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Hidden orbital polarization in diamond, silicon,
germanium, gallium arsenide and layered materials

Ji Hoon Ryoo and Cheol-Hwan Park

It was previously believed that the Bloch electronic states of non-magnetic materials with inversion symmetry cannot have

finite spin polarizations. However, since the seminal work by Zhang et al. (Nat. Phys. 10, 387–393 (2014)) on local spin

polarizations of Bloch states in non-magnetic, centrosymmetric materials, the scope of spintronics has been significantly

broadened. Here, we show, using a framework that is universally applicable independent of whether hidden spin polarizations are

small (e.g., diamond, Si, Ge and GaAs) or large (e.g., MoS2 and WSe2), that the corresponding quantity arising from orbital—

instead of spin—degrees of freedom, the hidden orbital polarization is (i) much more abundant in nature since it exists even

without spin–orbit coupling and (ii) more fundamental since the interband matrix elements of the site-dependent orbital angular

momentum operator determine the hidden spin polarization. We predict that the hidden spin polarization of transition metal

dichalcogenides is reduced significantly upon compression. We suggest experimental signatures of hidden orbital polarization

from photoemission spectroscopies and demonstrate that the current-induced hidden orbital polarization may play a far more

important role than its spin counterpart in antiferromagnetic information technology by calculating the current-driven

antiferromagnetism in compressed silicon.
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INTRODUCTION

Electronic states at a given Bloch wavevector in non-magnetic
materials with inversion symmetry are degenerate. Until recently, it
was believed that there is no spatial spin distribution if averaged over
these two spin-degenerate states. However, it has been found that even
in centrosymmetric, non-magnetic crystals, the degenerate Bloch states
can have local spin polarization if atoms are not at an inversion
center.1 Zhang et al.1 reported that the lack of the local inversion
symmetry at atomic sites leads to hidden, or site-dependent, spin
polarization, expanding the scope of spintronics significantly, even to
bulk materials with global inversion symmetry.
On the other hand, the orbital contribution to the magnetic

moment of solids can be sizable (see e.g., refs 2,3) and even larger
than the spin contribution.4 The orbital magnetization becomes more
important than the spin magnetization in some physical phenomena,
for example, current-induced magnetization5 and the gyrotropic
magnetic effect,6 if the spin–orbit coupling (SOC) is weak. Addition-
ally, the important role of orbital polarization in Rashba-split bands7–9

and quantum anomalous Hall phases10 of systems without inversion
symmetry has been explored.
In this paper, we report the finding that the hidden, or sublattice-

dependent, orbital polarization of Bloch states of centrosymmetric
materials can be large (on the order of ħ) even without SOC by using
the simplest, best-known materials, such as diamond, Si and Ge, as
examples. We describe that, in any non-magnetic, centrosymmetric
material, including the aforementioned zinc-blende materials and

layered materials such as MoS2 and WSe2, in which the hidden spin
polarization is quite large, the hidden spin polarization is completely
determined by the interband matrix elements of the site-dependent
orbital angular momentum operator. This finding, together with the
fact that in materials with weak SOC the hidden spin polarization is
small or absent, suggests that the hidden orbital polarization is a more
fundamental quantity. We show that the sublattice-dependent
spin–orbital texture of centrosymmetric crystals is qualitatively
different from that of non-centrosymmetric crystals and that
the hidden orbital polarization can play an important role in
current-induced magnetization5 of both centrosymmetric materials
and non-centrosymmetric materials such as GaAs. We then discuss the
experimental evidence from photoemission spectroscopies and the
technological implications of our findings in antiferromagnetic
information technology using current-induced hidden orbital
polarizations, which, according to our calculations, could be much
more important than their spin counterpart.

MATERIALS AND METHODS
We calculated the electronic structures of diamond, Si, Ge and GaAs by using a
tight-binding model including atomic s and p orbitals (sp3s* model)11 and the
on-site SOC term DHSOC ¼ aALA?Sþ aALA?S

� �
=_2, in which A and A denote

the two sublattices in the zinc-blende structure (see Figure 1b), and αA and aA

are atomic SOC strengths, and the local orbital angular momentum operator
Lbðb ¼ A;AÞ for each sublattice is defined as Lbi ¼ �i_

P
j;keijk pj; bS/pk;bj

��� ,
where eijk is the Levi-Civita symbol and pj;b

��� E
is the Bloch sum of pj orbitals at
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sublattice β. This type of model12 has been used in studies of Rashba splitting
and spin–orbital textures.7,13,14

RESULTS AND DISCUSSION

First, we discuss the orbital polarization of diamond, whose SOC is
negligible. If SOC is neglected, the spin-up and -down states have the
same energy and orbital wavefunction. Figure 1b shows the local
orbital polarization Lb

� �
nk

¼ nk Lb nkj i���
for the orbital part of a

Bloch state, nkj i, corresponding to P in Figure 1a. (Note that the
expectation values of Lb with respect to spin-degenerate states
nkj i# mj i and nkj i# kj i are the same.) Since the product of the
inversion operator (P) and the time reversal operator (T) conserves
the crystal momentum k, all the Bloch states are invariant under PT
operation if we neglect spin. A and A are exchanged by P. Therefore,
the local orbital polarizations at A and A are of the same magnitude
and are anti-parallel to each other; that is, if we define Ltot ¼ LA þ LA,
Ltoth ink ¼ 0.
Figures 1c–f show LA

� �
nk

for the (spin-degenerate) highest-energy
valence bands and the second-highest-energy valence bands of
diamond, which is on the order of ħ except on some symmetry lines.
Therefore, the orbital polarization on each sublattice of a

centrosymmetric material can be large. In the kz= 0 plane, since
k is invariant under C2T, where C2 is the operator for 180° rotation
with respect to the z-axis, LA

� �
nk

lies in the xy plane. We also verified
that Si and Ge have similar hidden orbital polarization textures
(Supplementary Discussion S1).
Interestingly, the hidden orbital polarization can be large even

when the total orbital angular momentum is quenched. Note that the
total orbital angular momentum is a ground-state property of a crystal,
whereas the hidden orbital polarization is a property of quasi-particle
excitations and is a function of the Bloch wavevector and the band
index. Even in a material where d orbitals of a transition metal element
experience a strong octahedral crystal field and the (total) orbital
angular momentum is quenched, for example, when the t2g bands are
empty/half occupied/fully occupied, a quasi-particle state (either an
electron or a hole) from the t2g bands can still have a large hidden
orbital polarization.
Next, we show that in non-magnetic, centrosymmetric materials,

the hidden spin polarization is a physical quantity completely
determined by the site-dependent orbital angular momentum. When
SOC is absent, it is apparent that a hidden spin texture cannot exist in
these materials; since the electron potential does not depend on the
spin, all bands are spin-degenerate, and each Bloch state cannot have a
spatially inhomogeneous spin distribution. Conversely, we showed
that there can be a large hidden orbital polarization even when SOC is
absent. When there is SOC, the spin-up and spin-down bands mix
with each other, but they remain degenerate due to PT symmetry. We
define the spin or orbital polarization of each band as the average of
the expectation values of the two degenerate states.1

Let nksj i ¼ nkj i# sj i be spin-degenerate eigenstates of the
Hamiltonian without SOC, where nkj i is the orbital part and sj i is
the spin part. In our model, in which SOC is taken into account by
DHSOC ¼ a LA?Sþ LA?S

� �
=_2, we can express the local spin polariza-

tion SA
� �avg

nk ¼ � SA
D Eavg

nk
in terms of the matrix element of the

site-dependent orbital angular momentum operator using first-order
perturbation theory:

Sb
� �avg

nk ¼
X
man
s; s0

nks Pb_s
2

�� ��mks0
� �

mks0 DHSOCj jnksh i þ c:c:

2 Enk � Emkð Þ

¼ a
4

X
man

nk Pb
�� ��mk

� �
mk LA þ LA

� ���� ���nkD E
þ c:c:

Enk � Emk

¼ a
2

X
man

nk Pb
�� ��mk

� �
mk Lb
�� ��nk� �þ c:c:

Enk � Emk
: ð1Þ

Here, Pβ is the projection operator onto sublattice β, σ is the Pauli
spin matrix, and Enk is the energy of the state nkj i when SOC
is absent. In the third equality of Equation (1), we have used
/nk PA

�� ��mkS/mk LA
��� ���nkSh i�

¼ /nk PA
�� ��mkS/mk LA

�� ��nkS,
which follows from (i) PTð ÞPA PTð Þ�1 ¼ PA, (ii)
PTð ÞLA PTð Þ�1 ¼ �LA, (iii) nk PA

�� ��mk
� � ¼ �/nk PA

��� ���mkS if
nam and (iv) PT nkj i is equal to nkj i up to a phase factor
(recall that nkj i is the orbital part of the wavefunction). We can then
calculate the hidden spin polarization from the site-dependent orbital
angular momentum operator using Equation (1), one of our key
results.
It is straightforward to extend Equation (1) and calculate higher-

order terms in a regime where SOC is not small; even in this regime,
the interband matrix elements of the orbital angular momentum
operator determine the hidden spin polarization. Additionally,

Figure 1 The hidden orbital polarization in diamond without spin–orbit
coupling. (a) The electronic band structure of diamond. nmax

v is the band
index of the highest-energy valence band. (b) The local orbital polarization of
state P shown in (a). (c–f) The local orbital texture at the A sublattice of
diamond on the kz=0 plane (c,d) and on the kx+ky+kz=0 plane (e,f). The
x′, y′ and z′ axes point in the ½110�, ½112� and [111] directions,
respectively.
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Equation (1) can be easily extended to materials with more than
two atoms per unit cell or to cases involving d or higher-l orbitals.
(We can use the known matrix elements of Lx= (L++L− )/2,
Ly= (L+− L− )/2i and Lz in lmSj basis. These lmSj basis functions
can be expressed using cubic harmonics; for example,
l ¼ 2;m ¼ 72S ¼ dx2�y2

�� �
7 i dxy
�� �� �

=
ffiffiffi
2

p�� , l ¼ 2;m ¼ 71S ¼j
8 dxzj i � i dyz

�� �� �
=
ffiffiffi
2

p
and l ¼ 2;m ¼ 0S ¼ dz2j ij .)

Figure 2 shows the SA
� �avg

nk
of the two highest-energy valence bands

of diamond, calculated by direct diagonalization of the Hamiltonian
(rather than using Equation (1)). Since the SOC in diamond is very
weak, SA

� �avg
nk

�� ��oo LA
� �avg

nk

�� �� (Figures 2a and b). Quite surprisingly,
even if we set the SOC strength αC to 1 eV, approximately 250 times
the physical value, the hidden spin polarization is still an order of
magnitude smaller than the orbital polarization (Figures 2c and d)
because in diamond, the A and A sublattices are strongly coupled to
each other. This fact demonstrates that although the conditions for the
existence of hidden orbital and spin polarizations are the same in
terms of symmetry, it is more difficult for hidden spin polarizations to
be appreciably large (see the analysis on MoS2 and WSe2 below and
Supplementary Discussion S3). However, in some centrosymmetric
materials, the hidden spin polarization can be nearly fully polarized;1

even in this case, our claim that the orbital polarization determines the
spin polarization is valid. It is noteworthy that the hidden spin
polarization shown in Figure 2 is almost identically reproducible by
Equation (1), and the lowest-order result in Equation (1) holds for a
wide range of SOC strengths up to αC= 1 eV.
Interestingly, the directions of spin and orbital polarizations are

exactly opposite each other (Figure 2). It is difficult to find a simple
reason for this (anti-)alignment because Equation (1) expresses the
hidden spin polarization in terms of the off-diagonal matrix elements
of LA, rather than the diagonal ones. However, we can understand this
behavior in some limited cases (Supplementary Discussion S4).
The hidden spin polarizations in the materials considered above

(diamond, silicon and germanium) are much less than 1%, and even if
we hypothetically increase the strength of the SOC of carbon atoms to

over 1 eV in our tight-binding model calculations (the physical value
of SOC is 4 meV), the hidden spin polarization does not exceed 5%.
In contrast, the hidden spin polarizations in MoS2 and WSe2, whose
atomic SOC values are only 0.08 and 0.29 eV, respectively, are nearly
fully polarized. We investigate this phenomenon and find the origin of
such large hidden spin polarizations in MoS2 or WSe2 by extending
the analysis on diamond, silicon and germanium. Our tight-binding
model is based on ref. 15.
The unit cell of bulk MoS2 consists of two MoS2 units, which

are inversion partners (see Figure 3a). The spin (or orbital) polariza-
tion of the upper layer in the unit cell points in the opposite direction
from that of the lower layer. Figure 3d shows this hidden spin
polarization of the lower layer of MoS2 in the highest-energy valence
bands at K as a function of the atomic SOC of Mo atoms. The hidden
spin polarization is 80% polarized at the physical value of
SOC (aMo

phys = 0.08 eV), which is much larger than the hidden spin
polarization of diamond (~0.01%).
Now, consider the energy splitting among the highest-energy

valence states at K due to SOC if there was no interlayer
coupling, which we call 2a Kð ÞMoS2 , and study how the hidden spin
polarization varies with a Kð ÞMoS2 (see Figure 3b). For example,
a Kð ÞMoS2 ¼ 0:073 eV if αMo= aMo

phys = 0.084 eV is used. On the other
hand, at zero a Kð ÞMoS2 , which is simulated by aMo ¼ 0, there is an
energy splitting of 0.11 eV at the top of the valence bands at K among
the degenerate doublets due to interlayer splitting (see Figure 3c). Let
us call half of this energy splitting tðKÞMoS2

inter (= 0.053 eV), which
vanishes if we set interlayer hopping integrals to zero. Now if
a Kð ÞMoS2 , which is proportional to the atomic SOC aMo, is lower
than tðKÞMoS2

inter , the hidden spin polarization is roughly proportional to
aMo; which is consistent with Equation (1) (see Figure 3d). At
a Kð ÞMoS2 values higher than tðKÞMoS2

inter , the wavefunctions of nearby
bands are inter-mixed by the SOC, and the hidden spin polarization
saturates with αMo to 100% (see Figure 3d). We now can qualitatively
understand the results in Figure 3d.
To deepen our understanding of the hidden orbital and spin

polarizations in MoS2, we hypothetically decreased the interlayer
distance between each MoS2 layer by 15% and modified the interlayer
hopping integrals according to the scheme in ref. 15 The hidden spin
polarization of the highest-energy valence bands (doublet) at K is
plotted in Figure 3e as a function of αMo. In this case, the hidden spin
polarization is only 20% of the fully polarized value and scales linearly
with αMo around αMo= aMo

phys = 0.084 eV. Note that as a byproduct, our
calculations give us insight into MoS2 under a high pressure. A 15%
compression of transition metal dichalcogenide compounds has
already been achieved in recent high-pressure experiments;16 the
hidden spin polarization of MoS2 under pressure is likely to be
significantly lower than that of MoS2 not under pressure. To obtain a
quantitative prediction, first-principles calculations with structural
optimizations are necessary. Although such first-principles calculations
are beyond the scope of this study, the qualitative prediction of the
reduction of hidden spin polarizations in inversion-symmetric transi-
tion metal dichalcogenides due to pressure remains meaningful.
We now perform a similar analysis on WSe2. In this material,

aðKÞWse2
phys = 0.25 eV (Figure 4a), and tðKÞWse2

inter = 0.036 eV (Figure 4b):
the SOC is stronger in Wse2 than in MoS2, and the interlayer coupling
is weaker in WSe2 than in MoS2. Both of these differences lead to
stronger hidden spin polarizations in WSe2 than in MoS2, in
agreement with the results of our calculations (Figures 4c and d).
Although Equation (1), which is the result of a perturbation theory

calculation, is not applicable per se when the SOC is stronger than the
interlayer coupling of MoS2 and WSe2, it is still true that the site-

Figure 2 The local spin–orbital texture (kz=0) at sublattice A of the Bloch
states of diamond obtained by using αC=4 meV (the physical value for
diamond) and αC=1 eV.
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dependent orbital angular momentum determines the hidden spin
polarization. In the case of bulk MoS2 and WSe2, because both the
strength of the SOC and the interlayer coupling are smaller than the
intralayer coupling, we can determine the hidden spin polarization
from the hidden orbital polarization by treating both the strength of
the SOC and the interlayer coupling as perturbations:

Slower
� �

avg
¼ Slower
� �max

avg
´

aMoS2 Kð Þ
tMoS2
inter Kð Þ2 þ aMoS2 Kð Þ2� �1=2 ð2Þ

as explained in Supplementary Discussion S2. As mentioned
previously, this result can also be obtained by using higher-order
perturbation theory only with respect to SOC; in hindsight, expanding
the above equation, we know that these higher-order terms should
coincide term by term with

Slower
� �

avg
¼ Slower
� �max

avg
´

aMoS2 Kð Þ
tMoS2
inter Kð Þ �

1

2

aMoS2 Kð Þ
tMoS2
inter Kð Þ

 !2
þ?

" #
:

In contrast with MoS2 or WSe2, in which the two subsystems
comprising the unit cell are weakly coupled, the two sublattices of
diamond or silicon are strongly coupled to each other; hence, the
typical energy separation between energy bands is on the order of the
nearest-neighbor hopping integral (a few eVs) and is much larger than
the SOC. Remarkably, we can now understand, from the same

principles, why the hidden spin polarization in diamond, silicon or
germanium is very small and why that in MoS2 or WSe2 is very large.
Now, we turn our attention to the hidden orbital polarization.

While the hidden spin polarization depends strongly on the strength
of the SOC, the hidden orbital polarization is rather insensitive to it
(see Figures 3d,e,4c and d). The reason is twofold: (1) the hidden
orbital polarization is already large without the SOC and (2) the two
highest-energy valence band doublets at K have approximately the
same hidden orbital polarization. This supports our primary claim that
hidden orbital polarizations are much more widespread in nature than
their spin counterparts. The hidden spin polarization is large only if an
inversion center is not located at an atomic site and the SOC is
stronger than the energy separation between the bands of interest
and other nearby bands. In contrast, the hidden orbital polarization
can be large in general if only the first (symmetry-related) condition
is met. Our analysis of the connection between the hidden spin and
orbital polarizations in MoS2 and WSe2 has not been performed
in previous studies, in which the focus has been solely on the hidden
spin polarization.
Thus far, we have discussed the hidden spin and orbital polarizations

of centrosymmetric materials. The spin texture in non-centrosymmetric
materials is qualitatively different from that in centrosymmetric systems.
Without SOC, all the electronic energy bands of a non-magnetic
material are spin degenerate. Contrary to centrosymmetric systems, in
which the SOC intermixes spin-up and spin-down components without
lifting the degeneracy, the SOC in non-centrosymmetric systems lifts
this degeneracy.
Figures 5a–d show the spin–orbital texture (kz= 0) of the two bands

of GaAs split from the second-highest, spin-degenerate valence bands
when SOC is absent. The orbital polarization of As atoms is
approximately twice that of Ga atoms, which can be attributed to
the lower on-site potential energy of As atoms. Their directions are
opposite to each other, similar to the hidden orbital polarizations at
the A and A sublattices of diamond (Figures 1 and 2).
Comparing the upper spin-split band (Figures 5a and b) and the

lower spin-split band (Figures 5c and d), we note that, except near the
kx or ky axes, the orbital polarizations of the upper and lower bands
are approximately the same because the SOC mixes only the spin-up
and -down bands together; its magnitude is smaller than the energy
distance from those bands to other adjacent bands.
The spin texture of GaAs in Figure 5 demonstrates the following

features: (i) excluding the regions near kx= 0 or ky= 0 where four
bands are degenerate if the SOC is absent, the spin polarization is
parallel or anti-parallel to the orbital polarization, (ii) the spin
polarization at the Ga atoms and As atoms of each spin-split band
are parallel to each other, in contrast with the hidden spin polarization
of diamond, that is, /SASavg

nk and /SASavg
nk are anti-parallel to each

other, and (iii) the spin is almost fully polarized in each band. These
observations also hold for other bands of GaAs (Supplementary
Discussion S1).
These features can be explained as follows. When the SOC is

neglected, the spin-up and -down bands are degenerate and share the
common orbital wavefunction nkj i. Within degenerate perturbation
theory, the effect of the SOC is described by diagonalizing
DHSOC ¼ aGaLGa þ aAsLAs

� �
?S=_2 in the two-dimensional Hilbert

space spanned by the spin-up and spin-down states. (We set
αGa= 0.12 eV and αAs= 0.28 eV.17) Therefore, if there is no other
degeneracy, the direction of the spin polarization of one spin-split
band is parallel to /nk aGaLGa þ aAsLAs


 ��� ��nkS (we will denote a unit
vector aligned in this direction as r̂nkÞ and the spin polarization of the
other spin-split band points in the opposite direction. We define

Figure 3 (a) The atomic structure of bulk MoS2. (b,c) The electronic band
structures of MoS2 obtained by setting the interlayer coupling (b) or the
atomic SOC (c) to zero. (d) The hidden polarizations along z of the lower
layer of the highest-energy valence bands at K versus atomic SOC. The fully
polarized values are /SlowerSmax

avg ¼ _
2 ´0:5 and /LlowerSmax

avg ¼ 2_ ´0:5. The
vertical dash-dotted line shows the physical value of the atomic spin–orbit
coupling of Mo atoms. (e) The same quantity as in (d), but with the
interlayer distance reduced to 85% of the actual value.
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m; r̂nkj i and k; r̂nkj i as the spinors whose spin quantization axes are
parallel to and anti-parallel to r̂nk, respectively. Then, the wavefunc-
tions of the spin-split bands are nkj i# m; r̂nkj i and nkj i# k; r̂nkj i.
Therefore, the spin is nearly fully polarized in each spin-split band,
and the spin polarizations at Ga atoms and As atoms are parallel to
each other.
We can further understand the direction of the spin polarization of

each spin-split band. Since LGa
� �

nk
is anti-parallel to LAs

� �
nk

and both
the orbital polarization and the atomic SOC of As are larger than those
of Ga, r̂nk is parallel to LAs

� �
nk
. Hence, the spin of the electronic states

in the upper spin-split band, at both sublattices, aligns with LAs
� �

nk
,

and that in the lower spin-split band anti-aligns with LAs
� �

nk
(Figure 5). This behavior is different from the hidden spin polarization
in centrosymmetric materials, in which the spin polarizations at the
two sublattices are opposite to each other.
In addition, in GaAs or other non-centrosymmetric materials, if we

decrease the strength of the SOC, the spin polarization of a spin-split
band does not change appreciably because the eigenvectors of the
full Hamiltonian are independent of the scaling of the spin–orbit
interaction Hamiltonian in the small SOC limit. This behavior is
different from the case of the hidden spin polarization in centrosym-
metric materials, in which the magnitude scales linearly with the
strength of the SOC in the same limit (Equation (1) and Figure 2).
Despite the fact that GaAs lacks inversion symmetry, its transport

properties are effectively determined by the average of the spin-split
bands depending on the level of impurity and temperature. For this
reason, the j= 3/2 Luttinger model12 is commonly adopted in studying
the transport properties of GaAs (e.g., see ref. 18). Although each
spin-split band of GaAs is nearly fully spin polarized (Figures 5a–d),
when we average the spin polarization over the two spin-split bands,
the spin polarization is very much reduced, but the orbital polarization
is almost invariant upon averaging (Figures 5e and f). The averaged

spin and orbital polarizations at As atoms (Figure 5f) are similar to the
hidden spin and orbital polarizations at sublattice A in diamond
(Figure 2b). In all cases, including diamond with a very large SOC
of αC= 1 eV (Figure 2d), the band-averaged site-dependent spin
polarization is much smaller in magnitude than the band-averaged
site-dependent orbital polarization. These results indicate that
site-dependent orbital polarizations are important in current-induced
magnetization5 of both centrosymmetric and non-centrosymmetric
materials.
Recently, spin-polarized photocurrents were measured from

bulk WSe2,
19 a non-magnetic, centrosymmetric material. The results

confirm the hidden spin polarization and the hidden orbital
polarization, as the former is generated from the latter. Moreover,
the hidden orbital polarization in materials with a small SOC can also
be observed by measuring the spin-integrated photocurrents because it
is not the spin polarization but the orbital polarization that determines
the coupling between electrons and photons. Provided that the
final state is well approximated by s-like states, the hidden
orbital polarization also manifests itself in the circular dichroism of
a non-magnetic, centrosymmetric material.
We now discuss the technological implications of our findings.

When an electric current is applied to a centrosymmetric material,
non-equilibrium, site-dependent orbital and spin magnetization can
be generated. The current-induced magnetization is antiferromagnetic
due to the nature of the hidden orbital and spin polarizations, and its
direction depends on the direction of the current. (We note that a
symmetry lowering, for example by strain, is required for diamond,
Si, Ge and GaAs to generate a current-induced, site-dependent
magnetization;20 on the other hand, there are other classes of materials
that do not require an additional symmetry lowering including
CuMnAs21 or Mn2Au,

22 which are also intrinsically antiferromag-
netic.) Antiferromagnetic spintronic devices, in which a current
generates sublattice-dependent spin–orbit torques and changes the
magnetic state of a material, have several advantages over conventional
spintronic devices based on ferromagnetism. Since the total magnetic
moment of an antiferromagnet is zero, antiferromagnetic devices are
largely insensitive to the external environment and do not introduce
magnetic crosstalk. Additionally, they operate much faster than
ferromagnetic devices.20

The concept of hidden orbital polarization established here should
be considered in properly predicting the site-dependent magnetism
because, as we have shown, the spin polarization of a Bloch state
could be much smaller than the orbital polarization in many materials
(e.g., see Figures 2 and 5e,f). Moreover, even in materials with weak
SOC, the hidden orbital polarization can be used in antiferromagnetic
information storage and processing because of the exchange interac-
tions between localized, hidden orbital moments. (Details on the
exchange interactions between orbital moments can be found in, for
example, refs 23,24)
To illustrate the idea that the current-induced hidden orbital

polarization can play a more important role than the hidden spin
polarization, we looked into the current-driven antiferromagnetism of
silicon under a 2% uniaxial compressive strain along the [001]
direction, achievable in real experiments.25,26 (Because silicon has
many point group symmetries, an electric current in silicon does not
generate site-dependent magnetization; however, a strain can result
in current-induced magnetization by breaking some symmetries.20)
Although silicon may not be the best material for antiferromagnetic
information technology applications, it is one of the simplest and most
well-known materials, a good candidate for supporting our hypothesis.

Figure 4 (a, b) The electronic band structures of WSe2 obtained by setting
the interlayer coupling to zero (a) or the atomic SOC (b) to zero. (c) The
hidden polarizations along z of the lower layer of the highest-energy
valence bands at K versus atomic SOC. The fully polarized values are
/SlowerSmax

avg ¼ _
2 ´0:5 and /LlowerSmax

avg ¼ 2_ ´0:5. The vertical dash-dotted
line shows the physical value of the atomic spin–orbit coupling of W atoms.
(d) The same quantity as in (d), but with the interlayer distance reduced to
85% of the actual value.
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The effect of strain is simulated within our tight-binding model
using Harrison’s universal scaling method.27 Following ref. 5, we
obtain the non-equilibrium occupation factor f 0vk of a Bloch state vkj i
by considering the change from the equilibrium Fermi-Dirac occupa-
tion factor fvk= fFD(Evk) of each Bloch state with the energy eigenvalue
Evk:

f 0vk ¼ fvk þ
eet
_

� dEvk

dk

df FDðEvkÞ
dEvk

where τ denotes the scattering lifetime of charge carriers, e the absolute
value of the charge of an electron and ε the applied electric field.
The current-induced, site-dependent magnetization at the A sublattice,
MA, is then given by

MA ¼ �mB
_

X
v

Z
BZ

d3k

2pð Þ3f
0
vk LA
� �

vk
þ 2 SA
� �

vk

� �

where μB is the Bohr magneton. As in ref. 5, we assumed that the spin
g-factor of electrons is 2.
Figure 6 shows the calculated contributions of the orbital and spin

polarizations to the induced magnetization of strained, hole-doped
silicon at sublattice A per unit strength of the electric field as a
function of the doping concentration np. The scattering lifetime τ at
each np is extracted from the measured mobility data28 by using the
Drude model.

Clearly, the orbital contribution to the current-induced antiferro-
magnetism is much larger than the spin contribution. Additionally, the
induced magnetization at each site of silicon can be larger than the
total induced magnetization of Cr2O3, the most well-known magneto-
electric material, with a m0dM=dε value of approximately 1 ps m− 1.29

Again, we are not claiming that compressed silicon is the best material
for antiferromagnetic information technology exploiting the hidden
orbital polarization; larger current-induced antiferromagnetism is
expected in lower-symmetry materials. However, our proof-of-
concept calculations illustrate that it is a worthwhile research direction
to search for materials with large hidden orbital polarizations useful in
antiferromagnetic information technology, irrespective of the size
of the SOC. This result shows that investigating the effect of the
hidden orbital polarization on antiferromagnetic information storage
and processing is an important and promising theoretical and
experimental future research direction.

CONCLUSIONS

In conclusion, we have shown that even in centrosymmetric,
non-magnetic materials, there can exist large site-dependent, hidden
orbital polarizations. In centrosymmetric group IV materials such as
diamond, Si and Ge, the hidden spin polarization is very small, but the
hidden orbital polarization is on the order of ħ. We have also found,
using a general perturbative scheme that is applicable not only to
diamond, Si and Ge (with small hidden spin polarizations) but also
to layered materials such as MoS2 and WSe2 with hidden spin
polarizations close to the maximum value, that the hidden spin
polarization is completely determined by the site-dependent orbital
angular momentum in general centrosymmetric, non-magnetic
materials. If the energy distance between nearby bands is comparable
to or smaller than the atomic spin orbit coupling, the hidden spin
polarization is large. In the case of zinc-blende materials, this energy
difference (nearest-neighbor hopping) is a few eV, and in the case of
transition-metal dichalcogenides, this energy difference (interlayer
hopping) is a few tens of meV. In any case, however, first-order or
higher-order perturbative theory with respect to the SOC connects the
hidden spin polarization to site-dependent orbital angular momenta.
By comparing the strength of the SOC and the interlayer hopping
constant in MoS2 and WSe2, we have shown that the hidden spin
polarization in transition metal dichalcogenides can be significantly
reduced by applying a pressure. Our study also illustrates that
site-dependent orbital polarizations play an important role in
current-induced magnetization of both centrosymmetric materials
and non-centrosymmetric materials such as GaAs. We have discussed

Figure 5 The site-dependent spin and orbital polarizations (kz=0) of the two
bands of GaAs that originate from the spin-degenerate, second-highest-
energy doublet among valence bands when SOC is neglected. (a) and (b),
(c) and (d), and (e) and (f) show the quantities of the upper spin-split band,
those of the lower spin-split band, and their averages, respectively.

Figure 6 (a) The orbital and spin contributions to the current-induced,
site-dependent magnetization of silicon under a 2% uniaxial compressive
strain along [001] versus the hole concentration np. (b) The same quantity
divided by the scattering lifetime of holes.
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the experimental signatures of the hidden orbital polarization in
centrosymmetric materials in both spin-resolved and -integrated
photoemission spectroscopies. We have also calculated the current-
driven antiferromagnetism in compressed silicon and have shown that
an appreciable amount of orbital (antiferro-)magnetization can be
induced even when the spin counterpart is negligible, demonstrating
the potentially important role of hidden orbital polarizations in
antiferromagnetic information technology. Because there are more
degrees of freedom in orbital polarization than in spin polarization,
the hidden orbital polarization may lead to new discoveries in physics.
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