in diabetic heart, which may be related
in part to a diabetes-induced conformational change in the
Na+-K+-ATPase pump[43].  Decreases in Ca2+ uptake, Ca2+

binding to the sarcolemma and Ca2+ intake by the myofibril-
lar Ca2+-ATPase activity have all been shown in diabetic rat
hearts[43], which are partially reversible by insulin supple-
mentation.  Although the importance of these alterations in
myocardial dysfunction seen in diabetes is not yet clear, the
presence of abnormalities in Ca2+ handling and β-adrenergic
stimulation is of paramount importance in understanding
these myocardial dysfunctional changes[26].  Alterations in
α1-adrenergic signaling in streptozotocin (STZ)-induced dia-
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betic rat hearts have also been shown.

Increased polyol pathway flux

Increased glucose utilization by aldose reductase has
been implicated in the development of diabetes complications.
Aldose reductase is the first enzyme in the polyol pathway,
which catalyses the NADPH-dependent reduction of carbo-
nyl compounds, including glucose.  In the polyol pathway,
glucose is reduced to sorbitol by aldose reductase in the
presence of NADPH, and sorbitol is then oxidized by sorbi-
tol dehydrogenase (SDH) to fructose at the cost of NAD+.
Normally, aldose reductase has a low affinity for glucose in
the non-diabetic, low-glucose state.  However the affinity
for glucose is dramatically increased in the diabetic, high-
glucose state, which converts glucose to sorbitol, with re-
sultant decreases in NADPH.  It has been demonstrated that
increased aldose reductase activity in diabetic animals is
correlated with increased NADH/NAD+[44].  There is further
support from the facts that sorbitol and fructose levels in
diabetic hearts are approximately nine-fold higher, and
NADH/NAD+ levels in diabetic hearts are approximately four-
fold higher than in normal hearts[44].  Experiments have dem-
onstrated that cytosolic NADH/NAD+ was reduced by both
SDH[45] and aldose reductase inhibition[44,46].  These data
indicate that the polyol pathway is a target for cardioprotective
interventions.  This notion is supported by the observation

that nitric oxide (NO) maintains aldose reductase in an inac-
tive state and that this repression is relieved in diabetic tis-
sues[47].  Thus, increasing NO availability may be a useful
strategy for inhibiting the polyol pathway and preventing
the development of diabetes complications.  It is worth
mentioning that contributions of the polyol pathway in diabe-
tes are often tissue- and species-specific and may not fully
explain the pathogenesis of all forms of diabetic complica-
tions[42].

One mechanism whereby increased polyol pathway flux
leads to the complications of diabetes discussed earlier is
that oxidation of sorbitol by NAD+ increases the cytosolic
NADH:NAD+ ratio, leading to inhibition of the enzyme glyc-
eraldehydes-3-phosphate dehydrogenase (GADPH) and in-
creased concentrations of triose phosphate[42].  Increased
triose phosphate could potentially increase the formation of
AGEs and diacylglycerol (DAG), thus activating PKC
isoforms[42].

Another mechanism whereby increased polyol pathway
flux causes deleterious effects is that reduction of glucose
to sorbitol by NADPH consumes NADPH, a cofactor in the
generation of reduced glutathione (GSH), which could lead
to increased oxidative stress.  It has been shown that de-
creased levels of GSH are present in the lenses of transgenic
mice overexpressing aldose reductase[48].  These observa-
tions have led many people to believe that this is the main
mechanism whereby increased polyol pathway flux leads to

Figure 1. Schematic diagram showing the possible contributing factors to oxidative stress en route to the onset of diabetic cardiomyopathy
in both type 1 and type 2 diabetes.
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many of the complications seen in diabetes.

Increased advanced glycation end products
formation

Advanced glycation endproducts are enhanced in the
presence of hyperglycemia and oxidative stress[49,50].  They
bind to their cell-surface receptors (RAGE) resulting in the
activation of postreceptor signaling, generation of intracel-
lular ROS and the activation of gene expression[51–58].  AGEs
have also been shown to be mediators of late diabetic com-
plications and chronic vascular disease[59].

The importance of AGEs in the development of diabetic
complications is seen in the observation that two structur-
ally similar AGE inhibitors partially prevented diabetic com-
plications in the retina, kidney and nervous system[60–62].  One
of the mechanisms how AGE precursors target cells is
through the binding of AGE receptors to endothelial cells,
mesangial cells and macrophages, inducing receptor-medi-
ated production of ROS.  This receptor ligation increases the
production of the transcription factor NF-κB, also causing
increased oxidative stress.

Some of the most striking data on the role of AGE and the
development of diabetic complications has been obtained
when looking at the receptor for AGE, RAGE.  RAGE sup-
pressed the formation of macrovascular disease in a type I
diabetic mouse model in a glucose- and lipid-independent
fashion[63].  It has also been shown that blockage of RAGE
inhibited the formation of diabetic nephropathy and en-
hanced wound repair (known to be a problem in diabetics) in
murine models.  The mechanism involved in RAGE-associ-
ated development of diabetic complications appears to be
related to increased production of ROS[42].

Activation of protein kinase C isoforms
Protein kinase C is also increased in the tissues of dia-

betic patients[64].  Activation of the PKC pathway by hyper-
glycemia can occur directly or indirectly (via ligation of AGE
receptors[65] or increased activity of the polyol pathway[66])
and can synergize with other kinase pathways, that is, the
MAPK pathway.  Interactions between these pathways are
likely to play a role in determining the long-term effects of
hyperglycemia.  As discussed earlier, sorbitol, whose forma-
tion from glucose is catalyzed by aldose reductase, is in-
creased when intracellular glucose concentrations rise[67],
and can accumulate intracellularly, which can cause cell
damage.  The p38 mitogen-activated protein kinase (MAPK)
and c-Jun N-terminal kinase (JNK) pathways are also acti-
vated by sorbitol.  The significance of the sorbitol pathway

as a cause of diabetic complications was demonstrated in
transgenic mice that overexpressed  the aldose reductase
gene[48,68–70] and by data showing that inhibitors of this en-
zyme prevent the development of long-term diabetic compli-
cations in these animals[71].

Increased hexosamine flux and glucose auto-
oxidation

Hyperglycemia increases flux through the hexosamine
pathway by providing more fructose-6-phosphate for
glutamine: fructose-6-phosphate amidotransferase (GFAT),
the rate-limiting enzyme of the pathway.  The effect of hy-
perglycemia on flux of the hexoasamine pathway probably
reflects increased fructose-6-phosphate levels, which result
from inhibition of GAPDH by ROS[72].

Recently, ROS formation due to glucose autooxidation
has been hypothesized to play a role in the pathogenesis of
diabetic cardiomyopathy in diabetic populations; however,
no unifying hypothesis exists as to how glucose autooxidation
causes any of the complications seen in diabetes.

Alterations in stress signaling pathways
Hyperglycemia in diabetes causes changes in membrane

function and metabolic and biochemical alterations within
days, changes in contractile function within weeks, and
morphological changes and heart dysfunction within months[26].
A significant increase in oxidative damage via lipid peroxidation
was observed in the hearts of diabetic rats[73].  Production of
hydroxyl radicals was also detected in diabetic rats induced
by streptozotocin[74].  In the heart, hydroxyl radical produc-
tion and elevated blood glucose concentration were directly
correlated with the amount of STZ injected into rats, up to 60
mg/kg body weight[74].  With the use of fluorescent probes,
myocytes isolated from STZ-induced diabetic mice were used
to detect hydrogen peroxide and hydroxyl radicals, and in-
creased ROS was observed compared with control mice[21].  Oxi-
dative damage caused by ROS has been shown to lead to
multiple complications of diabetes[75–78].  Blocking ROS and
superoxide formation, however, has been shown to prevent
hyperglycemia-induced organ damage in diabetes[79].

One major intracellular target of hyperglycemia and oxi-
dative stress is NF-κB[80–84], which can be activated by a va-
riety of exogenous and endogenous stimuli, including
hyperglycemia, elevated free fatty acids, ROS, tumor necro-
sis factor-α (TNF-α) and other proinflammatory cytokines,
p38 MAP kinase and ultraviolet irradiation[82].  NF-κB plays
a crucial role in mediating immune and inflammatory re-
sponses and apoptosis.  Alterations in NF-κB signaling are
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associated with a number of chronic diseases, such as dia-
betes and atherosclerosis.  The c-jun NH(2)-terminal kinases
(JNK) and p38 MAPKs are members of the complex super-
family of MAP serine/threonine protein kinases and are
known as stress-activated kinases.  This is due to the fact
that the activities of these enzymes are stimulated by a vari-
ety of exogenous and endogenous stress-inducing stimuli,
including oxidative stress, ROS, hyperglycemia and
proinflammatory cytokines[85].  JNK is activated by hyperg-
lycemia-induced oxidative stress and is probably involved
in apoptosis, which can be suppressed by the antioxidant
vitamin C[86] and enhanced by angiotensin II[87].  p38 MAPK
is also activated in response to hyperglycemia and in
diabetes.  In the glomeruli of STZ-induced diabetic rats, p38
MAPK activity was increased compared with control rats,
followed by increased phosphorylation of heat shock pro-
tein (HSP) 25, a downstream substrate of p38 MAPK.  These
effects appeared to be the result of increased ROS produc-
tion[88].  Taken together, these data suggest that NF-κB, JNK
and p38 MAPK pathways are potential stress-signaling sys-
tems that can lead to late complications of diabetes.

Nitric oxide is an important regulator of cardiac function.
However, NO may react with the surrounding O2

– to form
peroxynitrite (ONOO–).  Peroxynitrite, a very active radical
similar to the hydroxyl radical, interacts with cytoplasmic
proteins to form nitrotyrosine, which has been indicated as a
marker for reactive nitrogen species-induced oxidative dam-
age under in vivo conditions[21,89].  It has been suggested
that excessive NO is pathophysiological because of its abil-
ity to form pro-oxidants.  Cardiac NO production and NOS
protein levels have been found to be elevated in the hearts
of diabetic animals[90].  This is consistent with the observa-
tion of a significant increase in nitrotyrosine concentration
in myocytes in the hearts of diabetic mice[21].

Role of antioxidants in diabetic cardiomyopathy
Mitochondrial damage is related to ROS formation and

plays an important role in the development of diabetic cardi-
omyopathy[91,92].  Coenzyme Q (CoQ) is an important compo-
nent in mitochondrial energy metabolism and is also a po-
tent endogenous antioxidant in vivo.  In heart mitochondrial
preparations of diabetic rats, the concentration of α-toco-
pherol was increased; however, the concentration of both
CoQ-9 and CoQ-10 was decreased[92].  Data from our group
have shown that the reduction in coenzyme levels from dia-
betic animals is attenuated with the supplementation of in-
sulin-like growth factor I (IGF-1)[19].

It is important to note that contractile function of the
heart requires a high metabolic demand, and the mitochon-

drial respiratory chain is the primary energy-releasing sys-
tem in the myocyte.  Through the respiratory chain, a series
of oxidation-reduction reactions continually take place in
the myocyte.  Therefore, an efficient antioxidant system, in-
cluding superoxide dismutase (SOD), catalase, glutathione
peroxidase (GPX), glutathione (GSH) and α-tocopherol are
critical to effective functioning of the myocardium.  However,
in experimental animal models, the heart levels of these anti-
oxidants are much lower than in other organ systems, even
in non-diabetic normals[93,94].  In addition, hyperglycemia can
impair and decrease the amount of antioxidants within the
heart of a diabetic animal[95–97] making it more vulnerable to
ROS-induced damage.

The increase in ROS serves to decrease the antioxidant
capacity of the diabetic myocardium, contributing signifi-
cantly to oxidative stress and resultant myocardial damage.
This damage causes cardiac morphological and functional
abnormalities.  Epstein and colleagues[98,99] showed that type
1 diabetic cardiomyopathy could be prevented when the
antioxidants metallothionein (MT) and catalase were
overexpressed specifically in the heart.  They also showed
that ROS production was enhanced in genetically diabetic
mice (OVE26), which could  be prevented by genetically
crossing the diabetic mice with those overexpressing the MT
or catalase genes[98,99].

Cell death is an important determinant of cardiac remod-
eling because it causes a loss of contractile units, compen-
satory hypertrophy of myocardial cells and reparative fibro-
sis[17].  Apoptotic cell death associated with increased oxida-
tive stress in multiple organ systems of diabetes mellitus has
been well documented[100–102].  Recent in vivo experiments
have demonstrated the induction of myocardial cell apoptosis
in experimental diabetic rats[103], mice[21] and diabetic patients[89].
Heart specimens from diabetic patients (both hypertensive
and non-hypertensive) showed an increase in myocyte, en-
dothelial and fibroblast apoptosis[89].  The increased cell
death was associated with an increase in ROS forma-
tion[21,89,103].  However, the precise mechanism(s) by which
ROS accumulation leads to compromised heart function and
the effect of antioxidant therapy in diabetic subjects is largely
unknown.  Therefore, it is important to study the signaling
pathways and molecular mechanisms by which hyperglyce-
mia-induced (or, presumably, STZ-induced) oxidative stress
leads to cell death and myocardial pathogenesis.

Role of the renin-angiotensin system in the
development of diabetic cardiomyopathy

The renin-angiotensin system (RAS) is known to play a
major role in the regulation of blood pressure and other func-
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tions of the cardiovascular system[104].  Enhanced RAS is
implicated in the development of diabetic cardiomyopathy
and other  hear t dysfunct ions including coronary
insufficiency, congestive heart failure and hypertensive car-
diomyopathy[105].  The growth-promoting effects of angio-
tensin II are mediated primarily through its type 1 receptor
(AT1) and the action of RAS is speculated to contribute to
diabetic cardiomyopathy[105].  It has been shown that stimu-
lation of the AT1 receptor generates oxygen-derived free
radicals, having detrimental effects on the cardiovascular
system[106,107].  The AT1 receptor has been shown to be
coupled to several postreceptor signaling pathways, includ-
ing Janus kinase (JAK)/signal transducer and activator of
transcription (STAT) and NADPH oxidase[104,108,109].  However,
the precise role of RAS, in particular the AT1 receptor, in the
development of diabetic cardiomyopathy is still speculative
and further study is warranted.

Future directions
Diabetic cardiomyopathy is a clinical problem that is

present in both type 1 and type 2 diabetes, which potentially
involves myocyte death and interstitial fibrosis.  These myo-
cyte and non-myocyte alterations may contribute to com-
promised ventricular function in diabetes, which is one of
the leading causes of death in the world today.  It is critical
to investigate the underlying (myocyte) causes of diabetic
cardiomyopathy and the synergistic impact of oxidative stress
in combination with antioxidant therapy on the development
of heart dysfunction associated with diabetes.
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